Geoquímica de las formaciones volcánicas pre-orogénicas de edad cretácea y/o eoterciaria del Ecuador

I. INTRODUCCION

En los Andes del Ecuador, al norte del 3° S la parte occidental de la orogenia andina está constituida de terrenos exóticos, esencialmente volcánicos, de origen oceánico, acrecionados contra el borde oeste del continente sudamericano. En el espacio continental, aflora ampliamente en el sur del país una unidad volcánica cuya instalación ha sido en parte concomitante con la de los terrenos exóticos.

Los estudios geoquímicos anteriores que se realizaron en el Ecuador (e.g. Goossens y Rose, 1973; Goossens et al., 1977; Henderson, 1979), no han permitido establecer de manera definitiva la naturaleza exacta de estas formaciones, pues fueron analizados solamente los elementos mayores que no son lo bastante discriminantes.

En este artículo presentamos el estudio del conjunto de estas formaciones, basándonos esencialmente en el análisis de los elementos en trazas, particularmente de las tierras raras que permiten establecer sin ambigüedad el origen de estas diferentes unidades volcánicas.

II. ESTUDIO GEOQUIMICO

Desde el punto de vista geoquímico, las formaciones volcánicas pre-orogénicas de edad cretácea y/o eoterciaria del Ecuador se subdividen en tres grupos:

- El primer grupo está representado, por una parte, por la formación Piñón de edad cretácea inferior (Bristow y Hoffstetter, 1977) que constituye el substrato de la costa ecuatoriana (Feininger y Seguin, 1983) y, por otra, por basaltos del mismo tipo que aparecen en el seno de escamas en la parte Este de la cordillera occidental (Lebrat et al, 1985) y que deben ser asimiladas a este grupo.

- El segundo grupo representado por la formación Macuchi que...
1. ANÁLISIS QUÍMICO DE LAS ROCAS DE LA FORMACIÓN PINON

<table>
<thead>
<tr>
<th>N°Ech.</th>
<th>8251</th>
<th>8271</th>
<th>8252</th>
<th>FO431</th>
<th>MAS11</th>
<th>8268</th>
<th>8267</th>
<th>8259</th>
<th>82038</th>
<th>8258</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>47.46</td>
<td>47.26</td>
<td>48.03</td>
<td>47.18</td>
<td>47.57</td>
<td>46.60</td>
<td>47.37</td>
<td>47.95</td>
<td>50.00</td>
<td>48.53</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>9.78</td>
<td>9.59</td>
<td>10.83</td>
<td>8.91</td>
<td>10.92</td>
<td>12.38</td>
<td>12.20</td>
<td>11.83</td>
<td>11.77</td>
<td>11.91</td>
</tr>
<tr>
<td>MnO</td>
<td>0.21</td>
<td>0.16</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.19</td>
<td>0.21</td>
<td>0.16</td>
</tr>
<tr>
<td>MgO</td>
<td>10.94</td>
<td>10.00</td>
<td>9.89</td>
<td>7.80</td>
<td>8.80</td>
<td>8.75</td>
<td>7.93</td>
<td>7.30</td>
<td>5.87</td>
<td>5.87</td>
</tr>
<tr>
<td>Na2O</td>
<td>1.07</td>
<td>1.24</td>
<td>1.82</td>
<td>1.78</td>
<td>2.70</td>
<td>1.92</td>
<td>2.50</td>
<td>2.60</td>
<td>2.85</td>
<td>2.84</td>
</tr>
<tr>
<td>K2O</td>
<td>0.44</td>
<td>0.05</td>
<td>0.05</td>
<td>0.73</td>
<td>0.40</td>
<td>0.80</td>
<td>0.29</td>
<td>0.12</td>
<td>0.40</td>
<td>0.14</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.76</td>
<td>0.72</td>
<td>1.13</td>
<td>1.13</td>
<td>1.65</td>
<td>1.33</td>
<td>1.35</td>
<td>1.41</td>
<td>1.60</td>
<td>1.58</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.10</td>
<td>0.07</td>
<td>0.12</td>
<td>0.17</td>
<td>0.13</td>
<td>0.14</td>
<td>0.19</td>
<td>0.16</td>
<td>0.19</td>
<td>0.16</td>
</tr>
<tr>
<td>H2O+</td>
<td>0.66</td>
<td>0.38</td>
<td>0.55</td>
<td>1.68</td>
<td>0.46</td>
<td>1.25</td>
<td>0.88</td>
<td>0.64</td>
<td>0.45</td>
<td>0.53</td>
</tr>
<tr>
<td>H2O-</td>
<td>2.82</td>
<td>1.70</td>
<td>1.00</td>
<td>5.77</td>
<td>3.30</td>
<td>3.32</td>
<td>3.00</td>
<td>1.81</td>
<td>2.42</td>
<td>2.51</td>
</tr>
</tbody>
</table>

Summa 100.57 100.53 100.82 99.55 99.43 100.23 100.32 100.29 99.04 100.26

<table>
<thead>
<tr>
<th>Li</th>
<th>11</th>
<th>5</th>
<th>4</th>
<th>10</th>
<th>6</th>
<th>12</th>
<th>7</th>
<th>6</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Sr</td>
<td>73</td>
<td>93</td>
<td>101</td>
<td>101</td>
<td>93</td>
<td>87</td>
<td>97</td>
<td>127</td>
<td>97</td>
</tr>
<tr>
<td>Ba</td>
<td>80</td>
<td>20</td>
<td>30</td>
<td>280</td>
<td>180</td>
<td>190</td>
<td>70</td>
<td>40</td>
<td>940</td>
</tr>
<tr>
<td>Sc</td>
<td>51</td>
<td>50</td>
<td>47</td>
<td>45</td>
<td>47</td>
<td>49</td>
<td>46</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>260</td>
<td>238</td>
<td>298</td>
<td>308</td>
<td>337</td>
<td>356</td>
<td>344</td>
<td>361</td>
<td>360</td>
</tr>
<tr>
<td>Cr</td>
<td>500</td>
<td>353</td>
<td>321</td>
<td>213</td>
<td>274</td>
<td>228</td>
<td>226</td>
<td>132</td>
<td>210</td>
</tr>
<tr>
<td>Co</td>
<td>50</td>
<td>50</td>
<td>46</td>
<td>45</td>
<td>47</td>
<td>46</td>
<td>46</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>156</td>
<td>164</td>
<td>111</td>
<td>106</td>
<td>84</td>
<td>98</td>
<td>97</td>
<td>76</td>
<td>44</td>
</tr>
<tr>
<td>Cu</td>
<td>73</td>
<td>191</td>
<td>124</td>
<td>128</td>
<td>69</td>
<td>152</td>
<td>87</td>
<td>128</td>
<td>35</td>
</tr>
<tr>
<td>Zn</td>
<td>56</td>
<td>49</td>
<td>63</td>
<td>138</td>
<td>114</td>
<td>85</td>
<td>54</td>
<td>69</td>
<td>71</td>
</tr>
</tbody>
</table>

