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Résumé 
La dégradation des pâturages dans le monde entier s’intensifie avec l’augmentation 

des populations humaines. L’invasion d’espèces ligneuses endémiques et l’érosion en ravine 

affectent les prairies naturelles et les savanes. Les mécanismes de contrôle et les 

conséquences de l’invasion ligneuse sur les écosystèmes sont toujours au cœur d’un débat 

scientifique. Cette étude a pour but de caractériser l’invasion ligneuse au sein de pâturages 

ravinés. Elle apporte des réponses sur les interactions entre les principaux facteurs de contrôle 

et sur les conséquences de l’invasion sur l’érosion en ravine et les propriétés du couvert 

herbacé et du sol en prenant pour exemple un pâturage raviné du KwaZulu-Natal en Afrique 

du Sud envahi par l’Acacia sieberiana.  

L’analyse de photographies aériennes a montré la transformation de cette prairie en 

savane en 35 ans. La population d’A. sieberiana présente une répartition spatiale hétérogène 

et privilégie les zones de plus faible teneur en argile du sol. La compétition entre la strate 

herbacée et les plantules d’A. sieberiana est le mécanisme principal limitant la survie des 

plantules. Le feu et l’herbivorie, en diminuant le couvert herbacé, ont un effet indirect positif 

sur la survie des plantules. Les acacias, en fonction de leur taille, adaptent la profondeur de 

prélèvement de l’eau au cours des saisons favorisant leur persistance. 

Malgré leurs effets positifs sur la strate herbacée et les sols, les acacias augmentent 

l’érosion en ravine dominée par des processus de subsurface et favorisent la présence d’une 

astéracée, Senecio inaequidens, toxique pour les vaches. Une gestion spatiale de l’invasion est 

proposée pour ces pâturages ravinés. 
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Title: Hillslope encroachment by Acacia sieberiana in a deep-gullied grassland 
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Abstract 
Degradation of grasslands worldwide is intensifying due to human population 

increase. Tree encroachment and soil erosion are some of the major issues to be tackled in 

grasslands. Despite the extent of tree encroachment, its mechanisms and effects on the 

ecosystem are still actively debated. This study focuses on tree encroachment in grassland 

affected by gully erosion. The main goals are to highlight the interactions of the main factors 

controlling encroachment and their consequences for gully erosion and grass and soil 

properties. The study was undertaken in a grassland of KwaZulu-Natal (South Africa) where 

encroachment by Acacia sieberiana and deep natural gullies are observed.  

Aerial photographs confirmed the transformation of the grassland into savanna within 

35 years. Soil properties constitute one of the causes of the spatial distribution of A. 

sieberiana population in this grassland. Adult trees are located mainly in areas with lower 

clay content. Competition between grass and young A. sieberiana seedlings is the main 

process limiting survival of tree seedlings in the grassland. Fire and herbivory had a strong 

positive indirect effect on tree seedlings by decreasing grass cover. These trees alter their 

water uptake depth between seasons which may favor their survival.  

Despite their positive effects on grass and soil properties, trees increased gully erosion 

mainly dominated by subsurface processes, and trees facilitated the growth of Senecio 

inaequidens (Asteraceae) which is toxic for cattle. Management of encroachment is proposed: 

trees should be kept in gullies where they maintain soil and promote grass growth, but trees 

should be controlled upstream gully heads. 
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Introduction : les pâturages, un écosystème fragile 
soumis à de fortes pressions 

 
Pâturage du piedmont du massif du Drakensberg au KwaZulu-Natal (Afrique du Sud) envahi 

par Acacia sieberiana et fortement érodé.  

© S. Grellier 
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Les écosystèmes pastoraux sont en permanente évolution en réponse à des 

modifications d’origines naturelles et anthropiques de l’environnement. Dans le contexte 

actuel de changement climatique global et d’augmentation de la population, les pâturages sont 

très sollicités et soumis à de fortes pressions. Les changements de végétation au sein de ces 

écosystèmes sont de plus en plus fréquents (Ojima et al. 1994) et leur dégradation s’accélère. 

Les pâturages, espaces réservés ou dédiés à la pâture d’animaux sauvages ou 

d’élevage, occupent près de 40 % de la surface totale des terres dans le monde (Asner et al. 

2004, World Resources Institute). Environ 40 % de la population mondiale dépend 

directement de ces terres (Reynolds et al. 2007). L’invasion par des arbres est une expression 

de leur évolution et ce phénomène touche les pâturages naturels dans le monde entier. 

Certains pays, comme l’Afrique du Sud, sont très sensibilisés vu l’ampleur du phénomène 

dans ce pays (Tainton 1999). 

L’invasion d’arbres ou invasion ligneuse est définie par l’augmentation de la densité 

d’arbres. Le terme équivalent en anglais est « encroachment » à différencier de « invasion » 

qui considère des espèces invasives « aliens », ce qui constitue une autre problématique. C’est 

donc le terme francais d’invasion qui sera utilisé par la suite dans ce mémoire au sens de 

« encroachment » qui désigne une forte augmentation de la densité d’arbres d’espèces 

endémiques (Van Auken 2009). Ce phénomène touche les pâturages naturels, des climats 

arides (Wiegand et al. 2005) aux climats plus humides (Briggs et al. 2005, Gignoux et al. 

2009), chauds ou froids sans distinction, mais opérant selon différents mécanismes (Archer et 

al. 1995, Scholes et Archer 1997, House et al. 2003, Sankaran et al. 2004, 2005, Ward et al. 

2005) et pouvant avoir d’importantes conséquences positives ou négatives sur les écosystèmes 

(Archer et al. 2001, Treydte et al. 2007, Ludwig et al. 2008, Knaap et al. 2008, Graz 2008, 

Van Auken 2009). Le phénomène d’invasion ligneuse a été mise en évidence il y a près de 

150 ans (Van Auken 2009) indépendamment des successions végétales durant les périodes de 

glaciation et inter-glaciation. Depuis le 19ième siècle, qu’il s’agisse de prairies naturelles 

dominées principalement par un couvert herbacé ou de savanes (prairies tropicales) dans 

lesquelles arbres et herbes cohabitent, les équilibres écologiques peuvent être rompus 

favorisant le développement de la strate arborée. On peut alors considérer ce système « arbre-

herbe » dans un continuum évoluant entre une prairie (dominée par les herbacées), une savane 

et même une zone boisée (House et al. 2003).  

L’érosion hydrique est un autre phénomène important qui affecte ces écosystèmes 

fragilisés. Qu’elles soient d’origines anthropiques ou naturelles, tant l’érosion en nappe que 

l’érosion en ravine (ou « érosion linéaire ») peuvent affecter les pâturages (Poesen et al. 

2003). Les pertes en sol liées à ces types d’érosion réduisent la qualité et la surface des 

pâturages qui induisent à la fois des conséquences écologiques et économiques (Bull 1981, 

Lal, 1998, Descroix et al. 2001, Poesen et al. 2003, Valentin et al. 2005). L’impact du couvert 

végétal sur l’érosion hydrique, déjà bien établi (Vandekerckhove et al. 2000, Ward et al. 

2001, Podwojewski et al. sous presse), suggère de possibles interactions avec l’invasion 
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ligneuse (Martin et Morton 1993, Petersen et Stringham 2008, Muñoz-Robles et al. 2010). Ce 

travail porte essentiellement sur l’érosion en ravine qui représente les pertes en sol les plus 

importantes (Valentin et al. 2005) et touche de nombreux paysages de par le monde, 

notamment les pâturages du KwaZulu-Natal en Afrique du Sud (Hoffman et Ashwell 2001, 

Le Roux et al. 2007). Les processus opérant dans les pâturages, qu’il s’agisse de l’invasion 

ligneuse ou de l’érosion en ravine, sont intrinsèquement liés et participent à l’évolution et aux 

changements observés dans ces écosystèmes. Les paragraphes suivants constituent ainsi une 

synthèse bibliographique des facteurs régissant l’invasion ligneuse dans les pâturages et ses 

conséquences sur ce type d’écosystème raviné. 

 

I. Les facteurs et mécanismes de contrôle de l’invasion ligneuse 

Les mécanismes contrôlant l’invasion par les arbres régissent en fait les équilibres 

« arbre-herbe » et ont fait et font toujours l’objet de nombreuses études en raison de la 

complexité des interactions et du large spectre des climats, des types de sol, des espèces 

herbacées et espèces ligneuses mis en jeu (Archer et al. 1995; Jeltsch et al. 1996, Higgins et 

al. 2000; House et al. 2003, Sankaran et al. 2004, 2005, Ward 2005, Briggs et al. 2005, Kraaij 

et Ward 2006, Wiegand et al. 2006, Meyer et al. 2007, Britz et Ward 2007, Bond 2008, 

Wigley et al. 2009, Gignoux et al. 2009). Les changements climatiques (températures, 

précipitations, augmentation du dioxyde de carbone dans l’atmosphère), une herbivorie 

chronique, la fréquence des feux, une modification de la compétitivité de la strate herbacée, la 

dissémination des graines par le bétail, l’impact de certains petits mammifères sur les graines 

d’arbres, et une combinaison de l’ensemble de ces facteurs ont été évoqués comme pouvant 

être les causes de l’invasion ligneuse (Van Auken et al. 2009). Un consensus ressort 

cependant des nombreuses études sur l’identification des facteurs principaux de l’invasion 

mettant en avant l’eau, les nutriments, le feu et l’herbivorie (Sankaran et al. 2004, Kraaij et 

Ward 2006). En effet, si l’impact de l’augmentation du dioxyde de carbone dans l’atmosphère 

peut favoriser les plantes ayant un mécanisme de transformation du CO2 atmosphérique en C3 

(Ehleringer 2005, Ward 2010), c'est-à-dire globalement les ligneux, ces derniers pourraient 

donc être favorisés par rapport à une strate herbacée présentant des caractéristiques de plante 

en C4. Seulement, de nombreux pâturages, d’altitude notamment, sont constitués de strates 

arborées en C3 et de strates herbacées également en C3, et sont aussi affectés par l’invasion 

ligneuse.  

Les systèmes « arbre-herbe » sont des systèmes dynamiques dans lesquels les 

différents facteurs de contrôle (principaux ou secondaires) sont en interaction continue dans 

l’espace et le temps. On peut les résumer avec une représentation schématique du système 

(Fig. 1).  
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Figure 1. Principaux facteurs de contrôle de l’invasion ligneuse dans les pâturages et 

conséquences sur l’écosystème. Le facteur anthropique agit à un niveau non représenté ici sur 

le feu, les arbres, les sols et les herbivores. 

 

 

Les sols : en tant que support physique, réserve d’eau et de nutriments, les sols 

constituent un des éléments majeurs du système pour le développement d’un couvert herbacé 

et arboré.  

Le climat : les précipitations, qui rechargent les sols en eau, sont un des facteurs 

nécessaires à la germination (Kraaij et Ward 2006), à la croissance et au développement des 

espèces ligneuses et herbacées. Dans certaines conditions (un excès d’eau en général), les 

précipitations peuvent accélérer l’érosion hydrique des sols (Yaalon 1987, Poesen et al. 2003, 

Bouchnak et al. 2009, Samani et al. 2010), et limiter les feux.  

Le couvert herbacé : il peut être en compétition directe avec les arbres, notamment les 

jeunes plantules pour la ressource en eau, les nutriments et la lumière (Wilson 1988, Kraaij et 

Ward 2006, Cramer et al. 2007). Il peut limiter la croissance des jeunes arbres et même des 

arbres adultes (Simmons et al. 2007,  Riginos 2009a). Le couvert herbacé, en tant que 
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Réserve de nutriments 
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carburant, est un élément régulateur de l’intensité et de la fréquence des feux (Van Auken 

2009). Il est aussi un élément permettant la présence des herbivores sur les pâturages. Il joue 

un rôle positif sur les sols. L’interception des pluies par les parties aériennes limite la 

formation de croûtes de surface et favorise l’infiltration de l’eau dans le sol (Casenave et 

Valentin 1992, Neave et Rayburg 2007, Podwojewski et al. 2011). Son mat racinaire favorise 

la stabilité du sol (Gyssels et Poesen 2003). Ces deux mécanismes sont importants pour la 

limitation de l’érosion hydrique. Le couvert herbacé rentre aussi dans le cycle des nutriments 

du sol lors de sa décomposition ou lorsqu’il est brûlé (apport de potasse au sol). 

Le feu : en fonction de son intensité et de la date à laquelle le feu est réalisé, il détruit 

les jeunes pousses d’arbres (Trollope 1980, Roques et al. 2001) et limite l’invasion dans de 

nombreux pâturages (Fuhlendorf et al. 2008). Les feux réduisent le couvert herbacé (Mbatha 

et Ward 2010) et peuvent donc indirectement limiter l’invasion ligneuse. A des fréquences 

modérées, c’est un facteur prépondérant dans l’entretien du pâturage et indispensable dans 

certains milieux (Bond et Keeley 2005, Van Auken 2009). 

Les herbivores : les herbivores et plus spécifiquement les paisseurs (grazers) ont une 

forte influence sur le couvert herbacé (Mbatha et Ward 2010, Goheen et al. 2010) en réduisant 

sa biomasse. Si leur action demeure modérée, elle peut, dans certain cas, permettre le 

maintien d’une herbe de bonne qualité (Bonnet et al. 2010). Les brouteurs (browsers) ont un 

impact généralement négatif sur les arbres (Fornara et du Toit 2008, Sankaran et al. 2008). 

