CHIRONOMIDES DU LAC DE BAM (HAUTE-VOLTA)

Claude DEJOUX

Mission O.R.S.T.O.M., laboratoire d'Hydrobiologie, B.P. 1434, Bouaké, Côte d'Ivoire.

Résumé

L'étude de quelques récoltes de chironomides adultes du lac de Bam en Haute-Volta, a permis de mettre en évidence les principales espèces vivant dans ce lac. Vingt cinq espèces ont été répertoriées dont sept sont nouvelles pour la Haute-Volta. Il apparaît par ailleurs que la faune chironomidienne de ce lac présente de grandes affinités, tant qualitatives que quantitatives avec celle de la partie nord du lac Tchad, situé dans la même zone climatique mais distant de plus de 1.500 kilomètres.

Abstract

CHIRONOMIDS OF THE BAM LAKE (UPPER VOLTA)

The study of some light trap samples from the Bam lake in Upper Volta has been done, in order to point out the composition of the chironomid fauna of this biotope. Twenty five species are inventoried, seven of which are new for Upper Volta.

An other interessant fact to mention is the great similarity occurring between the Bam lake chironomid fauna and those leaving into the north part of the lake Chad, distant from more than 1.500 Km.

1. INTRODUCTION

Le lac de Bam fait l'objet depuis environ une dizaine d'années d'études hydrologiques détaillées concernant principalement son bilan hydrique et plus spécialement son évaporation. Sa faune d'invertébrés par contre est pratiquement inconnue et il nous a paru intéressant, ayant l'opportunité de pouvoir le faire (1), de publier cette courte note concernant une première récolte des Diptères chironomides de ce milieu.

Bien entendu, la liste que nous donnons dans les lignes suivantes n'est pas exhaustive. Elle a cependant l'avantage de nous renseigner plus avant sur la faune chironomidienne de Haute-Volta, encore mal connue. Par ailleurs, le lac de Bam présente par son faciès morphologique de lac plat et par sa situation en zone sahélienne, beaucoup d'analogies avec le lac Tchad dont les Chironomides sont bien connus. Il était donc intéressant de pouvoir comparer leurs faunes et de rechercher les affinités qu'elles présentent.

2. SITUATION DU MILIEU

Le lac de Bam est situé dans la région nord de la Haute-Volta, à environ 80 kilomètres au nord de

⁽¹⁾ Au cours d'une mission effectuée en mars-avril 1975, notre collègue J. Asseline, technicien pédologue de l'O.R.S.T.O.M., a pu réaliser par piégeage lumineux plusieurs récoltes de Chironomides adultes émergeant du lac et a bien voulu nous confier l'étude de ce matériel, ce dont nous le remercions vivement.

292 C. DEJOUX

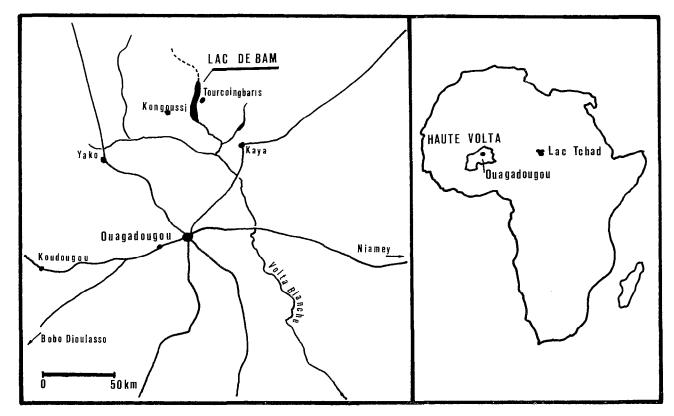


Fig. 1. — Carte de la situation du lac de Bam.

Ouagadougou et occupe le lit fossile d'un affluent de la Volta blanche. Tout comme le lac Tchad, son niveau et son étendue sont sujets à de grandes variations, liées à l'abondance des précipitations annuelles (fig. 1).