| La | 1.71 | 1.27 | 2.75 | 3.01 | 3.33 | 3.14 | 2.52 | 4.13 | |
|--------|------|------|------|-------|-------|-------|-------|--------|
| Ce | 4.17 | 2.86 | 7.09 | 6.94 | 8.40 | 8.23 | 7.05 | 11.02 | |
| Sm | 1.52 | 1.13 | 2.26 | 2.01 | 2.42 | 2.63 | 2.46 | 3.34 | |
| Eu | 0.58 | 0.47 | 0.79 | 0.75 | 0.85 | 0.93 | 0.85 | 1.01 | |
| Tb | 0.44 | 0.31 | 0.62 | 0.48 | 0.71 | 0.72 | 0.66 | 0.90 | |
| Yb | 1.46 | 1.08 | 2.02 | 1.93 | 2.30 | 2.63 | 2.38 | 3.02 | |
| Lu | 0.24 | 0.19 | 0.32 | 0.31 | 0.41 | 0.51 | 0.36 | 0.45 | |
| Hf | 0.94 | 0.60 | 1.52 | 1.55 | 1.78 | 1.82 | 1.71 | 2.46 | |
| Th | 0.10 | 0.09 | 0.12 | 0.18 | 0.21 | 0.18 | 0.13 | 0.36 | |

<table>
<thead>
<tr>
<th>Y</th>
<th>16</th>
<th>13</th>
<th>22</th>
<th>20</th>
<th>39</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr</td>
<td>33</td>
<td>24</td>
<td>56</td>
<td>53</td>
<td>101</td>
<td>84</td>
</tr>
<tr>
<td>Nb</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

(Mg) 0.71 0.70 0.67 0.65 0.64 0.61 0.58 0.58 0.58 0.52

Tb/Yb 17.5 18.1 23.1 22.0 29.9 24.0 22.7 25.3 26.6 26.3

La/Yb 1.2 1.2 1.4 1.6 1.4 1.2 1.1 1.4

La/Sm 0.52 0.52 0.67 0.75 0.65 0.55 0.55 0.68

La/Th 17.1 14.1 22.9 16.7 15.1 16.5 18.0 12.5

La/Hf 1.8 2.1 1.8 1.9 1.9 1.7 1.5 1.7

La/Nb 0.6 0.4 0.6 0.6 0.8 0.8

Th/Hf 0.11 0.15 0.08 0.12 0.12 0.10 0.08 0.13

174
aflora ampliamente en el flanco Pacífico de la Cordillera occidental y cuya edad cretáccea superior a eoceno ha podido precisarse por el estudio paleontológico de los sedimentos intercalados (Faucher y Savoyat, 1973; Henderson, 1979; Egüez, 1986).

- El tercer grupo corresponde a la Formación Celica, de edad aptiana a campaniana (Feininger y Bristow, 1980; Lebrat, 1985). Tienen que ser incorporados a este último grupo ciertos afloramientos de los alrededores de Cañar y de Huigra que, en el mapa geológico a 1/100.000 (DGGM, 1982), se atribuyen al Macuchi pero que presentan las mismas características químicas que las rocas del Celica.

II - 1 Las rocas del primer grupo

II - 1.1 La formación Piñón

Las rocas de la formación Piñón son basaltos cuyas características químicas (Cuadro 1) son las de las series toléiticas. Se trata en particular de enriquecimientos en hierro, vanadio y titanio (figura 1) durante diferenciación. Además, los bajos valores de ciertas relaciones entre elementos incompatibles como La/Hf, Th/Hf y sobre todo La/Nb (< 1) son típicos de los basaltos de las arrugas medio-oceánicas (Saunders et al. 1979) (MORB) así como los valores de la relación Ti/U comprendidos entre 18 y 30 (Shervais, 1982).

Los espectros de tierras raras normalizados con las condritas (Nakamura, 1974) presentan una convexidad y un empobrecimiento en tierras raras ligeras (figura 2). Estos espectros son típicos de los MORB de tipo normal (N - tipo MORB) y se puede ver (figura 2) que se parecen mucho a los de MORB recogidos en la placa de Nazca a nivel de la arruga fósil de Galápagos (Bartiza et al., 1982).

Las rocas de la formación Piñón son MORB de tipo N que se han formado, por lo tanto, al nivel de una arruga medio-oceánica. En consecuencia, la formación Piñón definitivamente debe ser considerada como testigo de una antigua corteza oceánica.

II - 1.2 Las escamas de la parte Este de la cordillera occidental

Otros basaltos que forman escamas en la cordillera occidental presentan características químicas (cuadro 2) muy próximas a las de la formación Piñón. Como los anteriores, presentan enriquecimientos en hierro, vanadio y titanio (figura 1) durante la diferenciación.

Sin embargo, sus espectros de tierras raras (figura 3), conservando el aspecto típico de los MORB, presentan un empobrecimiento en tierras raras ligeras menos marcado que para los MORB de Piñón. A esta discreta diferencia evidenciada en los espectros de tierras raras, se añaden otros indicios que muestran que este grupo de basaltos
FIGURA 1: Diagrama TiO2 (peso o/o) VS (Mg) que agrupa el conjunto de las formaciones volcánicas ante orogénicas del Ecuador.
- puntos: MORB N de la formación Piñón
- cuadrados llenos: MORB T del Este de la Cordillera Occidental
- cuadrados punteados y triángulos: basaltos y andesitas de la formación Celica
- cuadrados: lavas de arco intra-oceánico de la formación Mazocchi

FIGURA 2: Espectros de tierras raras normalizadas con las condritas (Nakamura, 1974) de los basaltos de la formación Piñón comparados a los de MORB de la arruga fósil de Galápagos (Batiza y al., 1982) representados por la parte en gris.