L’action des herbivores sur le sol peut être positive par apport direct au sol de matière 

organique contenu dans les bouses. La présence de bousiers associés aux bouses pourra alors 

augmenter la porosité du sol et favoriser l’infiltration de l’eau dans le sol (Brown et al. 2010). 

Cependant, les herbivores ont aussi un effet négatif sur les sols par compaction et par le 

piétinement et la création de chemins d’animaux qui sont souvent à l’origine d’érosion en 

ravine (Valentin et al. 2005).  

Les arbres : ils limitent ou facilitent eux-mêmes leur propre dynamique par une 

compétition ou une facilitation pour les ressources. Le bilan de ces rétroactions peut dans 

certains cas évoluer entre facilitation et compétition en fonction du stade considéré (Callaway 

et Walker 1997, Miriti 2006, Kambatuku et al. sous presse). 

Le facteur anthropique : l’homme, présent dans cet écosystème agit sur la population 

d’arbres directement par coupe pour une utilisation domestique (chauffage, cuisson des 

aliments) ou thérapeutique (remèdes confectionnés à partir de certaines espèces ligneuses 

culturellement importantes). Il gère les troupeaux d’élevage et donc la charge d’animaux 

pesant sur le pâturage. Même dans des écosystèmes « naturels », notamment certaines savanes 

africaines, l’homme régule également les populations d’animaux dans un but de conservation 

de l’écosystème. L’homme peut aussi avoir un rôle sur les sols et notamment sur l’érosion de 

par la construction de routes ou autres chemins où l’eau se concentre (Poesen et al. 2003, 

Valentin et al. 2005). 
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Différents modèles ont été décrits par House et al. (2003) pour expliquer les 

(dés)équilibres « arbre-herbe » dans les pâturages : 

1) La séparation des niches : les espèces ligneuses et herbacées occupent des niches 

distinctes et partitionnent les ressources. Une partition spatiale est expliquée par 

l’hypothèse de la double couche de Walter (1971) où les espèces ligneuses ont 

accès à de l’eau en profondeur et les espèces herbacées utilisent l’eau des premiers 

horizons du sol. Une partition temporelle, variation interannuelle, est également 

possible si les facteurs favorisant les espèces herbacées s’expriment à des périodes 

différentes de celles où s’expriment les facteurs favorisant les espèces ligneuses.  

2) Une compétition équilibrée : ce modèle s’oppose au précédent. Les espèces 

ligneuses et herbacées ne partitionnent pas les ressources mais sont en compétition. 

Les compétitions intra-spécifiques (arbre-arbre et herbe-herbe) seront 

prépondérantes sur les compétitions inter-spécifiques (arbre-herbe).  

3) L’exclusion compétitive : elle éloigne le système d’un équilibre où arbres et herbes 

coexistent. Elle suppose qu’un des deux types d’espèces préempte et monopolise 

l’ensemble des ressources conduisant à l’élimination du deuxième type d’espèce. 

A long terme, le système évolue alors soit vers une zone boisée soit une prairie 

dominée par les herbacées. Les facteurs de perturbation tels que le feu où 

l’herbivorie jouent un rôle important sur la capacité des espèces ligneuses ou  

herbacées à dominer. 

4) Possibilité d’existence de plus d’un état stable : l’hétérogénéité spatiale et 

temporelle des ressources disponibles et des facteurs de perturbation sont inclus 

dans des modèles d’équilibre et induisent des ratios « arbre-herbe » différents 

pouvant exister sur un site donné à différentes périodes. La modification des 

ressources ou des perturbations peut altérer les interactions « arbre-herbe » et 

déplacer le ratio d’un point d’équilibre à un autre et transformer une savane en 

forêt ou en prairie.  

 

Sankaran et al. (2004) définissent deux types de modèles : des modèles fondés sur la 

compétition « arbre-herbe » pour l’acquisition des ressources (Walter 1971, Eagleson and 

Segara 1985, Van Langenveld et al. 2003) et des modèles fondés au contraire sur la 

démographie des arbres et les facteurs clés de perturbation limitant les différents stades de 

croissance des arbres (de la germination à la mort) (Higgins et al. 2000, Jeltsch et al. 1996, 

1998, 2000).  

Quels que soient la classification et le découpage de ces modèles, aucun modèle ne 

peut expliquer à lui seul la diversité des systèmes « arbre-herbe » et des situations d’invasion 

rencontrées. C’est très certainement une combinaison de ces modèles associée à d’autres 

facteurs clés évoluant à des échelles de temps et d’espace variables (Scholes et Archer 1997) 
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qu’il faut intégrer pour développer une compréhension globale des causes et mécanismes de 

l’invasion ligneuse.  

 

II.  Les conséquences de l’invasion ligneuse dans les pâturages 

Une fois implantés, les arbres vont également influencer l’environnement existant, 

c'est-à-dire les sols, le couvert herbacé et les herbivores (Fig. 1). 

Conséquences sur les sols : les arbres ont des conséquences multiples et antagonistes 

sur les différentes propriétés du sol. Les arbres, particulièrement en climat aride et semi-aride, 

ont un effet d’ombre et modifient le microclimat sous-canopée diminuant la température et 

l’évapotranspiration des sols (Belsky et al. 1989, Vetaas 1992). Les légumineuses, comme les 

acacias ont souvent été mentionnées pour leur effet d’augmentation de la teneur en azote du 

sol (Wiegand et al. 2005, Treydte et al. 2007). Par contre l’effet des arbres sur le stockage du 

carbone dans le sol est variable et dépend du climat : l’invasion en régions arides favoriserait 

une augmentation du carbone dans le sol alors que dans les régions plus humides elle 

diminuerait le stockage de carbone dans le sol (Jackson et al. 2002). Les teneurs en nutriments 

sont souvent plus élevées sous la canopée des arbres (Abule et al. 2005). La litière provenant 

des feuilles d’arbres peut modifier les propriétés chimiques du sol, telle la capacité d’échange 

cationique par exemple (Trinogga 2010). Les flux d’eau sont fortement modifiés par la 

présence d’arbres. Les arbres, en fonction de leur morphologie, vont modifier l’arrivée de 

l’eau au sol par interception et écoulement le long du tronc (Mauchamp et Janeau 1993, 

Dunkerley 2002, Liang et al. 2009) ou du fait de la traversée de la canopée (Martinez-Meza et 

Whitford 1996, Carlyle-Moses 2004). La captation des pluies par la canopée et son 

évaporation va aussi diminuer la quantité d’eau arrivant au sol. Les arbres pompent de l’eau 

(Eggemeyer et al. 2008, Sher et al. 2010, Reinsch et al. sous presse); ils peuvent la 

redistribuer par un effet d’ascenseur hydraulique dans différents horizons du sol (Ludwig et 

al. 2003). Ils peuvent augmenter l’infiltration de l’eau dans le sol (Martinez-Meza et Whitford 

1996) et l’humidité du sol sous-canopée (Belsky et al. 1989, Vetaas 1992) ou au contraire 

augmenter le ruissellement  (Petersen et Stringham 2008). Les arbres modifient à la fois les 

processus hydrologiques de surface et de subsurface jusqu’à l’échelle du bassin versant 

(McCole et Stern 2007, Huxman et al. 2005). L’ensemble de ces processus vont ainsi jouer un 

rôle sur l’érosion hydrique des sols (Reid et al. 1999, Ludwig et al. 2005, Martinez-

Casasnovas et al. 2009). Dans certains cas, l’invasion a été associée à une augmentation de 

l’érosion en nappe due à une augmentation du ruissellement (Reid et al. 1999, Petersen et 

Stringham 2008, Muñoz-Robles et al. 2011). La coupe d’arbustes (Mesquite Prosopis velutina 

Woot.) a été associée à une diminution des pertes en sol et à une réduction de l’avancement de 

têtes de ravine (Martin et Morton 1993). Ces résultats étaient principalement liés à 



 

Introduction  20 

l’amélioration du couvert herbacé après la coupe des arbustes. Cependant, Muñoz-Robles et 

al. (2010) n’ont pu montrer un effet direct clair de l’invasion ligneuse sur l’érosion en ravine.  

Conséquences sur le couvert herbacé : Si certaines études ont montré des effets 

négatifs sur la biomasse du couvert herbacé (Hoffman et Ashwell 2001, Lett et Knapp 2003), 

d’autres ont montré un effet neutre (Abule et al. 2005, Treydte et al. 2007, Ludwig et al. 

2004, 2008). Certains arbres, notamment les légumineuses, tels les acacias, ont des effets 

positifs sur la qualité de la strate herbacée sous-canopée (Treydte et al. 2007, Ravi et al. 

2010). Les « îles de la fertilité », comme peuvent être appelés certains arbres envahissants, 

voient leur couvert herbacé sous-jacent s’enrichir en nutriments, protéines, énergie, 

digestibilité des feuilles fraiches ainsi qu’une diminution de la teneur en fibres (Ludwig et al. 

2008). Les espèces herbacées voient souvent leurs compositions modifiées par la présence 

d’arbres (Tisdale et al. 1993, Ruthven 2001, Fynn et al. 2005).  

Conséquences sur les herbivores : les arbres fournissent un fourrage aux brouteurs 

mais aussi aux paisseurs qui se nourrissent des gousses dans le cas d’acacias par exemple. 

Cependant, si les effets sur les sols et le couvert herbacé sont sujet à controverses, il existe 

une unanimité sur l’effet de l’invasion sur les herbivores : au-delà d’une densité seuil, le 

pâturage devient impénétrable aux animaux et la surface de pâture est réduite de façon 

importante (Smit 2004). L’usage d’origine du pâturage n’est alors plus possible. 

Cet exposé démontre les conséquences contrastées des ligneux sur l’écosystème. Elles 

font intervenir de nombreux processus et elles dépendent également de l’échelle spatiale 

considérée (Riginos et al. 2009b). A petite échelle, celle de l’arbre, des effets positifs sur le 

couvert herbacé et les nutriments du sol sont le plus souvent mentionnés. Tandis qu’à plus 

grande échelle, celle du paysage, les effets peuvent s’inverser. 

 

III.  Démarches et problématiques 

L’invasion ligneuse dans les pâturages est une thématique complexe faisant intervenir 

de nombreux paramètres et facteurs comme nous l’avons vu précédemment. L’étude d’un tel 

système nécessite donc une approche multi-facteurs et multi-échelles si nous voulons apporter 

une contribution pertinente à la compréhension des mécanismes qui régissent l’invasion 

ligneuse. Malgré les nombreuses études citées ci-dessus, des interrogations subsistent 

concernant à la fois les facteurs de contrôle de l’invasion et ses conséquences sur 

l’écosystème. L’une des seules études à large échelle (Sankaran et al. 2008) intégrant les 

données de plus de 850 sites en Afrique a pu mettre en évidence une séparation climatique des 

processus liés à l’invasion ligneuse (Sankaran et al. 2005). Dans les zones de précipitations 

moyennes annuelles (MAP) inférieures à 650 mm, les densités maximales d’arbres sont 

limitées par la pluie et évoluent en fonction de celle-ci. Le feu et l’herbivorie modifient 

cependant les densités d’arbres en dessous du seuil maximal. Dans des zones de MAP 
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supérieures à 650 mm, l’invasion est moins limitée par l’eau, et les facteurs de perturbations 

sont indispensables au maintien d’un équilibre « arbre-herbe ». Les conséquences de 

l’invasion semblent également plus controversées dans ces zones plus humides où les 

processus hydrologiques sont exacerbés par les précipitations et l’éventuelle présence de 

ravines. Dans ce contexte, peu d’études associant l’érosion en ravine et l’invasion ligneuse ont 

été réalisées (Martin et Morton 2003, Muñoz-Robles et al. 2010) malgré l’importance et les 

conséquences de ces deux phénomènes et leurs possibles interactions par l’intermédiaire du 

substrat « sol ». C’est donc à ces zones plus humides que nous allons nous intéresser afin de 

comprendre et compléter les connaissances des interactions et mécanismes intervenant dans 

l’invasion ligneuse de pâturages ravinés. Cette étude ne vise pas à répondre à la grande 

interrogation de l’équilibre « arbre-herbe », mais à proposer des résultats et conclusions qui 

permettront de faire avancer les connaissances et d’apporter une meilleure compréhension de 

ce système.  

Les principales questions abordées dans ce mémoire sont donc orientées à la fois sur 

les facteurs de contrôle de l’invasion ligneuse et ses conséquences sur des pâturages ravinés à 

différentes échelles d’espace et de temps. En prenant l’exemple d’un pâturage d’Afrique du 

Sud raviné envahi par une espèce d’Acacia endémique, les questions suivantes seront 

abordées : 

1) Comment l’invasion ligneuse et l’érosion en ravine ont-elles évolué à l’échelle du 

bassin versant au cours des 64 dernières années? Notamment, comment 

l’hydrodynamique et les propriétés du sol interviennent-elles sur la répartition 

spatiale des acacias? 

2) Comment les principaux facteurs de contrôle de l’invasion agissent-ils sur les 

premiers stades de la population d’Acacia? 

3) Quel est le lien entre la population d’Acacia et les ressources en eau du sol, et 

particulièrement les profondeurs de prélèvement d’eau?  

4) Quelles sont les conséquences de l’invasion ligneuse sur l’érosion en ravine et sur 

les propriétés du couvert herbacé et du sol?  

 

C’est à partir d’une démarche pluridisciplinaire que ces questions seront traitées. 