Orienté selon un axe nord-sud, c'est un lac étroit dont la plus grande largeur ne dépasse pas 800 m pour une longueur de 30 km environ et une profondeur maximale de 4 m en 1971 (IBIZA, 1972).

Il est limité au sud par des alluvions en provenance des monts alentours, formant un seuil naturel. Ce seuil est surélevé par une digue artificielle qui porte le volume d'eau retenu à environ 40 millions de mètres cubes. Il faut noter comme élément de comparaison que l'apport fluvial en eau au Tchad est, en année hydrologique moyenne, de l'ordre de 43 milliards de mètres cubes.

Le fond de la cuvette lacustre est colmaté par une épaisse couche d'alluvions argileuses, imperméable, qui se craquèle lors de l'étiage du lac. En période humide et aux hautes eaux, une zone sableuse occupant le pourtour du lac peut être atteinte, donnant lieu à la formation de plages temporaires.

3. LISTE DES ESPÈCES RÉCOLTÉES

Nous avons adopté une classification par ordre d'abondance dans les récoltes afin de mieux mettre en évidence les espèces dominantes. Les résultats obtenus sont répertoriés dans le tableau I.

Plus de 4.000 individus appartenant à 25 espèces ont été capturés. Six d'entre elles dominent nettement et représentent à elles seules 90 % de l'ensemble des récoltes.

4. STATUT DES ESPÈCES RÉCOLTÉES PAR RAPPORT A LA FAUNE ACTUELLEMENT CONNUE DE HAUTE-VOLTA

Sept espèces sur les 25 récoltées sont nouvelles pour la Haute-Volta; ce sont les suivantes :

Cryptochironomus stilifer Freeman, 1957.

C'est actuellement la seule récolte connue de cette espèce à l'ouest du Tchad. Elle est, semble-t-il, strictement inféodée aux eaux stagnantes. Il est cependant possible qu'elle se rencontre encore plus à l'ouest car des débris de capsule céphalique larvaire trouvés par Th. Monor dans un estomac de flamant en provenance du lac Faguibine au Mali pourraient appartenir à cette espèce (comm. pers.).

En dehors de l'Afrique centrale, cette espèce est actuellement signalée du Soudan, du Zaïre et de la République d'Afrique du Sud.

Cryptochironomus sp. I.

Nous avons déjà trouvé en abondance cette espèce dans le lac Tchad. Elle n'a cependant encore jamais été décrite, aussi garderons-nous pour la désigner la nomenclature ci-dessus, déjà utilisée au Tchad. Elle n'est actuellement signalée que de ces deux milieux.

Dicrotendipes fusconotatus Kieffer, 1922.

Comme pour *C. stilifer*, nous nous trouvons en présence d'une espèce atteignant ici et actuellement sa limite ouest de répartition. Relativement commune dans le lac Tchad, elle n'est par ailleurs signalée que du Soudan, du Zaïre et de l'Ouganda.

Nilodorum rugosum Kieffer, 1922. N. brevibucca Kieffer, 1922. N. fractilobus Kieffer, 1923.

Bien que se retrouvant sporadiquement dans les cours d'eau en zone de faible courant, ces trois espèces sont caractéristiques des milieux lacustres. Aucune prospection n'ayant été faite jusqu'alors dans de tels milieux en Haute-Volta, ceci explique qu'elles ne soient pas encore signalées de ce pays.

D'une manière générale, ce sont des espèces qui présentent une très vaste aire de répartition en région éthiopienne et dont la présence dans le lac de Bam n'a rien que de très normal. Signalons toutefois que *N. rugosum* n'a jusqu'à maintenant jamais été récolté au sud du lac Victoria.

Pentaneura cygnus Kieffer, 1923.

Ce Tanypodinae qui ne se rencontre qu'en petit nombre dans les récoltes, présente par contre une très vaste aire de répartition en Afrique. Signalé de Côte d'Ivoire, du Ghana et du Mali, sa présence en Haute-Volta n'a rien d'étonnant.

Les 18 espèces restantes étaient déjà signalées de Haute-Volta (Dejoux, 1974 et 1976) et correspondent à des espèces très communes en région éthiopienne.