176
2. ANÁLISIS QUÍMICO DE LOS BASALTOS QUE APARECEN DENTRO DE LAS ESCAMAS EN LA CORDILLERA OCCIDENTAL

<table>
<thead>
<tr>
<th>N°Ech.</th>
<th>82122</th>
<th>82119</th>
<th>82120</th>
<th>82126</th>
<th>82106</th>
<th>8293</th>
<th>8292</th>
<th>8250</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>50.00</td>
<td>48.85</td>
<td>50.00</td>
<td>51.70</td>
<td>46.90</td>
<td>50.27</td>
<td>48.82</td>
<td>49.89</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>8.38</td>
<td>11.16</td>
<td>10.85</td>
<td>10.60</td>
<td>12.54</td>
<td>12.05</td>
<td>13.15</td>
<td>13.25</td>
</tr>
<tr>
<td>Mno</td>
<td>0.11</td>
<td>0.15</td>
<td>0.16</td>
<td>0.18</td>
<td>0.20</td>
<td>0.19</td>
<td>0.20</td>
<td>0.16</td>
</tr>
<tr>
<td>MgO</td>
<td>11.30</td>
<td>8.50</td>
<td>7.87</td>
<td>7.13</td>
<td>8.07</td>
<td>7.84</td>
<td>6.45</td>
<td>5.25</td>
</tr>
<tr>
<td>CaO</td>
<td>8.16</td>
<td>9.97</td>
<td>9.74</td>
<td>9.15</td>
<td>10.57</td>
<td>9.48</td>
<td>8.71</td>
<td>5.45</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.21</td>
<td>1.71</td>
<td>2.79</td>
<td>3.50</td>
<td>3.00</td>
<td>2.21</td>
<td>2.68</td>
<td>3.31</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.06</td>
<td>0.36</td>
<td>0.06</td>
<td>0.04</td>
<td>0.06</td>
<td>0.10</td>
<td>0.13</td>
<td>0.03</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.22</td>
<td>1.06</td>
<td>1.15</td>
<td>1.03</td>
<td>1.56</td>
<td>1.08</td>
<td>1.26</td>
<td>2.06</td>
</tr>
<tr>
<td>P2O₅</td>
<td>0.07</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.13</td>
<td>0.11</td>
<td>0.12</td>
<td>0.18</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.40</td>
<td>0.47</td>
<td>0.29</td>
<td>0.30</td>
<td>0.02</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>4.39</td>
<td>3.34</td>
<td>2.72</td>
<td>2.52</td>
<td>3.57</td>
<td>2.20</td>
<td>4.23</td>
<td>7.71</td>
</tr>
</tbody>
</table>

| Somme | 99.70 | 99.51 | 99.26 | 99.57 | 99.83 | 99.24 | 99.00 | 100.02 |

Li	19	10	7	4	13	6	8	8
Rb	2	10	2	2	2	2	3	1
Sr	113	133	108	100	179	95	41	47
Ba	40	80	60	15	65	25	10	52
Sc	33	47	44	51	48	48	37	
Y	126	336	340	318	335	336	392	113
Cr	560	190	154	190	310	180	108	12
Co	45	44	44	52	45	45	30	
Ni	240	104	95	80	106	83	71	26
Cu	37	142	145	139	148	156	187	139
Zn	59	94	87	95	88	87	102	130
La	1.68	3.18	2.56	3.35	2.75	3.51	6.18	
Sm	0.50	2.24	1.94	2.88	2.08	2.58	4.65	
Eu	0.24	0.77	0.63	0.87	0.74	0.89	1.57	
Tb	0.17	0.58	0.49	0.69	0.55	0.71	1.21	
Yb	0.70	2.38	2.11	2.49	2.33	2.87	4.46	
Lu	0.11	0.41	0.34	0.43	0.38	0.48	0.71	
Hf	0.70	1.47	1.35	2.15	1.50	1.85	2.68	
Th	0.30	0.31	0.32	0.40	0.29	0.40	0.62	
Y	8	22	25	21	28	23	49	
Zr	32	54	57	47	75	52	99	
Nb	3	4	6	5	6	5	8	
(Mg)	0.74	0.62	0.61	0.60	0.58	0.56	0.51	0.45
Ti/V	10.5	18.9	20.3	19.4	27.9	19.3	19.3	29.9
La/Yb	2.4	1.3	1.2	1.3	1.2	1.2	1.4	
La/Sm	1.84	0.78	0.72	0.64	0.73	0.75	0.73	
La/Th	5.6	10.3	8.0	8.4	9.5	8.8	10.0	
La/Hf	2.4	2.2	1.9	1.6	1.8	1.9	2.3	
La/Nb	0.6	0.8	0.5	0.6	0.6	0.6	0.8	
Th/Hf	0.43	0.21	0.24	0.19	0.19	0.22	0.23	
no puede ser asimilado a Piñón. Entre los más importantes, citemos los contenidos de K20 que son más bajos, y sobre todo las concentraciones en Th que son claramente más elevadas, lo que se traduce en la disminución de las relaciones La/Th y en el aumento de relaciones Th/Hf respecto de los valores obtenidos para Piñón.

El conjunto de las características químicas de estos basaltos demuestra que son muy semejantes a los de la formación Piñón. De hecho, el tipo de espectro de tierras raras, asociado a relaciones La/Th, bajas para los MORB N, son los caracteres presentados por cierta categoría de MORB, los MORB de tipo transicional (T - tipo MORB) como los de la Reykjanes Ridge en el Atlántico norte (Wood et al, 1979).

Los basaltos que forman las escamas en la parte Este de la cordillera occidental son MORB de tipo T formados, como los de Piñón, a nivel de una arruga medio-oceánica. Pueden, por lo tanto, ser considerados igualmente como testigos de una antigua corteza oceánica que podía constituir el piso de un mar marginal (Lebrat et al., 1986; Mégard y Lebrat, este volumen). Estos MORB T que afloran al Este de la carretera Bucay-Riobamba, entre 1° 50’S y 2° 10’S, deben ser considerados como los equivalentes laterales del complejo ofiolítico de la Qda. San Juan que constituye otra escama de material oceánico, 15 km al SO de Quito (Juteau et al., 1977).

II - 2 Las rocas del segundo grupo

La formación Macuchi está constituida por basaltos y andesitas que en forma contraria a las rocas de los grupos anteriores no presentan enriquecimientos en hierro, vanadio y titanio (figura 1) durante la diferenciación, lo cual es una característica de las rocas formadas en campo orogénico (arcos volcánicos insulares y continentales). En realidad, sus características químicas como sus bajos contenidos en Nb y sus enriquecimientos en Rb, Sr, Ba y Th asociados a valores elevados de las relaciones La/HF (\(\bar{X} = 3.5 \)), La/Nh (\(\bar{X} = 1.9 \)) y Th/Hf (\(\bar{X} = 0.66 \)) son típicos de las series volcánicas de los arcos intra-oceánicos. Es lo mismo para sus espectros de tierras raras (figura 4) que presentan un enriquecimiento en tierras raras ligeras, pudiendo alcanzar 30 veces las condritas, y son característicos de los arcos insulares.

La formación Macuchi está, por lo tanto, constituida por rocas que se han formado a nivel de uno o varios arcos volcánicos intra-oceánicos. De hecho, es probable que la formación Macuchi (s. l.) corresponda a dos arcos insulares que se han unido sucesivamente al continente (ver Mégard y Lebrat, este volumen).

II - 3 Las rocas del tercer grupo

La formación Celica está constituida por basaltos, andesitas y dacitas.
FIGURA 3: Espectros de tierras raras normalizadas con las condritas de los tholeiítos de Macuchi comparados con los espectros de los tholeiítos de la cordillera occidental de Colombia (figura gris) (Marriner & Millward 1984; Millward & al., 1984).