Après cette introduction, le site et le contexte d’étude seront présentés ainsi qu’un 

aperçu des méthodes utilisées dans les différentes expériences de cette étude. Des résultats 

obtenus à l’échelle du bassin versant permettront de répondre à la première question. Les 

facteurs de contrôle de l’invasion ligneuse seront ensuite mis en exergue en répondant aux 

questions 2 et 3 avant de traiter les conséquences de l’invasion ligneuse dans un pâturage 

raviné. Une synthèse des résultats permettra d’exposer les principales conclusions de ce 

travail et de discuter des perspectives à envisager dans le cadre d’une meilleure 

compréhension de l’invasion ligneuse dans les écosystèmes pâturés.  
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Chapitre 1. Un exemple de pâturage raviné et envahi 
en Afrique du Sud 

 
Pâturage de la communauté de Potshini, KwaZulu-Natal (Afrique du Sud), en fin de saison 

sèche (septembre 2007). 

 

© S. Grellier 
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I. Choix du site d’étude : situation géographique et climat 

Afin de répondre aux objectifs de cette étude, l’ensemble du travail de terrain a été 

réalisé sur une prairie naturelle sud-africaine fortement ravinée présentant une invasion 

ligneuse mono spécifique par l’Acacia sieberiana var. woodii (Burtt Davy) Keay & Brenan. 

Ce pâturage communautaire rattaché au village de Potshini se situe à 8 km au sud-est de 

Bergville (28º 48' 37" S; 29º 21' 19" E), ville rurale de la province du KwaZulu-Natal en 

Afrique du Sud (Fig. 2). Le bassin versant choisi orienté nord (donc au soleil car nous 

sommes dans l’hémisphère sud) représente la partie la plus importante du pâturage 

communautaire et il est situé à une altitude de 1217 m à 1452 m et représente une surface de 

2.5 km2.  

Ce site a été choisi pour plusieurs raisons : 

1. Ce bassin versant est situé au sein du bassin versant de la Tugela couvrant une 

surface de près de 30 000 km2 (Schulze et al. 2004) ayant un impact hydrologique 

majeur sur la région du KwaZulu-Natal.  

2. Potshini est un village représentatif de l’ensemble du piémont du Drakensberg, où 

sont implantés de nombreux villages traditionnels vivant en communauté. 

3. Ce pâturage communautaire est soumis à une forte pression anthropique et 

l’invasion pose un problème clairement identifié par les éleveurs.  

4. L’université du KwaZulu-Natal et particulièrement le laboratoire d’hydrologie, 

Bioresources Engineering and Environmental Hydrology (BEEH), au sein duquel 

l’équipe IRD-Bioemco est affectée, a été introduit au sein de la communauté de 

Potshini en 2000 et entretient depuis de bonnes relations permettant de réaliser des 

expérimentations in situ en accord et avec la participation de la communauté.  

5. L’accès relativement aisé et peu éloigné du site a facilité l’étude de l’invasion 

ligneuse associée à l’érosion en ravine.  

 

La zone d’étude est localisée dans un climat semi-humide semi-tropical d’hémisphère 

sud avec quatre saisons guidées principalement par un été chaud et pluvieux (octobre-avril) et 

un hiver froid et sec (mi-septembre). Le printemps et l’automne sont beaucoup moins 

marqués. La pluviométrie annuelle calculée sur les 65 dernières années est de 745 mm (Fig. 3) 

et la température moyenne annuelle de 13 °C (Schulze 1997). L’évaporation potentielle est 

entre 1600 et 2000 mm par an (Guy et Smith 1995). Les gelées sont fréquentes en hiver et la 

grêle occasionnelle en été. 
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Figure 2. Localisation du site d’étude 

 

 

Figure 3. Précipitations moyenne

entre 1945 et 2009 pour le site d’étude. 
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. Localisation du site d’étude dans la communauté de Potshini en Afrique du Sud.
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II.  Les sols et la géologie du site 

Les sols de Potshini se sont formés à partir d’une formation géologique des groupes 

Beaufort et Ecca appartenant au groupe Karoo datant de la période du Permo-Triasique. La 

roche mère s’est déposée sous forme de successions horizontales avec une alternance de 

couches dures et résistantes (grès) et de couches moins dures et plus sensibles à l’érosion, à 

grains plus fins tels les schistes, argilites et siltites (King 2002). Des dépôts de colluvions 

non-consolidés du Pléistocène complètent cette géologie et ont comblé principalement les 

fonds de vallée. Ces colluvions sont particulièrement susceptibles à l’érosion en ravine qui 

indente le paysage depuis des millénaires (Botha 1994). De nombreux filons intrusifs de 

dolérite du Karoo affleurent à plusieurs endroits visibles par la présence de blocs rocheux 

rougeâtres de petites tailles (10 cm à 50 cm de diamètre) et conduisant à des sols de couleur 

rouge.  

Les sols formés sur cette géologie sédimentaire rythmée sont de type Acrisols dans les 

hauts de versant et de type Luvisol dans les milieux et bas de versant (W.R.B 1998). Il s’agit 

de sols duplex avec une très nette distinction d’un horizon A (environ 0-40 cm) et B (environ 

40-90 cm) (Fig. 4). L’horizon A est cohésif, de couleur gris-marron (10YR 4/1 to 10YR 4/3) 

avec de nombreuses racines fines et moyennes et une activité biologique importante. 

L’horizon B sous-jacent est de type Bt et/ou Bw accumulant jusqu’à 50 % d’argile, 

principalement des illites. Cet horizon est plus cohésif et dur. Les analyses détaillées de trois 

profils de sol le long d’une toposéquence sont présentées en annexe 1.  

La superposition d’une roche mère dispersive que sont les colluvions de bas de versant 

(horizon C), et d’un sol duplex présentant une différence de perméabilité entre l’horizon A et 

B où les processus de gonflement-retrait des argiles induisent des fissures propices à la 

concentration d’eau, favorise la formation de phénomène d’érosion interne au sol (suffosion) 

avec la formation de drains ou tunnels de subsurface (Imeson et Kwaad 1980, Beckedahl 

1998, Verachtert et al., 2010). La figure 5a est un exemple d’effondrement du toit de l’un de 

ces tunnels (« pipes » en anglais) observables dans le bassin versant. La figure 5b montre un 

tunnel également, mais il s’agit de l’extrémité de sortie du tunnel débouchant en bas de 

versant dans la ravine. Les ravines présentes sur le site forment un réseau d’écoulement d’eau 

temporaire et peuvent dépasser 10 m de profondeur, 50 m de largeur et plusieurs centaines de 

mètres de longueur.  
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Figure 4. A gauche, bord de ravine présentant une limite nette entre l’horizon A et B. A 

droite, profil de sol rafraichi et humidifié pour des mesures géo-électriques au milieu de la 

toposéquence où sont également visibles l’horizon A plus sableux et l’horizon B plus 

argileux.  

 

 
Figure 5. a) l’effondrement du toit d’un tunnel (2 m de large) en amont de la ravine. b) 

l’extrémité d’un tunnel situé en surface de l’horizon C et débouchant dans la ravine.   

a b 

© N. Florsch © N. Florsch 
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III.  Composition de la végétation : strates herbacée et arborée 

La zone de Potshini est située dans le biome « Northern KwaZulu-Natal moist 

grassland » (Mucina et Rutherford 2006), le biome des prairies naturelles humides du nord du 

KwaZulu-Natal. Ce biome est adjacent au biome de savane, très proche géographiquement 

(Fig. 6). Le biome des prairies humides est dominé par deux espèces herbacées pérennes 

principales que sont Themeda triandra Forssk et Hyparrhenia hirta (L.) Stapf. Toutefois, 

Themeda triandra est très appréciée du bétail (Oudtshoorn 2004) et peut facilement voir sa 

présence diminuer si la charge de bétail est trop importante. C’est le cas à Potshini puisque les 

principales espèces herbacées (Poacées) présentes en 2009 étaient par ordre d’importance : 

Hyparrhenia hirta, Sporobolus africanus (Poir.) Robyns & Tournay, Digitaria longiflora 

(Retz.), Paspalum scrobitulatum (L.), Eragrotis plana Nees, Eragrotis curvula (Schrad.) 

Nees, Themeda triandra, and Cymbopogon excavatus (Hochst.) Stapf ex Burtt Davy. 

 

 
 

En dehors des Poacées, plus de 120 espèces herbacées ont été identifiées sur le site. La 

plus représentée n’est pas endémique, Richardia brasiliensis (Moq.) (Gomez Rubiaceae), tout 

comme Centella asiatica (L.) (Apiaceae). D’autres sont endémiques telles que Sida dregei 

Burtt Davey (Malvaceae), Vernonia natalensis (Sch.Bip. ex Walp) (Asteraceae), Senecio 

inaequidens DC. (Asteraceae), Hibiscus pedunculatus L.f. (Malvaceae). 

L’espèce ligneuse à épines Acacia sieberiana var. woodii (Burtt Davy) Keay & 

Brenan (Fabaceae, Mimosoideae) (Fig. 7) qui est à l’origine de l’objet d’étude principal de ce 

travail envahit ce pâturage, ainsi qu’une surface importante des pâturages du KwaZulu-Natal. 

Figure 6. Carte des biomes de l’est 
de l’Afrique du Sud, adaptée de 
Mucina et Rutherford (2006). 

Lesotho 

Swaziland 

Site d’étude 
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C’est une espèce endémique (Pooley 1993) d’où la dissociation en anglais du terme 

« encroachment » et « invasion ».  

Les acacias sont représentés par environ 1300 espèces dans le monde dont 960 seraient 

natives d’Australie malgré la première description en Afrique par Carl Linnaeus en 1773. 

Environ 44 espèces d’acacias sont recensées en Afrique du Sud. Les acacias d’Afrique 

présentent généralement des épines alors qu’en Australie, il s’agit d’acacias non épineux. On 

trouve quelques espèces d’acacias en Europe, dans le sud de l’Asie et en Amérique 

principalement dans les régions tropicales à tempérée-chaudes. Les acacias sont des 

légumineuses qui, en symbiose avec des bactéries (rhizobium) localisées au niveau de nodules 

racinaires, sont capables de transformer l’azote atmosphérique (N2) en ammoniac (NH3) 

directement assimilable par les plantes et éventuellement d’enrichir le sol en NH3.  

Acacia provient du grec « akantha » signifiant épine. Le nom sieberiana a été donné 

d’après le nom de Franz Sieber (1789-1844), un botaniste voyageur et collectionneur de 

plantes. Acacia sieberiana est aussi appelé « paperbark acacia » ou acacia à écorce de papier 

de par le délitement de son écorce en « feuille de papier » (Fig. 7). Il est présent en Afrique du 

Sud, mais aussi au Swaziland, au Zimbabwe, au nord et à l’est du Botswana, au nord de la 

Namibie et dans l’Afrique tropicale au nord de l’Ethiopie. Il présente un système racinaire 

dimorphe avec de nombreuses racines latérales situées dans les premiers horizons du sol et un 

pivot racinaire profond. A. sieberiana est une espèce caduque qui perd ses feuilles en milieu 

de saison sèche (juin) et qui fleurit en septembre (Fig. 7). A. sieberiana forme des gousses 

déhiscentes au cours de la saison humide.  

L’odeur assez forte des gousses attire certains animaux. Les scarabées bruches 

(Coleoptera : Bruchidae) sont des prédateurs de graines d’Acacia dont les larves se 

nourrissent (Coe et Coe 1987; Or et Ward 2007) (Fig. 7). Ces derniers, ainsi que des abeilles, 

papillons ou thrips (bête d’orage) attirent des oiseaux insectivores comme l’Apalis à gorge 

nue (Bar-throated Apalis), ou le Souimanga noir, à collier, ou à ventre blanc (White-bellied, 

Black et Collared Sunbird). Les bovins, caprins, ovins raffolent de ces gousses riches en 

protéines et en sont des disséminateurs privilégiés (Coe et Coe 1987) tout comme certains 

petits mammifères tels les rats (Goheen et al. 2004, Goheen et al. 2010).  

L’utilisation de A. sieberiana dans certaines cultures africaines (en centre Afrique 

notamment) repose sur des décoctions d’écorces et/ou racines contre l’inflammation des voies 

urinaires. Les feuilles, l’écorce et la résine sont utilisées comme remèdes contre les rhumes, 

diarrhées, hémorragies et infections oculaires.  

Les informations fournies ci-dessus sur A. sieberiana proviennent en partie 

d’informations disponibles sur http://www.plantzafrica.com/plantab/acaiasieber.htm de Joffe 

(2003). 
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Figure 7. Vue de différents organ
en forme de globes fleurissant en septembre; 
gousse d’A. sieberiana renferma
sieberiana se délitant en feuille de papier.

a 

b 

 

organes de l’Acacia sieberiana var. woodii. (a)
fleurissant en septembre; (b) une coupe transversale dans la longueur de 

renfermant la larve d’un scarabée « Bruchid » ; (c)
se délitant en feuille de papier. 

c 

© 
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(a) les inflorescences 
dans la longueur de 
(c) l’écorce de l’A. 
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IV.  Contexte agro-socio-économique de la communauté de Potshini 

Les habitants de Potshini vivent selon un mode de vie traditionnel zoulou. L’habitat 

est regroupé par famille (environ 240 à Potshini) et chaque famille possède une ou plusieurs 

parcelles de terre. Sur chaque propriété, sont associés le lieu de vie et des parcelles agricoles. 

Chaque famille cultive sur des petites surfaces (0.5 à 2 ha) du maïs (Zea mays) et des haricots 

(Phaseolus vulgaris) et parfois d’autres légumes notamment en lien avec les recherches 

menées par l’Université du KwaZulu-Natal sur les systèmes d’irrigation à petite échelle 

(Kongo et Jewitt 2006). L’élevage est également associé à ces parcelles sur lesquelles sont 

élevés des volailles et parfois des porcs. Ces zones de cultures et d’habitats sont regroupées 

dans la partie aval du bassin versant où les pentes sont plus faibles et les terres plus fertiles. 

