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1. Introduction

The Ecuadorian Volcanic Arc (EVA), related to the Nazca Plate/Carnegie Ridge subduction under the
South-American plate/North-Andean Block, corresponds to the southern segment of the Northern Andean
Volcanic Zone (Fig. 1). Being exceptionally wide (more than 100 Km between 0° and 1°S; Fig. 1) the EVA has
been divided into four volcanic rows nearly parallel to the trench: the volcanic front, the Inter-Andean valley

volcanoes, the Cordillera Real volcanoes and the Back-arc volcanoes (Hall and Beate, 1991).

Recent studies of four volcanic complexes, each one belonging to a different row of the EVA (Robin et
al., 1997; Samaniego et al, 2002; Andrade, 2003) have established a comprehensive chrono-stratigraphical and
geochemical database. This transect through the whole arc includes from W to E : Casitahua-Pululahua (CPC),

Mojanda-Fuya Fuya (MFC), Viejo Cayambe-Nevado Cayambe (VNC) and Reventador (RVC) (Fig. 1).

2. Data

The three first volcanic complexes (CPC, MFC and VNC) share an overall similar geological evolution:
all them have an ancient and eroded volcanic base-edifice, and a recent or active edifice. The ancient edifices
(Casitahua, Mojanda and Viejo Cayambe) are older than 0.8 - 0.9 Ma, mainly composed of two-pyroxene
andesites. The recent edifices (Pululahua, Fuya Fuya and Nevado Cayambe) are younger than 0.5 Ka, (some of
them are still active) and mainly composed of amphibole-bearing acid andesites and dacites. Available samples

from RVC are mainly two-pyroxene andesites belonging to the most recent Holocene edifice.

In order to discuss the geochemical characteristics of the less differentiated magmas of the transect, all
the samples with SiO, > 63 wt% (dacites and rhyolites) have been removed from the original database (Fig. 2).
Only one sample has less than 53% SiO, (a lava from RVC) consequently, here, only andesites and acid

andesites are compared and under discussion (Fig. 2).

3. Systematic time-controlled changes
As already noticed by Barberi et al. (1988), Barragan et al., (1998) and Bourdon et al. (2003),
subduction controls incompatible element magma contents through the whole transect. For instance, Ba and

LREE contents increase from West to East, and they are correlated with the distance to the trench (Fig. 3). This
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geochemical feature is classically explained by (1) a diminution in the amount of liquids (fluids or melts)
released from the slab; and (2) a diminution of the degree of partial-meiting from the volcanic front towards the
back-arc. This characteristic is observed for both ancient and recent volcanoes of the present transect (Fig. 3).
However, this is not true anymore for HREE and Y which behave as more compatible elements (Fig. 3) and
whose contents in both ancient and recent lavas remain relatively stable and similar through the whole transect.
When the whole transect selected data are plotted in compatible vs. incompatible trace element
diagrams (e.g. Y vs. Nb; Fig. 4), two roughly parallel trends appear, thus pointing to a double control of magma
composition: 1) In each trend, the incompatible element content increases with the distance from the trench, thus
pointing to a subduction control; 2) The two trends differ by their content in Y or Yb, the older edifices are
enriched in these elements whereas the younger are systematically poorer, thus demonstrating a time control.

RVC has a different behaviour from the other recent volcanoes being similar to ancient ones (Fig. 4).

4. Discussion and conclusions

These observations have been possible thanks to the reliable chrono-stratigraphic control of the transect
volcanoes. It is then strongly recommended to improve the chronological control on other volcanoes of the EVA
to confirm the patterns presented here.

As only the less differentiated lavas of the transect volcanoes have been compared, the time-controlled
changes observed here could reflect changes occurred in the magma sources, which suggests that an important
geodynamical process could be responsible for the observed changes. Different genetic models have been
proposed in order to explain the EVA magmas geochemical characteristics. They have taken into account the
possibility of a classic mantle-source melting (Barragan et al., 1998), a subducted-slab melting (Bourdon et al.,
2003), an adakite-metasomatised mantle melting (Samaniego et al., 2002) or a sub-crustal under-plated basalt
melting (Garrison et al., 2000). These models have important geodynamical differences and implications.

The most important geodynamical event occurred in Plio-quaternary times, related to the EVA, has
been the subduction of the Carnegie Ridge (Fig. 1). The time-window related to Carnegie Ridge subduction
largely overpasses the time-window related to our geochemical observations, and thus the latter could probably
represent only a small consequence of a larger and more complex process. The fact that RVC has a different
behaviour than the other recent volcanoes (Fig. 4) probably means that, if Carnegic Ridge subduction is
changing the EVA magmas source conditions, this process has not yet affected or arrived to the RVC zone.

EVA magmas general depletion in more compatible elements (Y & HREE) has been interpreted as a
result of the involvement of a basaltic source in magma genesis (Garrison et al., 2000; Samaniego et al., 2002;
Bourdon et al., 2003). Future successful genetic models should be able to explain the systematic time-controlled

general depletion of those elements presented here.
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Figure 1. Sketch of the Ecuadorian subduction system and detail of the Ecuadorian Volcanic Arc (modified after

Hall & Beate, 1991).
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Figure 2. K,O vs. SiO, diagram for the whole geochemical database of the studied transect. Samples with >63
wt% Si0, were excluded of the present discussion.
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Figure 3. Trace-element patterns for the average composition of each volcano. It must be noticed that
incompatible elements behave similarly in both ancient and recent volcanoes.

2,50 25,0
Yb (ppm) Y (ppm)
2,00 MEC o RvC 20,0
Mo ) o ) o
oo o go o
1,50 O > L TaE | 15,0
° XAQZ%OD o % i of * x
<
1.00 .f,i_wo ‘h: 100 Recent
' ™Yo l'-@ﬂ 5& = "“Tvolcances
J oo 2o,
=la ]
0,50 cPe K j &6
VNC
La (ppm) Nb (ppm)
0,00 0,0
0,00 8,00 16,00 24,00 32,00 40,00 0,0 2,0 4,0 6.0 8.0 10,0 12,0

Figure 4. Yb vs. La and Y vs. Nb diagrams for the selected data of the transect. The incompatible element
contents (Nb and La) appear to be subduction-controlled, while compatible element contents (Y and Yb) are
clearly time-controlled. Symbols as in Figure 2.
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