FIGURA 4: Espectros de tierras raras normalizadas con las condritas de las rocas del arco insular de la formación Macuchi.
Los espectros de los basaltos están en trazos llenos, los de las andesitas en trazos discontinuos.
3. ANÁLISIS QUÍMICO DE LAS ROCAS DE LA FORMACIÓN MACUCHI (1) BASALTOS

<table>
<thead>
<tr>
<th>N°Ech.</th>
<th>6223</th>
<th>P161</th>
<th>P151d</th>
<th>6224</th>
<th>8243</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SiO}_2)</td>
<td>50.28</td>
<td>50.72</td>
<td>50.53</td>
<td>50.79</td>
<td>51.63</td>
</tr>
<tr>
<td>(\text{Al}_2\text{O}_3)</td>
<td>14.90</td>
<td>15.10</td>
<td>16.00</td>
<td>16.45</td>
<td>14.63</td>
</tr>
<tr>
<td>(\text{Fe}_2\text{O}_3)</td>
<td>8.78</td>
<td>10.57</td>
<td>10.64</td>
<td>10.02</td>
<td>12.62</td>
</tr>
<tr>
<td>(\text{MnO})</td>
<td>0.15</td>
<td>0.17</td>
<td>0.17</td>
<td>0.16</td>
<td>0.24</td>
</tr>
<tr>
<td>(\text{MgO})</td>
<td>4.11</td>
<td>4.68</td>
<td>4.45</td>
<td>4.19</td>
<td>5.17</td>
</tr>
<tr>
<td>(\text{CaO})</td>
<td>11.90</td>
<td>6.95</td>
<td>7.90</td>
<td>7.05</td>
<td>4.65</td>
</tr>
<tr>
<td>(\text{Na}_2\text{O})</td>
<td>0.90</td>
<td>4.86</td>
<td>4.64</td>
<td>3.79</td>
<td>5.55</td>
</tr>
<tr>
<td>(\text{K}_2\text{O})</td>
<td>1.40</td>
<td>1.13</td>
<td>1.07</td>
<td>1.81</td>
<td>0.21</td>
</tr>
<tr>
<td>(\text{TiO}_2)</td>
<td>0.93</td>
<td>0.88</td>
<td>0.82</td>
<td>0.76</td>
<td>1.02</td>
</tr>
<tr>
<td>(\text{P}_2\text{O}_5)</td>
<td>0.13</td>
<td>0.18</td>
<td>0.17</td>
<td>0.13</td>
<td>0.32</td>
</tr>
<tr>
<td>(\text{H}_2\text{O}^+)</td>
<td>0.81</td>
<td>0.80</td>
<td>0.52</td>
<td>0.44</td>
<td>0.22</td>
</tr>
<tr>
<td>(\text{H}_2\text{O}^-)</td>
<td>5.11</td>
<td>4.11</td>
<td>3.57</td>
<td>2.57</td>
<td>3.45</td>
</tr>
</tbody>
</table>

Somme 100.00 100.16 100.48 100.23 99.71

<table>
<thead>
<tr>
<th>Elemento</th>
<th>6223</th>
<th>P161</th>
<th>P151d</th>
<th>6224</th>
<th>8243</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Li})</td>
<td>14</td>
<td>8</td>
<td>11</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>(\text{Rb})</td>
<td>26</td>
<td>18</td>
<td>15</td>
<td>38</td>
<td>2</td>
</tr>
<tr>
<td>(\text{Sr})</td>
<td>141</td>
<td>173</td>
<td>367</td>
<td>370</td>
<td>216</td>
</tr>
<tr>
<td>(\text{Ba})</td>
<td>238</td>
<td>190</td>
<td>410</td>
<td>290</td>
<td>125</td>
</tr>
<tr>
<td>(\text{Sc})</td>
<td>34</td>
<td>38</td>
<td>36</td>
<td>32</td>
<td>37</td>
</tr>
<tr>
<td>(\text{V})</td>
<td>304</td>
<td>341</td>
<td>346</td>
<td>298</td>
<td>401</td>
</tr>
<tr>
<td>(\text{Cr})</td>
<td>43</td>
<td>26</td>
<td>18</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>(\text{Co})</td>
<td>31</td>
<td>31</td>
<td>32</td>
<td>28</td>
<td>36</td>
</tr>
<tr>
<td>(\text{Ni})</td>
<td>26</td>
<td>21</td>
<td>19</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>(\text{Cu})</td>
<td>78</td>
<td>132</td>
<td>140</td>
<td>136</td>
<td>92</td>
</tr>
<tr>
<td>(\text{Zn})</td>
<td>63</td>
<td>112</td>
<td>95</td>
<td>75</td>
<td>104</td>
</tr>
<tr>
<td>(\text{La})</td>
<td>4.38</td>
<td>5.12</td>
<td>5.03</td>
<td>4.25</td>
<td>6.79</td>
</tr>
<tr>
<td>(\text{Ce})</td>
<td>10.37</td>
<td>12.11</td>
<td>11.15</td>
<td>9.87</td>
<td>15.40</td>
</tr>
<tr>
<td>(\text{Sm})</td>
<td>2.24</td>
<td>2.91</td>
<td>2.65</td>
<td>2.17</td>
<td>3.23</td>
</tr>
<tr>
<td>(\text{Eu})</td>
<td>0.86</td>
<td>0.93</td>
<td>0.87</td>
<td>0.76</td>
<td>1.10</td>
</tr>
<tr>
<td>(\text{Tb})</td>
<td>0.36</td>
<td>0.56</td>
<td>0.54</td>
<td>0.46</td>
<td>0.59</td>
</tr>
<tr>
<td>(\text{Yb})</td>
<td>1.52</td>
<td>2.25</td>
<td>1.96</td>
<td>1.72</td>
<td>2.38</td>
</tr>
<tr>
<td>(\text{Lu})</td>
<td>0.26</td>
<td>0.36</td>
<td>0.30</td>
<td>0.29</td>
<td>0.39</td>
</tr>
<tr>
<td>(\text{Hf})</td>
<td>1.23</td>
<td>1.82</td>
<td>1.48</td>
<td>1.25</td>
<td>1.90</td>
</tr>
<tr>
<td>(\text{Th})</td>
<td>0.95</td>
<td>0.97</td>
<td>0.93</td>
<td>0.76</td>
<td>0.90</td>
</tr>
<tr>
<td>(\text{Y})</td>
<td>19</td>
<td>18</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Zr})</td>
<td>51</td>
<td>46</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Nb})</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((\text{Hg}))</td>
<td>0.53</td>
<td>0.49</td>
<td>0.48</td>
<td>0.48</td>
<td>0.47</td>
</tr>
<tr>
<td>(\text{Ta}/\text{V})</td>
<td>18.3</td>
<td>15.5</td>
<td>14.2</td>
<td>15.3</td>
<td>15.3</td>
</tr>
<tr>
<td>(\text{La}/\text{Yb})</td>
<td>2.9</td>
<td>2.3</td>
<td>2.6</td>
<td>2.5</td>
<td>2.9</td>
</tr>
<tr>
<td>(\text{La}/\text{Sm})</td>
<td>1.07</td>
<td>1.07</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{La}/\text{Th})</td>
<td>4.6</td>
<td>5.2</td>
<td>5.4</td>
<td>5.6</td>
<td>7.5</td>
</tr>
<tr>
<td>(\text{La}/\text{Hf})</td>
<td>3.6</td>
<td>2.8</td>
<td>3.4</td>
<td>3.4</td>
<td>3.6</td>
</tr>
<tr>
<td>(\text{La}/\text{Nb})</td>
<td>1.5</td>
<td>2.1</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Th}/\text{Hf})</td>
<td>0.77</td>
<td>0.53</td>
<td>0.63</td>
<td>0.51</td>
<td>0.47</td>
</tr>
</tbody>
</table>