La zone haute du bassin versant est réservée exclusivement au pâturage des bétails (bovins et 

caprins) à l’aide d’une clôture séparant les deux zones. Il s’agit donc d’un pâturage communal 

pour l’ensemble des différents éleveurs de la communauté. Un comité de gestion des 

pâturages regroupe quelques éleveurs (les plus influents et expérimentés). L’organisation est 

relativement simple et se fait selon une rotation en deux périodes : pendant la période de 

culture du maïs et haricots sur les parcelles agricoles, le bétail est maintenu sur les pâturages 

pendant 8 mois environ, de novembre à juin, qui correspondent à l’été et l’automne sud-

africain. Aussitôt que le maïs est récolté en juin, le bétail est retiré du pâturage et il pâture sur 

les résidus de culture jusqu’à ce que l’herbe du pâturage soit de nouveau accessible après les 

premières pluies d’octobre. Cette deuxième période dure environ 4 mois de juillet à octobre. 

La gestion du feu est quasi inexistante (du moins pour les 5 dernières années) laissant le 

pâturage face aux aléas des feux naturels et provoqués de façon anarchique. 

La zone d’étude envahie par A. sieberiana est située dans un bassin versant adjacent à 

celui des zones habitables et de cultures. Il a été mis officiellement à disposition de la 

communauté par le gouvernement en 2002. Cependant, il semble que la communauté avait 

accès bien avant cette date à ce pâturage qui communique directement avec la zone initiale de 

pâturage. L’ensemble du pâturage de la communauté est donc réparti sur deux bassins 

versants dont la surface la plus importante est située sur la zone d’étude et pour lequel il n’y a 

donc pas d’habitat en aval puisqu’il est réservé exclusivement au pâturage. Malgré cette 

augmentation significative de surface à vocation pastorale, la quantité de tête du bétail semble 

toujours trop importante (estimée à plus de 1 000 têtes en 2010) pour la surface disponible 

(d’un total d’environ 700 ha).  

L’agriculture n’est cependant pas la première source de revenus pour la communauté, 

même si la possession de vaches est ancrée dans une forte tradition. Les vaches servent de dot 

pour les mariages. Entre 8 et 12 vaches peuvent être données à la famille de la mariée. La 

vente d’une vache sert également à aider un proche en cas de difficultés (enterrements, 

maladies, scolarité, etc.). Même si la possession de vaches à son importance culturelle, 85 % 



 

Chapitre 1. IV  31 

des familles perçoivent des aides sociales du gouvernement et 45 % bénéficient de salaires 

provenant de membres de la famille partis travailler en ville à Durban où à Johannesburg 

principalement (Mudhara et al. soumis). En effet, l’Afrique du Sud n’échappe pas à l’exode 

rural et de nombreux jeunes partent pour les villes dans l’espoir de trouver un travail. Cet 

exode des jeunes travailleurs, associé à un taux de SIDA qui atteint des records dans le 

KwaZulu-Natal (entre 10 et 20 % de la population globale en 2010) laisse les villages peuplés 

de femmes seules et de jeunes enfants qui ont alors la charge des troupeaux. 

Juxtaposé à ce village traditionnel, la propriété agricole d’un « commercial farmer », 

exploitant agricole d’origine européenne, occupe une large partie de la zone aval du bassin 

versant. Il utilise les techniques de pointe de l’agriculture moderne. C’est donc dans ce 

paysage culturel multiple qu’il faut appréhender l’étude de l’invasion d’arbres dans les 

pâturages ravinés qui touchent à la fois les pâturages communaux traditionnels, les pâturages 

extensifs des grands exploitants et les savanes de zones de réserves naturelles. 
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I. Spatialisation et cartographie 

1. L’obtention et le traitement de photos aériennes  

Afin de pouvoir étudier le système dans son ensemble et de couvrir la plus longue 

période possible, il était nécessaire de disposer d’une couverture photographique aérienne de 

la zone la plus récente. Le gouvernement Sud-Africain possède un département à Cape Town, 

le « National Geospatial Information (NGI), Department of Land Affairs » qui est en charge 

de survoler le pays et de fournir des photographies aériennes. Nous disposions d’une 

photographie de 2006 de Potshini, mais il semblait intéressant d’avoir une photographie plus 

récente prise à basse altitude qui permette d’observer plus de détails, notamment la population 

d’arbres et les « petits » arbres inférieurs à 1 m2 de surface de canopée qui ne sont pas visibles 

sur des photos à une échelle de 1/20000. C’est donc grâce à une collaboration inter-équipes 

IRD que Jean-Louis Rajot et Jean Asseline sont venus à Potshini avec un paramoteur radio 

télécommandé appelé le « Pixy » qui répondait à nos attentes. (Fig. 8). A l’aide d’une caméra, 

d’un appareil photo et d’un GPS embarqués, il est alors possible de visualiser ce que le Pixy 

survole, de prendre des photos grâce à un déclencheur et d’enregistrer la trajectoire précise du 

Pixy ainsi que son altitude. Nous avons donc pu obtenir plusieurs jeux de photos prises à 

différentes altitudes (environs 2000 photos) et avec différentes focales (18 à 55 mm). Les 

photos prises aux altitudes les plus élevées (autour de 400 m) ont permis d’avoir une vue 

globale du bassin versant qui pouvait être comparée aux photos antérieures prises par avion 

par le NGI en 1945, 1962, 1976, 1985, 2001 et 2006. Les photos aux plus faibles altitudes, 

entre 30 et 100 m offraient une vue de certaines zones du bassin versant avec tous les détails 

escomptés : distinction d’un rocher et d’une termitière de 20 cm de diamètre, observation des 

petits acacias (Fig. 9). 

Le travail consiste ensuite à géoréférencer et rectifier les photos pour obtenir une seule 

scène de la zone. La position de la caméra sur le Pixy n’étant pas toujours horizontale (à cause 

des vents et des ascendances), de fortes déformations sur les photos peuvent apparaitre. Ceci 

nécessite un redressement des photos, réalisé grâce à une coopération avec Jaco Kemp, sud-

africain en post-doctorat à l’université de Stellenbosch. La prise de points GPS au sol de 

grande précision et identifiables sur chaque photo est alors nécessaire pour redresser les 

photos une à une à raison d’un minimum de 4 points par photo (aux extrémités de la photo si 

possible où les déformations sont les plus importantes). Ceci est possible grâce à un GPS de 

grande précision (LEICA GRX1200), le DGPS « Differential Global Positionning System », 

et à la localisation in situ d’éléments grossiers les plus volumineux, de troncs d’arbres morts, 

de termitières visibles sur les photos. Ce post-traitement de rectification, géoréférencement et 

d’assemblage des photographies a été effectué grâce au logiciel ArcGis (ESRI 2008). 
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Figure 8. Décollage du Pixy sur le bassin versant de Potshini. 

 

  

 

Figure 9. Vues aériennes du bassin versant prises A) par avion par NGI en 2006, B) par Pixy 
à 400 m du sol en 2009, C) par Pixy à 40 m du sol en 2009. La photographie obtenue par NGI 
a été zoomée au maximum contrairement à celles obtenue par le Pixy présentées ici brutes 
(non zoomées, non-rectifiées).   

A B 

C 
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2. Cartographie et DGPS « Differential Global Positionning System » 

Un des aspects importants du travail réalisé pendant ces quatre années en Afrique du 

Sud porte sur la spatialisation de la population d’A. sieberiana et des ravines. Pour 

appréhender cette dimension spatiale, outre les photos aériennes qui nous donnent beaucoup 

d’informations, la cartographie sur le terrain est aussi intéressante et d’ailleurs nécessaire 

comme on l’a vu dans la partie précédente pour la rectification des photos. C’est grâce à 

l’utilisation d’un DGPS (Leica GRX1200) que tout le travail de cartographie a été réalisé. Le 

DGPS consiste à utiliser simultanément deux récepteurs GPS :  

• un récepteur fixe dont la position est précisément connue, ce qui permet de déterminer 

les erreurs des positions envoyées par les satellites (traversée des différentes couches 

atmosphériques, position des satellites sur l’horizon, trajets multiples des ondes 

notamment réflexion sur les bâtiments et les plans d’eau) ; 

• un récepteur mobile que l’utilisateur déplace sur les points cartographiés (Fig. 10 et 

11). 

L’envoi par radio des corrections déterminées par le récepteur fixe au récepteur mobile 

permet une correction instantanée des points pris par l’utilisateur et une précision en X, Y et Z 

de moins de 1 cm en conditions optimales. Dans des conditions de terrain qui ne sont jamais 

optimales, la précision est plutôt de 5 cm en moyenne, à comparer avec la précision d’environ 

3 m d’un GPS classique.  

Le DGPS a permis l’obtention d’un modèle numérique de terrain (MNT) précis, utilisé 

dans le calcul de paramètres topographiques notamment liés aux ravines (cf. chapitre 5). Cette 

précision a été aussi particulièrement utile pour cartographier tous les ans les jeunes plantules 

d’A. sieberiana de moins de 20 cm de hauteur (non visibles sur les photos aériennes) qui 

pouvaient être localisées à seulement quelques centimètres les unes des autres et qu’il était 

impossible de marquer de façon pérenne sans perturber l’environnement. L’intérêt de 

cartographier la population d’A. sieberiana, outre l’étude de leur répartition spatiale présentée 

au chapitre 3, était de suivre la population d’A. sieberiana sur les trois années d’étude, de 

mesurer des paramètres de croissance de chaque individu sur une surface déterminée (hauteur, 

circonférence du tronc, nombre de gousses produites, etc.). Plus de 600 arbres de toutes tailles 

ont été suivis afin d’intégrer les résultats dans un modèle matriciel et pouvoir tester différents 

paramètres de contrôle de la population et ainsi prédire son évolution. Les résultats de ces 

travaux, obtenus en collaboration avec Sébastien Barot ne sont pas présentés dans ce 

document mais feront l’objet d’un traitement ultérieur et d’une publication. Une collaboration 

avec le professeur Kerstin Wiegand de l’université de Göttingen en Allemagne est en cours 

pour une première approche de cet aspect par l’étude de la distribution des arbres en fonction 

de leur stade physiologique (adulte, jeune arbre, plantule) pour comprendre les mécanismes 

de compétition intra-espèces à l’échelle du bassin versant.  
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Figure 11. Récepteur mobile du DGPS avec transport sac à dos à gauche pour des relevés 

continus et transport manuel à droite pour la prise de points précis. 

Figure 10. Récepteur 

fixe (base) du DGPS 

LEICA toujours 

localisé sur le même 

point de référence. 
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II.  L’éco-géophysique et ses outils 

La géophysique voit son champ d’investigation s’élargir à l’éco-géophysique, une 

association assez récente et prometteuse de la géophysique et de l’écologie (Robinson et al. 

2008). En vue de s’assurer de la qualité des données, ce volet a été réalisé en collaboration 

avec Nicolas Florsch, professeur de géophysique de l’UPMC, détaché à l’IRD à l’Université 

de Cape Town au moment des travaux.  

La géophysique dispose de nombreux outils d’étude du sol adaptés au besoin de cette 

étude, notamment pour identifier les zones argileuses ou les zones de circulation d’eau qui 

pouvaient influencer la répartition spatiale des acacias (cf. chapitre 3). Les différents outils et 

méthodes n’étant pas tous disponibles à l’UKZN, nous avons également collaboré avec 

Christian Camerlynck (UPMC), Myriam Schmutz (université de Bordeaux), et Muriel Llubes 

(laboratoire LEGOS à Toulouse) pour avoir accès à leur expérience et à leurs outils.  

Plusieurs campagnes de mesures ont été organisées durant ces trois années. Il a fallu 

d’abord évaluer le terrain, voir ce qu’il était possible de mesurer et d’extraire comme résultats 

utiles dans le cadre de l’invasion d’arbres. Pour cette raison nous avons utilisé les méthodes 

électromagnétiques (EM31, EM38) (Fig. 12 et 13), « time-domain electro-magnetic » 

(TDEM), « vertical electrical soundings » (VES) (détaillées au chapitre 3) où l’electrical-

resistivity-tomography (ERT) dont les résultats ne sont pas présentés dans ce mémoire car ils 

n’apportaient pas d’avantage d’information. Trois campagnes de terrain avec l’EM38 à 

différentes saisons ont permis :  

• d’observer les différents phénomènes relatifs au sol duplex en place ;  

• de mettre au point de façon certaine le protocole qui a ensuite été réalisé avec la toute 

nouvelle version de l’EM38-MK2 de Geonics en provenance de Toulouse dont les 

nouvelles fonctionnalités facilitaient grandement l’acquisition et le traitement des 

données.  

Les problèmes de dérives des appareils, notamment l’EM38, ont aussi été au cœur de 

chaque campagne et il a fallu de nombreuses améliorations pour arriver à déterminer le 

protocole adapté à l’obtention de résultats exploitables. C’est donc durant deux campagnes 

supplémentaires de février 2010 et juin 2010 que l’acquisition des données EM38 a pu être 

réalisée en suivant un protocole précis. La géophysique a donc eu une place importante en 

termes de manipulation sur le terrain qui nécessite d’être au moins trois personnes sur place à 

cause des protocoles et de la « lourdeur » (au sens propre et figuré) de certains appareils. Un 

travail important de traitement des données géophysiques a été réalisé, principalement par 

Nicolas Florsch.  
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Figure 12. EM31 (3.66 m de long) porté en bandoulière sur la hanche. 