5. COMPARAISON AVEC LA FAUNE DU LAC TCHAD

Toutes les espèces récoltées dans le lac Bam sont présentes dans le lac Tchad. De plus, il est très intéressant de noter que les espèces les plus abondantes du lac de Bam sont exactement les mèmes que les espèces dominantes de la zone nord du lac Tchad (Carmouze et al., 1972), à l'exception de S. caffrarius qui est surtout abondante dans la partie sud-est du lac et la zone de Delta du Ghari.

Cette similitude de faune dans des milieux morphologiques semblables mais éloignés de plusieurs milliers de kilomètres est un argument supplémentaire à notre hypothèse, selon laquelle il aurait existé au Quaternaire une faune chironomidienne nilotique au sens large, recouvrant toute la zone sahélo-soudanienne et peuplant la chaîne de lacs qui, à cette époque, s'étendait de la Mauritanie jusqu'au Soudan (Dejoux, 1974). Seules des conditions écologiques particulières, comme par exemple une hypersalinité ou une phase d'assèchement, peuvent être responsables du développement d'une faune adaptée, quelque peu différente de la faune généralement présente dans ces milieux.

L'analyse du tableau I met en évidence que deux des récoltes (30-III et 7-IV) sont sensiblement identiques en importance et en composition alors que celle du 14-IV est notablement différente. Il est fort probable, étant donné que les temps de piégeage et l'endroit de récolte n'ont pas changé, que ces variations soient dues à l'influence des phases lunaires agissant sur les émergences des formes dominantes.

Nous savons en effet que l'émergence des Chironomides vivant dans les milieux lacustres est fortement influencée par les rythmes lunaires (Dejoux, 1974). Nous avons mis par exemple en évidence dans le lac Tchad que l'intensité de l'émergence de P. laterale trouvait son maximum 4 jours après l'opposition et que S. caffrarius présentait 3 maximums par lunaison, dont un situé 2 jours après l'opposition. Dans le cas des récoltes faites au lac de Bam, le 30-III-1976 est situé 3 jours après l'opposition et nous nous trouvons exactement dans la période lunaire correspondant au maximum d'émergence de ces deux espèces.

De même, dans le lac de Bam, *C. stilifer* présente un maximum d'émergence le 7-IV, soit 3 jours avant la conjonction et le maximum trouvé dans le lac Tchad est situé 5 jours avant la conjonction!

Le fait que nous nous trouvions dans une même bande climatique et à une latitude pratiquement identique explique cette convergence d'observations qui constitue un argument supplémentaire en faveur d'une grande similitude des faunes chironomidiennes des deux milieux.

Bien que nous ne disposions que de 3 récoltes, l'information contenue dans ces captures en provenance du lac de Bam est relativement importante.

TABLEAU I Liste et abondance relative des espèces de chironomides récoltés au lac de Bam en mars-avril 1975.

Espèces =	30/111/75		Noml 7/IV/75		bres récoltés 14/IV/75		Totaux	
	ð	Ŷ	3	\$	3	φ	N	%
Polypedilum lalerale	325	246	259	71	1		902	22,4
Polypedilem fuscipenne	215	43	369	127	107	18	819	20,3
Cryptochironomus stilifer	83	66	407	169	_	_	725	18,0
Stictochironomus caffrarius	169	118	112	43	5	10	457	11,4
Cryptochironomus sp I	74	_	320		66		386	9,6
Cladotanytarsus pseudomancus	89	27	192		25	16	349	8,7
Polypedilum griseoguttatum	12	11	8		16	43	90	2,2
Ablabesmyia pictipes	14	9	18		1	17	59	1,5
Tanytarsus spadiceonotatus	43		15		4		47	1,2
Dicrotendipes sudanicus	10	7	5		12	7	38	0,9
Procladius brevipetiolatus			35	1	l —		36	0,9
Tanypus brevipalpis	1	12	17	_	_	_	30	0,7
Nilodorum brevibucca		19	-				19	0,5
Dicrolendipes fusconotatus		3] —		3	2	8	0,2
Penlaneura cygnus	3	2		_	l —		5	0,1
Nilodorum fractilobus	_		2	_	_		-5	0,04
Cryptochironomus nudiforceps	I	_	—	_		1	5	0,04
Cryptochironomus diceras	1		-	_	_	-	1	0,02
Cryptochironomus graminicolor	1		-		l —		1	0,02
Nilodosis fusca		_	1	_	—		1	0,02
Ablabesmyia dusoleili		_	1	_		_	1	0,02
Chironomus formosipennis		-		_	I	_	1	0,02