180
Las andesitas que representan la mayor parte de la formación, son andesitas ácidas (57 o/o < S:03 < 63 o/o). Como para la de Macuchi, no se observan para este grupo rocas de enriquecimiento en hierro, vanadio o titanio (figura 1), lo que demuestra que se está en presencia de una segunda serie magmática formada en campo orogénico. En efecto, estas rocas presentan las características químicas de las series calco-alcalinas de los márgenes continentales activos como las concentraciones elevadas en alcalinos y alcalino-tenales (en particular Th) y los espectros de tierras raras que presentan, para las andesitas, enriquecimientos en tierras raras ligeras que pueden alcanzar 75 veces las condritas (figura 5a). El conjunto de estas características se traduce en los valores muy elevados de las relaciones entre elementos incompatibles La/Nb (X = 2.4), La/Hf (X = 4.6) y Th/Hf (X = 1.5), valores muy superiores a los obtenidos para el volcanismo de arco insular de la formación Macuchi.

Además, sus espectros de tierras raras muestran que en el momento de la instalación de esas andesitas, la corteza continental subyacente tenía probablemente un espesor cercano a 40 km. En efecto, estos espectros son similares a los de las andesitas cuaternarias del volcán Nevados de Chillán (figura 5a) situado en Chile encima de una corteza continental de 40 km de espesor. Estas andesitas no presentan, además, los muy fuertes enriquecimientos en tierras raras ligeras (60 a 160 veces las condritas) ni el fraccionamiento de las tierras raras pesadas que caracterizan las andesitas ubicadas sobre una corteza continental de 60 a 70 km de espesor (Bailey, 1981; figura 5b).

Las andesitas de la formación Celica representan, pues, el testimonio de un volcanismo de arco continental calco-alcalino colocado sobre una corteza continental cuyo espesor, probablemente, no pasaba, de 40 km.

III. CONSECUENCIAS ESTRUCTURALES

El estudio geo-químico de las formaciones volcánicas preorogénicas de edad cratácea y/o eoterciaria del Ecuador ha permitido evidenciar la gran diversidad de los tipos magmáticos presentes. Este estudio ha permitido también precisar la extensión de cada una de las diferentes unidades volcánicas preorogénicas (figura 6).

Para comprender mejor la estructura actual de los Andes del Ecuador se pueden reagrupar algunas de estas formaciones, lo que nos permite distinguir:

1) Un volcanismo pro-orogénico de naturaleza calco-alcalina desarrollado sobre el substrato siálico del borde Oeste del continente sudamericano. En el marco de la cordillera andina, este volcanismo, representado por la formación Celica, puede ser calificado como autóctono.

2) Un volcanismo pre-orogénico esencialmente toléítico formado exclusivamente en el campo oceánico. Está representado por las for-
FIGURA 5: (a) Espectros de tierras raras normalizadas con las condritas del basalto y de las andesitas de la formación Celica. Zona rayada: Campo de las andesitas del volcán Nevados de Chillán (Déruelle, 1979, 1982). (b) Campo de las andesitas de la formación Celica (1) comparado a los de las andesitas orogénicas continentales (2) y de las andesitas de tipo andino s.s. (3) (según Bailey, 1981).
maciones Piñón, Macuchi y por las escamas ofiolíticas del Este de la cordillera occidental. Estas no han estado comprendidas en la orogenia andina mucho tiempo después de su nacimiento y de haberse desarrollado en el Pacífico a varios centenares de kilómetros del continente, lo que les confiere el calificativo de alóctonas. Esta distinción permite tratar uno de los problemas mayores de la Geología del Ecuador, a saber el del límite entre el campo de substrato siálico y el campo de substrato oceánico. Se puede considerar que la extensión del volcanismo autóctono (Celica) por una parte y la del volcanismo alóctono (Piñón + Macuchi + escamas ofiolíticas), por otra parte, corresponden respectivamente a los campos de substrato continental y oceánico. La frontera entre estos dos campos representa, pues, la sutura entre el continente sudamericano y los terrenos exóticos. Esta sutura que no ha podido ser observada directamente, puede ser localizada al sur de 2ºS gracias al aporte de la Geoquímica. En efecto, la presencia del volcanismo Celica en el borde Este de la cordillera occidental y de MORB T donde el volcanismo Macuchi (s. l) ligeramente al oeste, permite ubicar la sutura con buena precisión (figura 6). Es importante anotar que en este sector (al sur de 2º S) la huella de la sutura que el estudio geoquímico nos lleva a proponer, es fundamentalmente distinto del Dolores-Guayaquil Megashear (DGM, Case et al., 1971) considerado anteriormente como representativo del límite entre el continente y las tierras exóticas (figura 6).

IV. CONCLUSION

El análisis geoquímico y principalmente el de los elementos en trazas permite resolver una parte de los problemas vinculados al desconocimiento de las formaciones volcánicas pre-orogénicas cretácias y/o eoterciarias del Ecuador, desconocimiento debido en gran parte a las malas condiciones de afloramiento de dichas formaciones. En efecto, a más de la caracterización geoquímica de las diferentes unidades magmáticas, este estudio permite igualmente precisar sus extensiones relativas. Finalmente, las consecuencias estructurales que derivan de nuestros resultados en cuanto a la posición de la sutura entre el dominio continental y el oceánico, son de importancia fundamental para la investigación minera en el Ecuador (ver Van Thourout, este volumen).
3. Análisis Químico de las Rocas de la Formación Macuchi