 

 
 

Figure 13. EM38-MK2 en position verticale éloigné du sol pour la calibration (maintenu sur 

un tube plastique non conducteur). L’appareil est porté par un manipulateur non 

« conducteur » et un deuxième utilisateur éloigné enregistre les données sur une mémoire de 

masse reliée par radio à l’EM38-MK2.  

© J.L. Janeau 

© S. Revil-Baudard 
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III.  Méthodes empruntées de l’écologie 

1. Préparation et mise en place des protocoles expérimentaux 

Plusieurs expériences réalisées au cours de ce travail relèvent de l’écologie :  

� l’étude des différents facteurs influençant la germination et les jeunes plantules 

d’acacia (chapitre 4) ; 

� l’étude de l’impact des arbres sur le couvert herbacé et les propriétés du sol 

(chapitre 5) ;  

� le suivi de la population d’A. sieberiana sur trois années qui a été abordé dans 

la première partie de ce chapitre mais qui sera traité ultérieurement.  

Ces travaux ont bénéficié de l’appui de Sébastien Barot à Paris, Pascal Podwojewski et 

David Ward à Pietermaritzburg en Afrique du Sud.  

Le choix des méthodes statistiques, des modes de prélèvement, des sites, des individus 

à échantillonner aléatoirement, le nombre minimal d’échantillons suffisant pour obtenir des 

résultats significatifs a dû être réfléchi longuement et mis en balance avec le temps imparti, 

les moyens financiers et humains disponibles et le contexte du terrain. 

L’expérience de germination qui nécessitait de suivre 8000 graines d’acacia au cours 

d’une année et demi révèle certaines difficultés du terrain que nous avons pu contourner. La 

dégradation des clôtures par le bétail et un vandalisme fréquent de cet objet de « valeur » dans 

ce milieu rural nous à incité à implanter l’expérience dans d’autres conditions. Cette 

expérience a été menée dans un terrain adjacent au bassin versant appartenant à l’exploitant 

agricole « commercial farmer » où le bétail ne pouvait entrer et dans lequel l’accès était réduit 

limitant la possibilité de vol (Fig. 14 et 15).  

L’expérience sur l’impact des arbres sur le couvert herbacé et les propriétés du sol 

(chapitre 5) a donné lieu à deux collaborations qui aboutiront à deux articles. La première 

avec Shaun Berry, un chercheur du South African Sugarcane Research Institute (SASRI) à 

Durban. Shaun est un nématologiste avec qui nous avons travaillé sur l’impact des acacias sur 

les populations de nématodes. Une deuxième collaboration avec le département des sols de 

l’UKZN et Pascal Podwojewski a permis de travailler sur l’impact des arbres sur la stabilité 

structurale des sols. Un étudiant en master sud-africain travaille sur le sujet.  

Il est à noter que, conjointement à ce travail de thèse, deux autres expérimentations ont 

été menées et sont résumées en annexes 2 et 3 : 

� l’influence des scarabées (bousiers) sur la porosité du sol ; 

� l’influence du couvert herbacé sur le ruissellement et la détachabilité des sols. 
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Figure 14. Aperçu des 24 parcelles non brûlées de 2 m2 juste après le semis des graines en 

octobre 2009. 

 

 
Figure 15. Aperçu des 24 parcelles brûlées de 2 m2 juste après le semis des graines en octobre 

2009. 

  

© S. Grellier 

© S. Grellier 
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2. Analyses des échantillons d’herbe et de sol 

La détermination des espèces herbacées et non-herbacées sur les 99 parcelles 

échantillonnées a bénéficié des conseils de Kevin Kirkman, professeur de Botanique de 

l’UKZN et du personnel de l’herbier de l’UKZN.  

Une grande partie des analyses a pu être réalisée par l’UKZN mais nous avons 

également réalisé les mesures de digestion in vitro des feuilles de Poacées (Fig. 16) par une 

méthode mise au point par Zacharias (1986). Il a été possible d’analyser les 99 échantillons en 

7 jours en s’affranchissant d’enzymes fraîches de rumen de vaches remplacées par une 

solution de cellulase. 

 

 
Figure 16. Bain marie pour l’incubation de tubes à essai renfermant l’herbe broyée et une 

solution de cellulase pour opérer la digestion de l’herbe. 

© J.L. Janeau 
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IV.  Les relations plante-eau et l’isotopie 

Le laboratoire du BEEH de l’UKZN dispose d’un équipement récent, le « DLT 100 

Liquid Water Isotope Analyser » pour analyser les isotopes de l’eau. Grace à l’encadrement de 

Simon Lorentz et David Ward, il a été possible d’étudier les relations acacias-eau dans le 

contexte de l’invasion d’arbres. Cette étude a également bénéficié des conseils de Thierry 

Bariac, spécialiste des isotopes de l’eau à Bioemco-Grignon. Pour déterminer les profondeurs 

de prélèvement d’eau par les arbres, il est nécessaire de prélever des échantillons de sol et de 

sève d’arbres, d’en extraire l’eau et d’analyser cette eau. L’extraction d’eau des échantillons 

repose sur une méthode de distillation sous vide qu’il n’était pas possible d’envisager au Cap, 

où l’équipement existe, dans les délais de cette étude. C’est sous la supervision et 

l’encadrement de Patricia Richard au laboratoire Bioemco de Grignon, sous la responsabilité 

de Thierry Bariac, que nous avons pu extraire l’eau des échantillons de sol et de sève par 

distillation sous vide pendant trois semaines et ensuite analyser les isotopes de l’eau par 

spectroscopie de masse.  

La distillation sous vide est un processus simple mais qui nécessite un appareillage 

complexe (Fig. 17). Les échantillons fermés hermétiquement et pesés sont gelés à l’azote 

liquide pour éviter toute évaporation lors de leur ouverture et positionnement dans la colonne 

de distillation. Une fois ouverts et positionnés (par série de 20 échantillons), ils sont mis sous 

vide et chauffés. L’eau s’évapore et vient se condenser dans des tubes refroidis à l’azote 

liquide en dehors du caisson chauffant (azote qu’il faut ajuster régulièrement). Une fois la 

distillation terminée, un pesage des échantillons et du liquide récolté permet de vérifier si la 

distillation a été totale. En effet, par évaporation du liquide, il y a concentration de l’eau non-

évaporée en isotopes lourds. Si l’eau n’est pas extraite totalement, le rapport isotopique sera 

fortement modifié et les résultats biaisés. La durée de distillation est variable en fonction de la 

quantité d’eau à évaporer, du type de sol (notamment de sa capacité de rétention) et de la 

quantité de sol. La durée totale de distillation (montage, démontage, nettoyage) pour les 

carottes d’acacias pouvait être de 9 h en moyenne et plus ou moins 15 h pour les sols. 

Les mesures isotopiques ont été complétées par des mesures de potentiels hydriques 

caractérisant l’état hydrique de la plante et notamment un stress hydrique. De jeunes feuilles 

d’acacias ont été sélectionnées et introduites une par une dans une bombe de Scholander 

(Scholander et al. 1965) (Fig. 18) sous la supervision de Jean-Louis Janeau et David Ward. 

Les mesures ont été faites avant le lever du jour lorsque les arbres présentent une transpiration 

minimale et au milieu du jour lorsque la transpiration est maximale.  
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Figure 17. Colonne de distillation au laboratoire INRA-Grignon d’une capacité de 20 

échantillons. En haut, le bloc chauffant avec les échantillons et en bas les tubes de collecte 

d’eau refroidi à l’azote liquide.  

 

 
Figure 18. Bombe de Scholander muni d’un manomètre à gauche et avec la sève sortant de la 

tige soumise à une forte pression (gaz azoté) à droite. 

© S. Grellier © S. Grellier 

© S. Grellier 
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Chapitre 3. Evolution temporelle et spatiale des ravines et de 
la population d’Acacia sieberiana 

 

 
Bassin versant de la communauté de Potshini (Afrique du Sud) en saison humide (février 

2010) fortement érodé par de profondes ravines et dont les versants sont envahi par l’A. 

sieberiana. 

  

© N.Florsch 
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Ce chapitre permet d’aborder le système étudié d’un point de vue spatial et temporel à 

l’échelle du paysage et sur le long terme. Il s’agit d’une première approche de l’invasion 

ligneuse et de l’érosion en ravine dans cette région semi-humide d’Afrique du Sud. Ce 

chapitre est divisé en trois parties. La première partie présente l’évolution du bassin versant au 

cours des 64 dernières années du point de vue de l’invasion ligneuse et de l’érosion en ravine. 

Il s’agit ici, à l’échelle du paysage, de déterminer les taux d’augmentation de densité des 

acacias et les taux d’avancement des ravines par l’analyse de photographies aériennes. Cette 

première partie est un préliminaire à l’étude de l’impact de l’invasion d’arbres sur l’érosion en 

ravine (chapitre 5).  

A cette analyse spatiale et temporelle de la surface du bassin versant vue du ciel, 

succède une étude spatiale du sol et sous-sol par les approches géophysiques à l’échelle d’une 

toposéquence. Cette étude géophysique a permis de dresser des cartes du sol et du sous-sol, 

liées aux propriétés physiques et à la teneur en eau du sol et du sous-sol. Certaines données 

présentées dans cette deuxième partie seront donc utilisées dans la troisième partie pour 

étudier la répartition spatiale de la population d’Acacia sieberiana en fonction des propriétés 

du sol et du sous-sol. 
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I. Evolution des ravines et de l’invasion ligneuse sur les 

64 dernières années  
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This part constitutes the first part of an article submitted to Landscape Ecology in an adapted 
format along with some of the results presented in chapter 6.   
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Abstract 

 

Gully erosion and woody plant encroachment are frequently observed in grasslands 

worldwide. Gully erosion driven by water processes is usually affected by topography, land-

use change and vegetation cover. However, very few studies have simultaneously considered 

tree encroachment and gullies. We used aerial photographs to study Acacia sieberiana 

encroachment and gully erosion in a South African grassland (KwaZulu-Natal Province) for a 

period lasting 64 years. At the catchment scale, results showed that grassland was transformed 

into savanna in 35 years. Acacia tree canopy cover in the catchment reached a maximum of 

9.45 % in 2009 indicating that encroachment may not stop yet. Gully area in the catchment 

increased by 3.9 % in the last 64 years and represented 12.76 % of catchment area in 2009. 

Mean estimated sediment loss was 200 Mg ha-1 y-1, indicating a high erosion rate mainly due 

to swelling and shrinkage.  
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1. Introduction 

Gully formation is a widespread natural erosion phenomenon that induces significant 

soil losses, with both ecological and economic consequences (Bull 1981; Lal 1998; Poesen et 

al 2003; Valentin et al 2005). Gullies are found in a large variety of landscapes, from arid 

desert areas to humid cultivated lands and grasslands. The factors controlling gully erosion 

are numerous including bedrock type, soil type, topography, soil surface features, vegetation 

cover associated with climatic conditions, especially rainfall intensity and alternation of wet 

and dry seasons (Imeson and Kwaad 1980; Poesen et al 2003). Anthropogenic factors include 

commonly land-use change (Ward et al 2001) and activities associated with road and 

construction sites as well as animal pathways (Valentin et al 2005).  

The understanding of gully initiation (threshold determination) and gully evolution 

(driving factors) is still debated due to methodological advances (Vandekerckhove et al 2003; 

Martínez-Casasnovas 2003). Further research is needed, especially with regard to the ways in 

which environmental changes affect gully erosion (Poesen et al 2003). Previous studies often 

highlighted the importance of land-use changes associated with vegetation cover on processes 

affecting gully erosion (Vandekerckhove et al 2000; Ward et al 2001; Chaplot et al 2005; 

Muñoz-Robles et al 2010). High vegetation cover reduces runoff susceptibility (Böhm and 

Gerold 1995; Molina et al 2007; Podwojewski et al in press) by intercepting rainfall and 

limiting soil crusting (Podwojewski et al 2008). Lower runoff results in a lower concentration 

of water and flow sheer stress which in turn limits the formation of gullies (Poesen et al 

2002).  

Subhumid grasslands in KwaZulu-Natal province of South Africa, even with their high 

vegetation cover (herbaceous layer) relative to agricultural fields, present severe gully erosion 

(Sonneveld et al 2005). “Dongas” as these gullies locally called in South Africa are typical of 

the mountainous foothills of KwaZulu-Natal. Existing gullies were already present 1000 years 

ago (Botha 1994). Gullies are mainly controlled by intrinsic factors such as bedrock types, 

terrain morphology and bioclimatic zones (Botha 1996). The colluvial sediments accumulated 

in this region are very prone to erosion (Rienks et al 2000) and the hilly slopes and 

distribution of rainfall in the area (Yaalon 1987) have favored gully erosion.  

Another phenomenon affecting grasslands worldwide is woody plant encroachment. 

Woody plant encroachment has been observed in grassland and savanna for approximately 

150 years (Van Auken 2009).  

The objective of this study constituting the first part of the article are to analyse the 

long term evolution of gully extension and woody plant encroachment over a period of 64 

years in a subhumid grassland catchment of South-Africa using a time-series of aerial 

photographs. 
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2. Materials and methods 

2.1 Study site 

The study site is located in South Africa where both gully erosion and woody plant 

encroachment are severe, particularly in the KwaZulu-Natal province. For approximately 30 

years, trees have been encroaching on savannas and subhumid grasslands in the area. The 

communal grassland of Potshini village, in the foothills of the Drakensberg mountains, 8km 

south of Bergville (28º 48' 37" S; 29º 21' 19" E), has been studied for 10 years (Fig. 1). It is 

representative of the upper part of the Thukela river basin with a 30,000 km² catchment. We 

focused our research on a 2.5 km2 sub-catchment of the grassland (from 1 217 m altitude to 

1 452 m) which presents wide and deep gullies and tree encroachment.  