L'indice de diversité du peuplement, calculé à l'aide de la formule de Shannon (D = $-\Sigma$ pi \log^2 pi, où pi représente la fréquence relative des effectifs totaux de l'espèce de rang i), est de 2,660 bits/espèce.

L'information théorique maximale (E max) que l'on pourrait attendre du peuplement présent est donnée par la formule E max = logon (n = nombre d'espèces récoltées) et est égale à 4,64 bits/espèce. Par rapport à cette information théorique, nous avons une équitabilité $E = \frac{\log_2 n}{D}$ importante, égale à 57.32 %. On peut donc considérer que l'échantillon analysé constitue une bonne représentation du peuplement présent dans le lac de Bam à cette époque.

A titre de comparaison, nous donnons ci-après quelques valeurs moyennes des diversités et équitabilités obtenues pour différentes régions du lac Tchad et calculées sur une période de 10 années :

Partie nord du lac Tchad

 $\overline{D} = 2,242$ bits/espèce

 $\overline{E} = 51.52 \%$

Partie est du lac

 $\vec{D} = 1,623$ bits/espèce E = 40,54 %

Région sud-est et delta du Chari

 $\overline{\mathrm{D}}=2,483~\mathrm{bits/espèce}$

 $\overline{E} = 49.4 \%$

Les valeurs obtenues pour le lac de Bam se rapprochent fortement de celles caractérisant les peuplements de la partie nord du lac Tchad. Cette similitude de valeurs ainsi qu'une très grande analogie dans la composition faunistique des peuplements (espèces identiques, densités relatives similaires) nous permettent de conclure que malgré leur éloignement de plusieurs milliers de kilomètres, ces deux milieux présentent une grande analogie sur un plan écologique.

Manuscrit reçu au Service des Publications de l'O.R.S.T.O.M. le 27 avril 1977

BIBLIOGRAPHIE

- CARMOUZE (J. P.) et al., 1972. Grandes zones écologiques du lac Tchad Cah. O.R.S.T.O.M., sér. Hydrobiol., vol. VI, nº 2:103-169.
- Dejoux (C.), Lauzanne (L.), Lévèque (C.), 1969. Évolution qualitative et quantitative de la faune benthique dans la partie est du lac Tchad. Cah. O.R.S.T.O.M., sér. Hydrobiol., vol. III, nº 1: 3-58.
- DEJOUX (C.), 1974. Synécologie des chironomides du lac Tchad (Diptères Nématocères). Thèse de doctorat in Trav. et Doc. O.R.S.T.O.M., nº 56, Paris, 1977, 161 p.
- Dejoun (C.), 1976. Données faunistiques nouvelles concernant les chironomides (Diptères, Nématocères)

- de la région éthiopienne (2° note). Cah. O.R.S.T.O.M., sér., Hydrobiol., vol. N, n° 1: 19-32.
- IBIZA (D.), 1972. Mesure de l'évapotranspiration d'un lac en climat sahélien. Lac de Bam (premiers résultats). Cah. O.R.S.T.O.M., sér., Hydrol., vol. IX, nº 3: 47-64.
- Petr (T.), 1970. Chironomidae (Diptera) from light catches on the Volta lake in Ghana. *Hydrobiologia*, 35, 3-4: 449-468.
- Thomas (J. D.), 1966. Some preliminary observations on the fauna and flora of a small man made lake in the west african savana. *Bull. I.F.A.N.*, 28 A: 542-562.