(2) Andesitas básicas

<table>
<thead>
<tr>
<th>N°Ech.</th>
<th>P₅₉a</th>
<th>8249</th>
<th>82110</th>
<th>8290</th>
<th>82108</th>
<th>8289</th>
<th>8237</th>
<th>82114</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>53.57</td>
<td>54.52</td>
<td>54.54</td>
<td>55.25</td>
<td>55.72</td>
<td>55.90</td>
<td>56.11</td>
<td>56.32</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.89</td>
<td>19.34</td>
<td>16.56</td>
<td>14.38</td>
<td>16.89</td>
<td>14.52</td>
<td>17.05</td>
<td>14.08</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>9.52</td>
<td>7.56</td>
<td>7.69</td>
<td>10.78</td>
<td>7.76</td>
<td>9.53</td>
<td>6.97</td>
<td>10.02</td>
</tr>
<tr>
<td>MnO</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
<td>0.18</td>
<td>0.15</td>
<td>0.14</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>MgO</td>
<td>3.50</td>
<td>2.67</td>
<td>3.81</td>
<td>4.57</td>
<td>3.18</td>
<td>3.46</td>
<td>2.75</td>
<td>2.23</td>
</tr>
<tr>
<td>CaO</td>
<td>5.35</td>
<td>8.41</td>
<td>6.05</td>
<td>7.43</td>
<td>7.30</td>
<td>8.08</td>
<td>3.35</td>
<td>4.93</td>
</tr>
<tr>
<td>Na₂O</td>
<td>6.00</td>
<td>3.25</td>
<td>3.14</td>
<td>2.48</td>
<td>3.10</td>
<td>3.07</td>
<td>5.20</td>
<td>5.13</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.05</td>
<td>0.78</td>
<td>0.21</td>
<td>1.00</td>
<td>0.16</td>
<td>0.76</td>
<td>0.51</td>
<td>1.09</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.82</td>
<td>0.82</td>
<td>0.67</td>
<td>0.43</td>
<td>0.52</td>
<td>0.54</td>
<td>0.83</td>
<td>0.87</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.18</td>
<td>0.23</td>
<td>0.10</td>
<td>0.10</td>
<td>0.13</td>
<td>0.12</td>
<td>0.19</td>
<td>0.30</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.41</td>
<td>0.15</td>
<td>0.29</td>
<td>0.14</td>
<td>0.41</td>
<td>0.20</td>
<td>0.36</td>
<td>0.28</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>2.97</td>
<td>0.72</td>
<td>5.96</td>
<td>2.39</td>
<td>4.05</td>
<td>3.12</td>
<td>5.78</td>
<td>4.15</td>
</tr>
</tbody>
</table>

Somme

Li	7	10	33	7	20	5	55	19
Rb	19	16	4	17	2	3	10	20
Sr	371	480	332	179	427	200	593	212
Ba	172	260	150	290	210	95	300	175
Sc	29	25	22	44	22	32	17	33
V	273	214	196	250	183	255	190	254
Cr	11	14	25	14	9	86	88	22
Co	26	22	27	35	21	27	22	16
Ni	11	14	20	22	9	34	42	6
Cu	90	140	56	100	59	46	62	65
Zn	81	70	84	85	73	77	82	81
La	6.07	6.70	4.49	2.47	4.87	3.83	7.75	9.71
Ce	13.75	14.51	9.02	5.11	11.02	8.78	16.87	19.90
Sm	3.00	3.00	1.77	1.46	2.20	1.94	2.33	4.02
Eu	0.91	0.99	0.62	0.48	0.67	0.70	0.74	1.13
Tb	0.53	0.56	0.37	0.36	0.42	0.44	0.35	0.73
Yb	2.17	2.03	1.40	1.81	1.82	1.90	0.81	2.88
Lu	0.35	0.34	0.24	0.33	0.30	0.32	0.13	0.47
Hf	1.89	2.03	1.32	0.87	1.37	1.23	1.79	3.11
Th	1.04	0.81	0.86	0.69	0.81	0.91	1.19	1.82
Y	15	17	19	12				
Zr	49	29	52	74				
Nb	2	2	3	4				
(Hg)	0.45	0.49	0.51	0.48	0.47	0.44	0.46	0.33
T₁/V	18.0	22.5	20.5	10.3	17.0	12.7	25.2	20.5
La/Yb	2.8	3.3	3.2	1.4	2.7	2.0	9.6	3.4
La/Sm	1.39	0.93	1.21	1.08	1.82			
La/Th	5.8	8.3	5.2	3.6	6.0	4.2	6.5	5.3
La/Hf	3.2	3.3	3.4	2.8	3.6	3.1	4.3	3.1
La/Nb	2.3	1.2	1.6	1.9				
Th/Hf	0.55	0.60	0.65	0.79	0.59	0.74	0.66	0.59