 

 

 

 

 

 

 

 

 

Figure 1. Localization of the study site at the top and a photograph of gully and encroachment 

in the catchment at the bottom. 
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The climate of this area is characterized as subtropical subhumid with summer rainfall. 

The mean annual precipitation is on average 754.4 mm for the last 65 years. The average 

annual temperature is 13 ºC (Schulze et al 1997). This site is classified as grassland biome by 

Mucina and Rutherford (2006). The specific biome is the “Northern KwaZulu-Natal moist 

grassland” usually dominated by Themeda triandra and Hyparrhenia hirta (Mucina and 

Rutherford 2006). The encroaching trees, Acacia sieberiana var. woodii (Burtt Davy) Keay & 

Brenan, are indigenous. The geology of the site is characterized by fine-grained sandstones, 

shales, siltstone and mudstones of the Beaufort and Ecca Groups of the Karoo Supergroup 

that alternate in horizontal successions (King 2002). Unconsolidated colluvial deposits from 

Pleistocene fill the valleys and are very prone to linear gully erosion (Botha 1994). Soil types 

are Acrisols upstream and Luvisol downstream (W.R.B. 1998) with two main soil horizons: a 

40 cm thick A horizon and a B horizon generally occurring between 40 to 90 cm depth. The 

topsoil is cohesive with dark grayish brown color (10YR 4/1 to 10YR 4/3) and 20% clay, 

many fine and medium roots and with evidences of strong biological activity (termites, dung 

beetles, earthworms, etc.). Horizon B (Bt) is darker and very cohesive and hard. Clay, mainly 

illite, accumulates in this B horizon up to 50%. Soils are not sodic but present pipe systems 

first reported by Henkel et al (1938).  

 

2.2 Data collection and processing 

Monthly rainfall was obtained for a period lasting from 1940 until 2002 at the 

Bergville weather station (South African Weather Service) located 8km north of the 

catchment. Rainfall was collected between 2003 and 2009 at the weather station of the 

Potshini catchment.  

A set of four non-georeferenced aerial photos with scale of 1/20 000 was obtained 

from the National Geospatial Information (NGI), Department of Land Affairs, South Africa. 

The dates for the image sets were 1945, 1962, 1976 and 1985. A more recent view of the area 

(May 2009) was obtained from a series of digital airborne images collected using a small, low 

speed, remotely-controlled unmanned aerial vehicle (UAV) called Pixy (Asseline et al 1999). 

The digital camera used was a Canon EOS450D with a focal length of 34 mm to cover the 

area with 18 images. The images were taken from an altitude of 150 m. This flight altitude 

and focal length yielded a spatial resolution of 10 cm. Two orthorectified aerial photographs 

from 2001 and 2006 with pixel resolutions of 2.7 m were obtained from NGI to complete the 

dataset and provide image sets from seven different dates (1945, 1962, 1976, 1986, 2001, 

2006 and 2009).  

Orthorectification was performed on all non-georeferenced photographs as well as the 

2009 photographs using ArcGis 9.3 (ESRI 2008). The 2006 orthorectified image was used as 

a reference for orthorectification because it was the most spatially and radiometrically 

accurate. A maximum of identified points (between 53 and 113 for the 4 non-georeferenced 
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photographs) such as fence corners and rocks were used to optimize the accuracy of 

orthorectification. The 18 images from the 2009 Pixy survey were orthorectified using 400 

DGPS points surveyed in the field during image capture. These points were highly visible 

features that could be identified on the imagery, and were surveyed with an overall accuracy 

of ±5cm. Between 20 and 50 control points per image were used, and a spline transformation 

method was used to optimize orthorectification (Bangamwabo 2009).  

Digitizing of different features was done manually. Gully contours and trees with their 

canopies were digitized for each photograph. A shapefile was created with the different layers 

matching the different features for each of the studied years. Increase of the gully area was 

calculated for six time-periods: 1945-1961, 1962-1975, 1976-1984, 1985-2000, 2001-2005, 

2006-2009 for the whole gully system by calculating the difference in the digitized gully areas 

for each year.  

 

3. Results  

3.1 Woody plant encroachment over 64 years at the catchment scale 

A. sieberiana has been present in significant numbers in the grassland since about 

1985 (Fig. 2). In 1945, the first year of the study, the area showed nearly no trees (Fig. 2A). 

Trees started really encroaching from the north (lower part) and south (upper part) of the 

catchment in 1985 (Fig. 2B). In 2009, trees were located everywhere except in a small area on 

the eastern part of the catchment that is still free of trees (Fig. 2C).  

The occupation area of trees increased during the study period from 1945 to 2009 

when it reached 9.45% of the catchment area (Fig. 3). This increase followed the same trend 

as large tree density as they represent the largest portion of woody cover area. Large trees 

represented 8.73 % of the catchment area in 2009. In comparison, medium trees occupied 

0.71 % of the catchment area in 2006 (Table 1). This year was the peak year of encroachment 

with a maximum density of trees (27.85 trees ha-1). The density of large trees still increased in 

2009 while the density of medium and small trees decreased mostly because they grew into 

medium and large trees (Fig. 3). 

The mean average rainfall for each period showed an increase from 1945 to 2009 

going from 752 mm y-1 to 906 mm y-1. Considering each period (n=6), a positive correlation 

between mean rainfall and tree canopy area was found (R2= 0.81, p = 0.014). 
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Figure 2. Aerial view of gullies (in white) and trees (small black points) in Potshini 

catchment in 1945, 1985 and 2009. Last picture D shows in white the extension of gullies 

between 1945 and 2009. 
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Figure 3. Tree density and tree surface in the catchment from 1945 to 2009. Small trees 

(canopy area < 1 m2), medium trees (1 m2< canopy area< 15 m2), large trees (canopy area> 15 

m2). 

 

 

Table 1. Percentage of canopy area of all trees, small trees (<1 m2 canopy area), Medium 

trees (between 1 m2 and 15 m2 canopy area) and large trees (>15 m2 canopy area). 

 

Years All trees Small 

trees  

Medium 

trees 

Large trees 

1945 0.13 0.00 0.00 0.13 

1962 0.08 0.00 0.00 0.08 

1976 0.60 0.00 0.03 0.58 

1985 0.99 0.00 0.06 0.93 

2001 2.95 0.01 0.71 2.23 

2006 6.04 0.01 0.93 5.11 

2009 9.45 0.01 0.71 8.73 
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3.2 Gully extension rate over 64 years at the catchment scale 

From 1945 to 1975, gully retreat area remained constant at a value of 950 m2 y-1 (Fig. 

4). Between 1976 and 1984, gully retreat area increased up to 2300 m2 y-1 and stayed stable 

until 2001. A second increase was observed in the period 2001-2005 and reached 4000 m2 y-1. 

Finally, in 2009, gully retreat area continued increasing at 4441 m2 y-1. Since 1945, 3.9 % of 

the grazing surface of the catchment was lost through gully erosion. Significant correlation 

was found between rainfall and gully retreat area (R2= 0.67, p = 0.04). 

To compare our results with other studies, we converted retreat area (m2 y-1) into Mg 

of sediment per hectare of gully surface per year (Martínez -Casanovas 2003) or gully erosion 

rate. The estimation of sediment produced by gullies has been computed assuming an average 

bank gully height of 3 m (field observations), a bulk density of 1.4 g cm-3 which was the mean 

across three soil profiles in the catchment from 0 to 120 cm and a total gully surface of 31.9 

ha in the study site in 2009. The estimated total retreat area between 1945 and 2009 was 1 531 

m2 y-1, which gives a mean of 200 Mg ha-1 y-1.  

 

 

 

 
Figure 4. Mean annual rainfall and erosion rates of the whole gully system during the six 

studied periods: 1945-1961, 1962-1975, 1976-1984, 1985-2000, 2001-2005, 2006-2009. 

Vertical bars represent standard deviation for rainfall and the error on the digitalization for 

erosion rate.  
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4. Discussion 

4.1 Woody plant encroachment evolution at the catchment scale over 64 years 

At the catchment scale, tree canopy area has increased by 10-fold in 35 years if we 

consider that the increase started in 1976. Prior to 1976, the percentage tree cover was very 

low. The encroachment rate found in this study is in the range of worldwide studies but is in 

the lower range (Table 2). The values of encroachment rate in the different cited studies are 

rarely above 1 % y-1. The only case reported over 1 % y-1 matched to an area already 

encroached at the beginning of the study and where large trees able to reproduce can 

accelerate the encroachment. If we only refer to the % of tree canopy area, the studied 

grassland has still a large potential for encroachment with only 9.45 % of area covered by 

trees in 2009. Even if a slight decrease of total density is observed in the last few years (from 

2006), the population is probably not yet at equilibrium as the large tree density still increases 

and these large trees are the biggest seeds producers. After 2006, inter-tree competition may 

have taken place as well as changes in other disturbances factors such as herbivory and fires 

(Sankaran et al 2005; Ward 2005), which can modify tree population. Unfortunately we have 

very few data about these factors during the study period to relate them to the tree cover 

increase.  

Few studies (Goslee et al 2003) indicated that encroachment was not correlated with 

rainfall, but many others (Ansley et al 2001; Sankaran et al 2005; Widenmaier and Strong 

2010) indicated that rainfall was an important factor of tree population in grassland. Rainfall 

played an important role in this subhumid system but is probably not the sole cause of 

expansion of Acacia sieberiana in our study site. Cattle density has increased as well as 

human population in the last few years (pers. comm. from Potshini community). The local 

human population uses trees as fuel, which would limit encroachment by tree cutting, while 

cattle should increase encroachment through seeds spreading in the grassland (Van Auken 

2009). 
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Table 2. Comparison of tree encroachment rates (ER) in grasslands or savannas in the world. 

 

AUTHORS’ NAME LOCATION 
STUDY 

PERIOD 
ER (% y-1) COMMENTARIES 

Coop and Givnish 

2007 

Caldera Valley 

New Mexico, USA 
1935-1996 0.3 

 

Robinson et al 2008 
Pilbara, Western 

Australia 
1943-2001 0.4 

 

Goslee et al 2003 
Southern New 

Mexico 
1936-1996 0.7 

 

Archer et al 1988 South Texas 1941-1983 0.5 
 

Ansley et al 2001 
South Western 

USA 
1976-1995 2.2 untreated area 

Ansley et al 2001 
South Western 

USA 
1976-1995 1.1 

tree cleared area in 

1976 

Roques et al 2001 Swaziland 1947-1990 0.7 
 

Hudak and Wessman 

2001 

Madikwe,  

South Africa 
1955-1996 0.7 

 

Wigley et al 2009 

Hlabisa 

(Hluhluwe), South 

Africa 

1937-2000 1.0 
 

Laliberte et al 2004 
Southern New 

Mexico 
1937-2003 0.2 

 

This study 

Drakensberg 

foothills,  

South Africa 

1945-2009 0.27 

Considering 

encroachment 

starting in 1976 
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4.2 Gully extension at the catchment scale over 64 years 

The high gully extension rate of 200 Mg ha-1 y-1 found for this area is in the range of 

badlands in France (Bufalo and Nahon 1992; Descroix and Olivry 2002) or of badlands in the 

Barasona reservoir basin in Spain with 302–455 Mg ha-1 y-1 (Martínez -Casasnovas and Poch 

1998). However, our estimated rate is much higher than those of many studies referenced in 

Poesen et al (2003) where rates ranged from 0.1 to 64.9 Mg ha-1 y-1. This rate was also very 

high compared to the estimate given by Chaplot et al (in press) of 4.8 Mg ha-1 y-1 at our study 

site but at a smaller scale (1 m width bank gully) and for a short time period of 45 min during 

one rainfall simulation. Chaplot et al (in press) showed that 62 % of total soil loss was due to 

runoff, 24 % to splash erosion and only 13 % to collapse of aggregates from gully bank. This 

last process may however play a more important role in gully erosion of this area. Three 

months after rainfall simulation, an important part of the 1 m-wide gully bank collapsed (pers. 

obs.), which was mainly due to swelling and shrinkage of clay. Over 64 years, loss of similar 

entire blocks may have often occurred after heavy rains. The large difference between the 

erosion rates calculated over the short term (4.8 Mg ha-1 y-1) and over the long term (200 Mg 

ha-1 y-1) demonstrates the importance of bank erosion due to swelling and shrinkage processes 

in the gully erosion of this area (De Ploey 1974). This high erosion rate does not actually 

reflect the soil loss exported from the catchment to an outlet reservoir because of deposition in 

such deep and large gullies (Imeson and Kwaad 1980; Rieke-Zapp and Nichols in press). 

Once the gully bank fall in pieces at the bottom of the gully, the surface exposed to rainfall is 

high and not covered by vegetation. Removal and deposition of sediment downstream is thus 

easier (Podwojewski et al in press) as observed in rehabilitated zones filled by sediment inside 

the gullies.  

Humid regions usually have higher rates of gully retreat than arid regions (Poesen et al 

2003; Samani et al 2010). This is consistent with the significant correlation found in this study 

between rainfall and gully retreat area. Gully erosion increases significantly with rainfall >40 

mm day-1 (Bouchnak et al 2009), or >25 mm hr-1 (Rieke-Zapp and Nichols in press).  

