Using three fallout nuclides (210Pb, 137Cs and 239,240Pu) as tracers, an attempt was made to elucidate the budgets, sources and pathways of sediments and these nuclides in the East China Sea (ECS). A large number of box and gravity cores were collected from this marginal sea and analyzed for this purpose. Multiplying the area of the ECS as defined in this study (353,000 km2) by the 137Cs-based mean sedimentation rate (0.372 g.cm$^{-2}$yr$^{-1}$) yields an annual sediment flux of 1.3×10^9 tons.yr$^{-1}$. This is about twice the sum of the reported annual discharge from the Yangtze River ($\approx 5 \times 10^8$ tons.yr$^{-1}$) and erosion from Taiwan ($\approx 2 \times 10^8$ tons.yr$^{-1}$). To account for the substantial imbalance, input from the Yellow River’s dispersal system from the north is required. Spatial distribution of sediment inventories of 210Pb, 137Cs and 239,240Pu shows that input from the Yangtze River’s drainage basin constitutes the dominant source of these two anthropogenic nuclides in the ECS. As for the natural nuclide 210Pb, boundary scavenging and atmospheric fallout are equally important whereas riverine input is negligible. By comparing the mean sediment inventories of 210Pb, 137Cs and 239,240Pu in the study area (71, 5.2 and 0.72 dpm.cm$^{-2}$, respectively) with corresponding values expected from global fallout (37, 7.1 and 0.21 dpm.cm$^{-2}$, respectively), it can be seen that 210Pb and 239,240Pu precipitated from the atmosphere are effectively scavenging from the water column, whereas 137Cs is not.