184
<table>
<thead>
<tr>
<th>Ítem</th>
<th>Ech. 82111</th>
<th>Ech. 82107</th>
<th>Ech. 82115</th>
<th>Ech. 82112</th>
<th>Ech. 8245</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>57.29</td>
<td>57.69</td>
<td>61.03</td>
<td>62.25</td>
<td>62.31</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.13</td>
<td>16.16</td>
<td>17.02</td>
<td>14.41</td>
<td>16.61</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>6.47</td>
<td>6.20</td>
<td>5.18</td>
<td>6.65</td>
<td>8.77</td>
</tr>
<tr>
<td>MnO</td>
<td>0.13</td>
<td>0.11</td>
<td>0.08</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>MgO</td>
<td>7.02</td>
<td>3.36</td>
<td>1.90</td>
<td>3.09</td>
<td>2.42</td>
</tr>
<tr>
<td>CaO</td>
<td>5.20</td>
<td>4.19</td>
<td>5.00</td>
<td>4.72</td>
<td>4.43</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.65</td>
<td>3.82</td>
<td>4.45</td>
<td>2.90</td>
<td>2.16</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.27</td>
<td>1.49</td>
<td>1.17</td>
<td>0.61</td>
<td>1.39</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.53</td>
<td>0.46</td>
<td>0.55</td>
<td>0.65</td>
<td>0.85</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.10</td>
<td>0.12</td>
<td>0.23</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>0.23</td>
<td>0.41</td>
<td>0.18</td>
<td>0.34</td>
<td>0.15</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>6.29</td>
<td>6.01</td>
<td>2.43</td>
<td>3.87</td>
<td>3.13</td>
</tr>
<tr>
<td>Somme</td>
<td>99.31</td>
<td>100.02</td>
<td>99.22</td>
<td>99.76</td>
<td>99.49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Ech. 82111</th>
<th>Ech. 82107</th>
<th>Ech. 82115</th>
<th>Ech. 82112</th>
<th>Ech. 8245</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>38</td>
<td>23</td>
<td>13</td>
<td>25</td>
<td>54</td>
</tr>
<tr>
<td>Rb</td>
<td>5</td>
<td>59</td>
<td>20</td>
<td>22</td>
<td>61</td>
</tr>
<tr>
<td>Sr</td>
<td>323</td>
<td>222</td>
<td>639</td>
<td>245</td>
<td>130</td>
</tr>
<tr>
<td>Ba</td>
<td>200</td>
<td>190</td>
<td>565</td>
<td>325</td>
<td>245</td>
</tr>
<tr>
<td>Sc</td>
<td>17</td>
<td>19</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>172</td>
<td>145</td>
<td>103</td>
<td>163</td>
<td>227</td>
</tr>
<tr>
<td>Cr</td>
<td>13</td>
<td>43</td>
<td>13</td>
<td>48</td>
<td>153</td>
</tr>
<tr>
<td>Co</td>
<td>18</td>
<td>17</td>
<td>12</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>Ni</td>
<td>13</td>
<td>22</td>
<td>10</td>
<td>21</td>
<td>61</td>
</tr>
<tr>
<td>Cu</td>
<td>45</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>48</td>
</tr>
<tr>
<td>Zn</td>
<td>75</td>
<td>68</td>
<td>63</td>
<td>67</td>
<td>136</td>
</tr>
<tr>
<td>La</td>
<td>4.25</td>
<td></td>
<td></td>
<td>9.21</td>
<td>14.85</td>
</tr>
<tr>
<td>Ce</td>
<td>8.89</td>
<td></td>
<td></td>
<td>18.06</td>
<td>29.77</td>
</tr>
<tr>
<td>Sm</td>
<td>1.50</td>
<td></td>
<td></td>
<td>3.12</td>
<td>4.25</td>
</tr>
<tr>
<td>Eu</td>
<td>0.50</td>
<td></td>
<td></td>
<td>0.76</td>
<td>0.96</td>
</tr>
<tr>
<td>Tb</td>
<td>0.28</td>
<td></td>
<td></td>
<td>0.52</td>
<td>0.69</td>
</tr>
<tr>
<td>Yb</td>
<td>1.10</td>
<td></td>
<td></td>
<td>2.00</td>
<td>3.05</td>
</tr>
<tr>
<td>Lu</td>
<td>0.19</td>
<td></td>
<td></td>
<td>0.33</td>
<td>0.47</td>
</tr>
<tr>
<td>Hf</td>
<td>1.30</td>
<td></td>
<td></td>
<td>2.57</td>
<td>3.38</td>
</tr>
<tr>
<td>Th</td>
<td>0.96</td>
<td></td>
<td></td>
<td>2.38</td>
<td>4.32</td>
</tr>
<tr>
<td>Y</td>
<td>13</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>49</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Mg)</td>
<td>0.50</td>
<td>0.54</td>
<td>0.45</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td>Tl/V</td>
<td>18.5</td>
<td>19.0</td>
<td>32.0</td>
<td>23.9</td>
<td>22.5</td>
</tr>
<tr>
<td>La/Yb</td>
<td>3.9</td>
<td></td>
<td></td>
<td>4.6</td>
<td>4.9</td>
</tr>
<tr>
<td>La/Sm</td>
<td>1.55</td>
<td></td>
<td></td>
<td>1.82</td>
<td></td>
</tr>
<tr>
<td>La/Th</td>
<td>4.4</td>
<td></td>
<td></td>
<td>3.9</td>
<td>3.4</td>
</tr>
<tr>
<td>La/Hf</td>
<td>3.3</td>
<td></td>
<td></td>
<td>3.6</td>
<td>4.4</td>
</tr>
<tr>
<td>La/Nb</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th/Hf</td>
<td>0.74</td>
<td></td>
<td></td>
<td>0.93</td>
<td>1.26</td>
</tr>
</tbody>
</table>
FIGURA 6: Mapa geológico simplificado del Ecuador (modificado según los mapas geológicos del Ecuador a 1: 1,000,000 SNGM Quito, 1969; DCGM Quito 1982) que evidencia la posición de la sutura entre el dominio continental y los terrenos alóctonos. DGM Dolores - Guayaquil Megaskear (Case et al., 1971).
4. ANÁLISIS QUÍMICO DE LAS LAVAS DE LA FORMACIÓN CELICA

<table>
<thead>
<tr>
<th>N°</th>
<th>Ec70</th>
<th>Bz1202</th>
<th>Ec73</th>
<th>Bz103</th>
<th>Ec54</th>
<th>Bz101</th>
<th>Ec50</th>
<th>Ec55</th>
<th>Ec53</th>
<th>Bz79</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>49.76</td>
<td>56.11</td>
<td>58.41</td>
<td>57.30</td>
<td>57.26</td>
<td>58.08</td>
<td>58.22</td>
<td>58.22</td>
<td>59.60</td>
<td>59.46</td>
</tr>
<tr>
<td>Al2O3</td>
<td>17.88</td>
<td>14.77</td>
<td>16.90</td>
<td>15.70</td>
<td>15.83</td>
<td>16.10</td>
<td>16.07</td>
<td>16.73</td>
<td>15.53</td>
<td>15.48</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>2.00</td>
<td>6.62</td>
<td>7.10</td>
<td>6.70</td>
<td>6.90</td>
<td>5.33</td>
<td>6.80</td>
<td>6.70</td>
<td>6.75</td>
<td>6.79</td>
</tr>
<tr>
<td>MnO</td>
<td>0.18</td>
<td>0.14</td>
<td>0.13</td>
<td>0.11</td>
<td>0.13</td>
<td>0.10</td>
<td>0.11</td>
<td>0.12</td>
<td>0.10</td>
<td>0.06</td>
</tr>
<tr>
<td>MgO</td>
<td>5.04</td>
<td>2.26</td>
<td>2.03</td>
<td>1.07</td>
<td>3.60</td>
<td>2.03</td>
<td>3.25</td>
<td>2.93</td>
<td>3.36</td>
<td>3.00</td>
</tr>
<tr>
<td>CaO</td>
<td>10.39</td>
<td>6.73</td>
<td>4.08</td>
<td>3.90</td>
<td>4.65</td>
<td>5.64</td>
<td>6.90</td>
<td>5.51</td>
<td>5.35</td>
<td>5.52</td>
</tr>
<tr>
<td>Na2O</td>
<td>3.45</td>
<td>1.14</td>
<td>6.24</td>
<td>2.16</td>
<td>3.42</td>
<td>4.12</td>
<td>2.92</td>
<td>3.27</td>
<td>3.20</td>
<td>2.35</td>
</tr>
<tr>
<td>K2O</td>
<td>0.45</td>
<td>1.73</td>
<td>1.75</td>
<td>1.82</td>
<td>1.79</td>
<td>1.43</td>
<td>1.53</td>
<td>1.57</td>
<td>1.51</td>
<td>1.52</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.75</td>
<td>0.66</td>
<td>0.53</td>
<td>0.61</td>
<td>0.80</td>
<td>0.70</td>
<td>0.79</td>
<td>0.88</td>
<td>0.81</td>
<td>0.94</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.10</td>
<td>0.16</td>
<td>0.29</td>
<td>0.17</td>
<td>0.15</td>
<td>0.16</td>
<td>0.16</td>
<td>0.14</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>H2O-</td>
<td>2.07</td>
<td>0.32</td>
<td>2.66</td>
<td>0.39</td>
<td>4.07</td>
<td>5.03</td>
<td>2.24</td>
<td>2.79</td>
<td>4.19</td>
<td>3.49</td>
</tr>
</tbody>
</table>