 

5. Conclusions 

This study confirms that erosion processes and mechanisms depend on the spatial and 

temporal scale of the study. At the small temporal scale (one rainy season or one rainfall 

simulation), or at the small spatial scale (the plot scale, often studied), processes linked to rill 

and gully erosion are mostly observed as surface processes: splash detachment, soil surface 

crusting and runoff depending mostly on rainfall characteristics and vegetation cover. At a 

larger scale (space and time), other processes can be observed such as swelling and shrinkage 

of gully bank that are highly variable in space and time.  

Rainfall increased over the years as well as gully erosion and woody plant 

encroachment indicating that rainfall may be one of the factors influencing both processes. 
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However, a more focused study is necessary to identify the link between woody plant 

encroachment and gully erosion. This study will be presented in chapter 5 and constitute the 

second part of this article which has been submitted to Landscape Ecology. 
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II.  Etude des compartiments de subsurface par la géophysique 
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1. Introduction 

Investigation of subsurface layers is of great interest to better understand the relation 

between trees, soil properties and subsurface water (Robinson et al., 2008). Traditional local 

point measurements by digging pits is usually time consuming, expensive, destructive and not 

well adapted to the landscape scale (Buchanan and Triantafilis 2009; Tromp-van Meerveld 

and McDonnell 2009). Geophysical methods are non-destructive approaches that can be used 

to investigate subsurface layers of soil (Soupios et al., 2007; Robinson et al., 2008).  

Geophysics, by measuring soil electrical conductivity (EC) (or its reciprocal, 

resistivity) provides useful information on physical and chemical properties of soil (Lesch and 

Corwin 2003). EC is directly linked to soil salinity, clay content, cation exchange capacity 

(CEC), clay mineralogy, soil pore size and distribution, and soil moisture (McNeill 1992). For 

non-saline soil, Corwin and Lesch (2005) reported that EC mainly depends on soil texture, 

moisture content, bulk density, and CEC.  

Depending on the method used, different soil depths of investigation are possible 

(Vannaroni et al., 2004). The classical electrical resistivity survey and the vertical electrical 

soundings (VES) are based on continuous current (“CC”) and determine the resistivity 

distribution of the sounded soil volume. Practically, a continuous electric current is sent into 

the ground using buried electrodes and the resulting potential differences are measured 

(Samouëlian et al., 2005). The range of possible depth of investigation is considerable 

(Michot et al., 2003; Soupios et al., 2007) and depends on the spacing chosen between current 

(emitting) electrodes and potential (receiving) electrodes.  

Electromagnetic methods based on induction are also very promising to study soil 

properties and soil moisture and have been specially developed for this aim over the last few 

years (Robinson et al., 2007; Hossain et al., 2010). These methods measure EC of the soil by 

emitting magnetic fields from a powered coil. A receiver measures the secondary magnetic 

field produced by the currents induced by the first emission. One of these electromagnetic 

methods is the time-domain electromagnetic method (TDEM) which can investigate soil 

depths from 3 m to 100 m (Vannaroni et al., 2004). Frequently used electromagnetic methods 

are the EM31 and EM38, among others. These slingram methods investigate shallow depths. 

EM38 investigates near subsurface soil layers from 0 m to 1.5 m while EM31 investigates 

slightly deeper depths from 1.5 to 4 m. These methods are complementary and can be used 

together to obtain better understanding of soil subsurface properties (Vannaroni et al., 2004; 

Triantafilis and Monteiro Santos 2010).  

EM38 and EM31 are especially appropriate for the current study through their shallow 

investigation depth which is the depth where most tree and/or grass roots are found (Schenk 

and Jackson 2002). Both instruments can be easily manipulated on a landscape scale to obtain 

data for large areas. Many studies have related the electrical conductivity measured with 

EM38 and/ or EM31 with soil properties and soil moisture (Sherlock and McDonnell 2003; 

Reedy and Scanlon 2003; Brevik et al., 2006; Robinson et al., 2008; Abdu et al., 2008; 
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Tromp-van Meerveld and McDonnell 2009; Hossain et al., 2010). However, the earlier 

studies did not dissociate layers with very different properties from the near subsurface i.e. 0-

1.5 m. In the case of duplex soils, two layers are superimposed in this interval and involve 

different properties (Chittleborough 1992) which will drive water processes within the soil 

(Gregory et al., 1992) and thus influence the presence and abundance of tree and grass roots 

(Dracup et al., 1992; Macinnis et al., 2010). The chemical and physical properties of duplex 

soils may change over time (Fitzpatrick et al., 2000) which often increases their susceptibility 

to water erosion (Cox and Pitman 2002). Some studies determined the depth of aquifers 

(Schumann et al., 2003; Buchanan et al., 2009), or provided the spatial distribution of soil 

properties with depth (Triantafilis and Santos 2010), and/or determined the depth of the 

interface between two distinct layers (Sudduth et al., 2010) by using electromagnetic methods. 

However, it is still a methodological challenge to obtain EC of a first layer and a second layer 

and their interface depth by measurement with EM38. Moreover, there are few studies 

involving the new EM38-MK2 equipment that simultaneously measure two distinct depth 

ranges. 

Here, we conduct a preliminary investigation of the soil subsurface at the landscape 

scale with EM31, TDEM and VES methods to understand the global properties of a duplex 

soil. Then, to relate soil properties to tree spatial patterns (cf. part III of this chapter) a more 

detailed survey is presented at the plot scale (1.5 ha) with EM38-MK2 and EM31 devices.  
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2. Materials and methods 

2.1 Site description 

Experiments have been conducted in a grassland of KwaZulu-Natal, South Africa (28º 

48' 37" S; 29º 21' 19" E, 1300 m), where tree encroachment started 35 years ago (Grellier et 

al., submitted). The climate is subhumid subtropical with a rainy summer (October–April) and 

a mean annual precipitation of 745 mm over the last 65 years. The mean annual temperature is 

13 °C (Schulze 1997) and potential evaporation is between 1600 mm and 2000 mm per year 

(Guy and Smith 1995). The geology is represented by fine-grained sandstones, shales, 

siltstone and mudstones of the Beaufort and Ecca Groups of the Karoo Supergroup (Permien) 

which alternate in horizontal successions (King 2002). Unconsolidated colluvial deposits from 

the Pleistocene fill the valleys and are very prone to gully erosion (Botha 1994). These 

colluvial deposits are intruded by 1-8 m wide dykes of dolerite from the Jurassic (Mucina and 

Rutherford 2006). The duplex soils are classified into luvisols (World Reference Base 1998) 

with two well-delimited main horizons. The A horizon is coherent with brown color (10YR 

4/1 to 10YR 4/3) with more sand and silt, with many fine and medium roots. The Bt Horizon 

(up to 50% of clay) is dark brown, very coherent and hard with a coarse blocky structure 

(details of chemical and physical analyses are given in Appendix 1).  

 

2.2 Geophysical methods  

2.2.1 Time domain electro-magnetic method (TDEM) 

The TDEM sounding method is based on the following: a horizontal current wire loop 

emits an EM impulse in the space. It produces “eddy” currents which spread deeper and 

deeper in the ground and also expand and decline in amplitude. Those currents produce a 

secondary magnetic field that is detected in a secondary coil or the same coil as the 

transmitter (Fig. 1). 

 

  

Figure 1. Schematic representation of 

the TDEM method 

(http://www.ncwater.org/Education_ 

and_Technical_Assistance/Ground 

_Water/TDEM/). 
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The measured parameter is the secondary magnetic field (the primary magnetic field 

has been shut down). The longer the measurement, the deeper the recovered signal. If we use 

one circular loop of radius (a) and a current I over a homogeneous half space of resistivityρ , 

the secondary magnetic field time (Bz) variation as measured in the same loop is given by:  
3 5

522 2
0z 2

I aB
t

t 20

−
−ρ µ∂ ≅ −

∂ π
  where t is the time and 0µ  is the magnetic permeability. 

The apparent resistivity (ρa) is obtained by inverting this formula as a function of time (t): 
51

52 32
0 2
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z 3
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t .

20 B t

−  µρ =  ∂ ∂  π
 

2.2.2 Vertical Electrical Sounding (VES) 

The VES consists of sending electrical currents into the ground by using two current 

electrodes C1 and C2 and by measuring the resulting voltage between two receiving 

electrodes named P1 and P21. Various protocols are used, having relative advantages and 

disadvantages. We used the traditional “Wenner− α ” array: the four electrodes are equi-

spaced by a distance (a) and lined up (Fig. 2).  

  

 

 

 

Figure 2. Disposition of electrodes for the 

Wenner protocol used in this study (Source: 

www.argenco.ulg.ac.be/GEO3_Hydrogeologie 

/pdf/These_Rentier/14_AnnexeB.pdf) 

 

 

 

 

A formula can be used to calculate the resistivity ρ of the soil from the current I (into 

C1 and C2) and the difference of potential V∆ (between P1 and P2) measured in the field. We 

define the apparent resistivity by the expression:  

a

V
K

I

∆ρ =  

where K is the geometric coefficient and varies according to the kind of array used 

(here Wenner K 2 a= π , with a being the spacing between the electrodes). The apparent 

                                                 
1 C for current and P for potential. The French tradition calls A and B for the current and M and N for the potential.  
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resistivity is also the resistivity of a hypothetically homogeneous medium that would lead to 

the same ratio
V

I

∆
. By increasing the electrode spacing, the investigation depth gets deeper 

and deeper; we can calculate the apparent resistivity of thicker and deeper layers. Soil 

homogeneity and “tabular structure” (resistivity is only a function of the depth due to the 

single dimension of the method) are generally assumed to be correct to interpret the data. 

2.2.3 EM31 and EM38-MK2 electromagnetic methods  

The EM31 and EM38-MK2 electromagnetic methods are inductive methods. One coil 

serves as a transmitter and produces an alternative magnetic field in the ground (9.8 kHz for 

the EM31 and 14.6 kHz for the EM38-MK2). As a first approximation, this magnetic field 

induces an electric field in the ground as stated by the Maxwell equation: 

B
E

t

∂∇× = −
∂

r
r r

  where E
r

 is the electric field and B
r

the magnetic induction. 

The induced electric field leads to a density current J E= σ
r r

 where σ  is the 

conductivity (they are often named “eddy currents” due to the rotational pattern). These 

currents produce a secondary magnetic field which is detected by the receiving coil and in fact 

is stacked with the primary field caused by the transmitter. Hence the secondary field reflects 

the conductivity. The depth of investigation mainly depends on the coils separation, but also 

depends on the direction of the coils’ axes. In the Geonics devices that we used, the coils were 

maintained at the same height above the ground, and two modes were used: the vertical dipole 

mode in which the two coil axes are vertical, and the horizontal mode where the axes are 

horizontal. EM31 (3.66 m long) investigates depths between 1 m and 4 m with a peak of 

sensitivity at 1.5 m. EM38-MK2 (where two spacings are simultaneously available: 1 m and 

0.5 m) investigates depth between the surface and 1.5 m maximum, with a peak of sensitivity 

at 0.4 m in vertical mode and for the first 20 cm in horizontal mode (this is used more or less 

for the 1 m spacing and these depths are divided by a factor 2 for the 50 cm spacing). 

During preliminary pit logging of resistivity (Appendix 4), we observed that two 

shallow layers could be distinguished by their large differences in resistivity; the first layer 

being more resistive and the second layer much more conductive. To determinate the 

conductivity of the first layer (σ1) and the second layer (σ2) with EM38-MK2, as well as the 

depth of the interface between both layers (Fig. 3), we developed a methodology detailed in 

Appendix 5. To summarize, two spacings with both the horizontal and vertical modes 

provided four independent measurements. Using four measurements allowed retrieval of the 

three parameters of a two-layer shallow subsurface, viz. the two conductivities and the depth 

of the interface. Bayesian inverse computation was used to obtain the three parameters 

(Appendixes 5 and 6). Comparison with other measurements by electrical sounding and 

methylene blue method of clay property determination validated this non-destructive 

approach (Appendix 6).  
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Figure 3. View of a gully bank with apparent two layers and their interface. Adapted from 

Wikipedia diagram (http://soils.usda.gov/education/resources/lessons/profile/profile.jpg). 

 

As EM31 has a peak of sensitivity at 1.5 m depth, the row EC measured by EM31 

could be directly used to obtain a map integrating EC values from about 1-4 m depth. When 

inverting the EM38-MK2 data, the interface depth between the two layers were between 75 

cm and 85 cm, which follow the results of the diagraphy but did not fit with the traditional 

soil science methods separating A and B horizons at 40-50 cm depth. The transition given by 

geophysics is based on the inflexion point of the amount of mineralogical clays (highly 

conductive material) while soil science relies mainly on soil colors, structure and texture. 

According to the several previous field measurements and the pit logging we consider Fig. 4 

as a representative EC profile of the study site.  
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Figure 4. Schematic representation of 

electrical conductivity (EC) of a typical soil 

profile of the study area.   
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Observations following soil science criteria allow the determination of the beginning 

of the transition around 50 cm (separation of A and B horizons), while geophysics indicates 

the inflexion of the transition to be about 80 cm. As our goal is to correlate spatial pattern of 

trees with soil properties and especially soil moisture, we thus chose to determine EC for 0-

0.5 m matching to the A horizon where important mechanisms may happen for young trees 

(Grellier et al., in prep.). We also determined EC for 0.5-1.5 m and as well 0.8-1.5 m to test if 

the transition zone had an impact on the correlation with trees.  