Somme: 99.01 99.36 99.11 99.13 99.49 100.34 99.04 99.19 99.38 99.16

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Ec70</th>
<th>Bz1202</th>
<th>Ec73</th>
<th>Bz103</th>
<th>Ec54</th>
<th>Bz101</th>
<th>Ec50</th>
<th>Ec55</th>
<th>Ec53</th>
<th>Bz79</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td>25</td>
<td>16</td>
<td>14</td>
<td>23</td>
<td>11</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>Nb</td>
<td>15</td>
<td>61</td>
<td>37</td>
<td>48</td>
<td>61</td>
<td>71</td>
<td>42</td>
<td>43</td>
<td>56</td>
<td>36</td>
</tr>
<tr>
<td>Sr</td>
<td>265</td>
<td>215</td>
<td>566</td>
<td>271</td>
<td>345</td>
<td>274</td>
<td>321</td>
<td>320</td>
<td>356</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>200</td>
<td>350</td>
<td>850</td>
<td>400</td>
<td>725</td>
<td>740</td>
<td>490</td>
<td>610</td>
<td>750</td>
<td>780</td>
</tr>
<tr>
<td>Sc</td>
<td>35</td>
<td>17</td>
<td>25</td>
<td>18</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>V</td>
<td>234</td>
<td>160</td>
<td>152</td>
<td>167</td>
<td>164</td>
<td>135</td>
<td>165</td>
<td>166</td>
<td>159</td>
<td>172</td>
</tr>
<tr>
<td>Cr</td>
<td>50</td>
<td>46</td>
<td>50</td>
<td>45</td>
<td>44</td>
<td>29</td>
<td>34</td>
<td>44</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Co</td>
<td>31</td>
<td>20</td>
<td>15</td>
<td>19</td>
<td>19</td>
<td>16</td>
<td>19</td>
<td>16</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>Na</td>
<td>27</td>
<td>15</td>
<td>9</td>
<td>16</td>
<td>17</td>
<td>15</td>
<td>16</td>
<td>14</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>Cu</td>
<td>104</td>
<td>28</td>
<td>14</td>
<td>33</td>
<td>22</td>
<td>26</td>
<td>20</td>
<td>20</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Zn</td>
<td>81</td>
<td>79</td>
<td>82</td>
<td>89</td>
<td>81</td>
<td>85</td>
<td>78</td>
<td>86</td>
<td>83</td>
<td>96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Ec70</th>
<th>Bz1202</th>
<th>Ec73</th>
<th>Bz103</th>
<th>Ec54</th>
<th>Bz101</th>
<th>Ec50</th>
<th>Ec55</th>
<th>Ec53</th>
<th>Bz79</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>3.65</td>
<td>18.79</td>
<td>12.39</td>
<td>16.92</td>
<td>13.85</td>
<td>13.83</td>
<td>14.01</td>
<td>23.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>7.97</td>
<td>39.20</td>
<td>27.71</td>
<td>35.52</td>
<td>29.62</td>
<td>25.02</td>
<td>29.92</td>
<td>46.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>1.96</td>
<td>4.98</td>
<td>3.38</td>
<td>3.95</td>
<td>3.39</td>
<td>3.28</td>
<td>3.56</td>
<td>5.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>0.70</td>
<td>1.47</td>
<td>0.58</td>
<td>0.90</td>
<td>0.91</td>
<td>1.02</td>
<td>0.90</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>0.40</td>
<td>0.65</td>
<td>0.49</td>
<td>0.54</td>
<td>0.45</td>
<td>0.52</td>
<td>0.50</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>1.80</td>
<td>2.50</td>
<td>1.94</td>
<td>2.23</td>
<td>1.86</td>
<td>2.14</td>
<td>2.02</td>
<td>2.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>0.26</td>
<td>0.40</td>
<td>0.31</td>
<td>0.34</td>
<td>0.29</td>
<td>0.34</td>
<td>0.32</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>1.10</td>
<td>2.46</td>
<td>3.00</td>
<td>4.37</td>
<td>3.17</td>
<td>3.52</td>
<td>3.51</td>
<td>4.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>0.93</td>
<td>4.38</td>
<td>4.93</td>
<td>7.28</td>
<td>5.57</td>
<td>5.32</td>
<td>5.94</td>
<td>6.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>21</td>
<td>24</td>
<td>21</td>
<td>24</td>
<td>21</td>
<td>24</td>
<td>21</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>115</td>
<td>159</td>
<td>115</td>
<td>159</td>
<td>115</td>
<td>159</td>
<td>115</td>
<td>159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Ec70</th>
<th>Bz1202</th>
<th>Ec73</th>
<th>Bz103</th>
<th>Ec54</th>
<th>Bz101</th>
<th>Ec50</th>
<th>Ec55</th>
<th>Ec53</th>
<th>Bz79</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MgO)</td>
<td>0.56</td>
<td>0.41</td>
<td>0.30</td>
<td>0.56</td>
<td>0.53</td>
<td>0.45</td>
<td>0.51</td>
<td>0.49</td>
<td>0.52</td>
<td>0.49</td>
</tr>
<tr>
<td>Tsi/V</td>
<td>19.2</td>
<td>24.7</td>
<td>32.3</td>
<td>21.9</td>
<td>29.3</td>
<td>31.1</td>
<td>28.7</td>
<td>31.8</td>
<td>30.5</td>
<td>32.8</td>
</tr>
<tr>
<td>La/Yb</td>
<td>2.3</td>
<td>7.5</td>
<td>6.4</td>
<td>7.6</td>
<td>7.4</td>
<td>6.5</td>
<td>6.9</td>
<td>9.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La/Sm</td>
<td>1.02</td>
<td>2.07</td>
<td>2.01</td>
<td>2.34</td>
<td>2.24</td>
<td>2.31</td>
<td>2.16</td>
<td>2.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La/Th</td>
<td>3.9</td>
<td>4.3</td>
<td>2.5</td>
<td>2.1</td>
<td>2.5</td>
<td>2.6</td>
<td>2.4</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La/Hf</td>
<td>3.3</td>
<td>7.6</td>
<td>4.1</td>
<td>3.9</td>
<td>4.4</td>
<td>3.9</td>
<td>4.0</td>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La/Nb</td>
<td>2.1</td>
<td>2.4</td>
<td>2.1</td>
<td>2.4</td>
<td>2.1</td>
<td>2.4</td>
<td>2.1</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln/Hf</td>
<td>0.85</td>
<td>1.78</td>
<td>1.64</td>
<td>1.83</td>
<td>1.76</td>
<td>1.51</td>
<td>1.69</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BIBLIOGRAFÍA

188