 

2.3 Experimental design 

In order to investigate the relationships between acacias and soil properties, we 

worked at several different spatial scales. We first covered an area of 15 ha along a catena 

from the upper part of the catchment to the lower part (Fig. 5A). To obtain a more detailed 

map of the subsurface layers which will be linked to spatial pattern of the acacias (cf. Part III), 

we then focused on a particular area of 100*150 m located downstream on the colluvial 

deposit at the head of the gully where acacias of all sizes were present (Fig. 5B). This plot is 

relatively flat with a mean slope of 6 ± 1.5 °.  

 

 
Figure 5. A) Delimitation of the catena area (15 ha) and tracks (GPS position) of the points 

measured by EM31 in June 2008. B) Focusing in the catena area (white line) and the plot 

scale area (red line) at the head of the gully head. 

 

A B 
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Catena scale 15 ha: We mapped EC of the catena area in June 2008 (dry season) with 

EM31 (Fig. 6). A GPS (Global Positioning System) fixed on the EM31 allowed us to follow 

parallel lines spaced by 10 m (Fig. 5A). VES and TDEM soundings were operated on this 

catena following a straight line from the upper part to the lower part every 50 m (represented 

by triangles on Fig. 6) to investigate the deeper subsurface compartments. Finally, single VES 

were conducted on different chosen points (extreme values of conductivity measured by 

EM31) in the catena area of 15 ha as shown on Fig. 6.  

 

 
 

Figure 6. Conductivity (mS m-1) of the subsurface layers (2 to 4 m depth) measured with 

EM31 in the catena area (15 ha). Location of single VES (SEV01 to SEV08) and VES and 

TDEM soundings made on the catena (triangles) are displayed on the map.  
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Plot scale (1.5 ha): On the 100*150 m plot shown in Fig. 5B, surveys were done in 

the wet and the dry seasons with EM31 and EM38-MK2. We followed a precise mesh and a 

gridding of 5*5 m. The calibration method was carefully operated in order to limit drift of the 

devices, especially for EM38-MK2 and is described in Appendix 5. All metals that could 

influence the devices were removed from the operator (such as sun glasses, reinforced shoes 

and cellphone) as well as all metallic structures located on the field for other experiments 

(such as fence and metallic tags on trees). Kriging was used as an interpolation method to 

obtain all maps of EC. 

The relationship between EC and soil properties can be described by the formula given 

by Frohlich and Parke (1989) related to Archie’s law: 

surface
k

water
a

σσσ +Θ××= 1
0  

where 0σ is the bulk conductivity of clayey material, a is a factor reflecting the 

influence of mineral grains on current flow, waterσ is the conductivity of pore water, Θ  is the 

volumetric water content, surfaceσ is the conductivity given by the surface of clay. The 

parameter k is defined as  
mn

w
k S Φ×=Θ  

where wS  is the saturation degree, Φ  is the porosity of the soil and m a material 

constant depending on the geometry of the pores, the compaction, the mineral composition 

and the insolating properties of cementation. 

This formula actually represents a term linked to clayey properties and a term linked to 

water content. Soil properties of the clayey material that are included insurfaceσ , a and k, do not 

change between two seasons. The dry season in the study area is characterized by very dry 

soil. Thus, measures of EC in dry season depend mainly on clay properties while in the wet 

season, water content is a significant factor influencing EC. Dry season EC should thus be 

highly positively correlated withsurfaceσ  and the following formula could be used to determine 

the volumetric clay content (Rhoades et al., 1989): 

021.03.2 −×= Csurfaceσ   

where surfaceσ  is the EC of clay surface (mS cm-1) and C is the volumetric clay content. 

By calculating the difference between EC in the dry and wet seasons, it is possible to 

obtain values that are directly correlated with circulating soil water (Abdu et al., 2008). This 

pre-supposes that one follows a strict calibration procedure for the EM38-MK2 measurements 

and measures the same points for the two surveys to allow direct comparisons.  

Logistic constraints prevented us from calibrating all measurements to obtain an 

absolute clay content map and absolute soil moisture map.  
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3. Results and discussion 

3.1 Catena scale 

3.1.1  TDEM soundings 

TDEM investigates the deep subsurface layers. Different resistant bodies are shown in 

Fig. 7. The orange to red colouring is relative to resistant rocks (100 to 200 Ω.m) while the 

blue to green parts correspond to clayey and/or wet rocks between 10 and approximately 50 

Ω.m. Close to the top (1350 m) and in the middle (1310 m) of the catena, shallow resistant 

bodies are observed (Fig. 7). They could either match to dolerite dikes or consolidating 

sandstone banks outcropping alternatly with less resistant mudstone or siltstone layers. One of 

the main features shown here is the resistant structure in the lower part of the catena (right 

side), where the contrast with the other part is significant. This resistive structure is probably 

also sandstone bedrock that is observed in the bottom of the downstream gullies and that 

cannot be eroded. The extension of vertical gully erosion is limited by this hard bedrock.  

 
Figure 7. TDEM soundings results in the catena. Resistivity is represented with high values 

in red and lower values in blue. 

3.1.2  EM31 

The conductivities obtained with EM31 lay between 5 and 50 mS m-1, with most 

values fell between 20 and 40 mS m-1 (Fig. 6). We can interpret the map as follows: 

- Resistive parts (in blue) are the more consolidated rocks with less water or less clay; 

- Conductive parts (in red) probably involve a higher amount of water up to the depth of 

investigation of the EM31 (up to 4 m), or a higher amount of clay. 

The southern part of the catena (upper part) alternates between highly conductive 

layers (oriented East-West) in red and resistive layers in blue which are probably linked to the 
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alternation of rock types; hard sandstones and softer mudstone or siltstone layers alternate at 

the top of the catena due to topographic effect. 

At the northern part of the map there is a significant boundary between highly 

conductive material and less conductive material < 10 mS m-1. This is probably due to a 

lateral geological change. We noticed a topographic depression at the boundary, associated 

with many dolerite rocks on the ground surface. A vertical dolerite dike may be located at this 

boundary and is high enough to create a wall stopping water flowing downstream where 

conductivity is the highest. Dolerite may appear relatively conductive or resistive depending 

on the water it contains. 

Globally the conductivity was higher in the North (downstream part) and in the middle 

area than in the South where the slope is greater. This is due to accumulation of water in the 

downstream area. The heterogeneity between high and low conductivity in these areas is 

probably due to heterogeneity of bedrock types and associated water content. The strip along 

the gully is only due to instrument sensitivity due to the lack of soil at the gully cliff.  

3.1.3  VES 

The first VES called SEV01 was done in a transition zone in the upper part of the 

catena (Fig. 6) where the tabular hypothesis may not be correct. However, it provided a first 

insight of the subsurface. SEV01 showed a first resistive layer of almost 200 Ω.m and of 

50 cm thickness (Fig. 8). This layer matches probably to the A horizon which dries the 

quickest in the dry season due to direct evaporation (close to the surface) and due to 

vegetation water uptake. Under this first layer there was a very conductive layer. Equivalence 

analysis showed that the parameters of this layer can be between 8 Ω.m with 30 cm thickness 

and 20 Ω.m with 90 cm thickness (respectively according to equivalence laws). It is 

reasonable to accept a mean value of 12 Ω.m with approximately 50 cm thickness. This layer 

is more humid and more clayey than the first layer and may match the B horizon where clay 

accumulates. Beneath this second layer, the equivalence analysis gives a third more resistive 

layer of 50 Ω.m. Thereafter, layers becomes more and more resistive with increasing depth 

perhaps because of the decrease of the weathering of the bedrock.  

SEV02 and SEV06 were located on resistive patches (Fig. 6). SEV06 had a conductive 

layer at 5 m depth which causes the general decay of the resistivity curve (Fig. 9); however 

this measurement is at the detection limit depth of the EM31 which explains the resistive 

value given by this analysis. This conductive horizon may be interpreted as a residual water 

sheet overlying a less permeable layer. Above, the vadose zone (between the surface and 5 m) 

is relatively dry, indicating that good drainage may induce higher resistivity. The “apparent” 

bedrock is at about 10 m depth. There was an inconsistent result regarding the deep 

conductive layer resistivity value.  
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Figure 8. Results of the SEV01 (left) and the equivalence analysis (right) giving the depth of 

the possible layers and their resistivity. 

 
 

Figure 9. Results of the SEV06 (left) and the equivalence analysis (right) giving the depth of 

the possible layers and their resistivity. 
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Two solutions were found differing only for the deep layer. Both were of an equal 

quality when looking at the fit, but one presents a deep conductive layer at 2.1 Ω.m with 

6.4 m thickness and the other at 11.4 mΩ⋅ with 13.2 m thickness. However, in the first case 

the recomputed EM31 conductivity is about 40 mS m-1, while in the second case it was 

26  mS  m-1, which is much closer to the value found with the EM31 at this point (about 

20 mS m-1). Hence the second interpretation is more realistic. A layer of 2.1 Ω.m is a salty 

layer, while 11.4 Ω.m is probably a clayey and very wet (saturated) zone (of course we cannot 

exclude the possibility that there is some salt present). Moreover the interpretation of 

thickness also depends on the appropriateness of the interpretation.  

SEV02 was more complex and allows several solutions. The fit with the EM31 

conductivity value measured at that point (18-20 mS m-1) suggests the following solution: a 

shallow resistive layer is found at the surface with 377 Ω.m and 20 cm thickness. Then, until 

4 m depth, there is another resistive layer but at 70 Ω.m. At 4 m there was a less resistant 

layer (as SEV06) with 29 Ω.m, which is probably very permeable, before reaching the 

bedrock. 

SEV05 and SEV03 surveys were made in conductive patches (Fig. 6). SEV05 was 

very robust, with a first resistive layer at 305 Ω.m and a thickness of 30 cm, probably the A 

horizon, then a layer of 11.6 m thickness at 30 Ω.m matches the B horizon and finally a 90 

Ω.m bedrock below. SEV03 sounding allowed several equivalent interpretations which can be 

sorted by comparing EM31 conductivity value (34 mS m-1) with the one found for each 

solution. The first layer was close to 440 Ω.m and 19 cm thickness. The second layer was at 

30 Ω.m with 2.35 m followed by a conductive layer at 16 Ω.m with a 4.3 m thickness, before 

reaching the bedrock.  

SEV4 was located close to the gully and near a large acacia tree. This VES is 

interesting because it is expected to be well-drained by the acacia. Here we recorded 0.33 m 

of resistant soil, then almost 2 m at 54 Ω.m and then a 35 Ω.m layer with a 12.5 m thickness. 

The last layer was > 80 Ω.m. This VES was similar to SEV03.  

 

To summarize, VES on the catena gave the following results: 

• In all cases, a first resistant soil layer (more than 100 Ω.m) was found of variable 

thickness.  

• Either this first layer was directly followed by a conductive layer or an additional but less 

resistant layer may exist; 

• Three profiles showed a more conductive layer at 2 m or 5 m in depth; 

• Almost all profiles indicated a bedrock around 80-90 Ω.m but at variable depths; 

• Heterogeneity of subsurface resistivity was clear, indicating high variability of subsurface 

properties. This is in agreement with the EM31 results between 1.5 and 4 m that shows also 

heterogeneity in the catena due to 1) topographic effects and alternation of sandstones and 
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mudstones or siltstones in the upper part of the catchment, and 2) the spatial heterogeneity of 

the colluvial layer in the downstream part of the catchment. 

 

3.2 Plot scale 

EC of the first layer (0-0.5 m) had low conductive values between 0 and 11 mS m-1 for 

the wet season (Fig. 10). In the dry season the soil was even less conductive, with maximal 

values at 7 mS m-1 which may be an aberrant point due to its single value. Thus the difference 

between wet and dry season was low and stayed mainly between -2 and 3 which was included 

in the error range of the EM38-MK2 device (2 mS m-1). However, the southeastern part of the 

area showed higher soil moisture in wet season.  

The second layer integrating the transition zone (0.5-1.5 m) was more conductive than 

the first layer, with values ranging between 4 and 44 mS m-1. Different areas appeared on the 

map with the eastern/north-eastern part being the most conductive for both the wet and the dry 

seasons. Differences between the two seasons were much higher than for the first layer with a 

circulation of water in the south-western part of the area in the wet season while on the north-

eastern part there was higher soil moisture in the dry season.  

A similar layer excluding the transition area (0.8-1.5 m) had higher conductivity with 

a similar pattern to that explained above. The difference between the two seasons was also 

more clearly marked with the same trends as for the 0.5-1.5 m layer. 

Finally, the EM31 gave EC with values between 20 and 38 mS m-1 for 1-4 m depths. 

The wet and the dry seasons had similar values. There were three distinct areas on the map in 

the wet and the dry seasons: 1) the north-eastern part was very conductive, as we also 

observed in the upper layer (0.5-1.5 m), 2) the central part of the area was less conductive, 

and 3) the south-western part where EC was high. The difference between the wet and the dry 

seasons was very low with most values between -2 and 3 similar to the first layer. At this 

depth, there was an increase in soil moisture in the wet season in the north-eastern part of the 

area.  

 

These results indicate that seasonal soil moisture increased especially at 0.5-1.5 m 

depths. In the surface layer and below 1.5 m, seasonal variation of soil moisture was very low. 

This can be explained by the presence of the B horizon with higher clay amounts. Water 

arriving at the soil surface in the first layer either directly evaporates (high temperatures in 

February induce high evaporation), is transpired by the herbaceous layer (that uses water 

specifically during the growth period, in February) or percolates deeper (Ward et al., 2001). 

Water is halted in the B horizon due to clay properties capable of retaining water. Soil water 

saturation may allow water to percolate deeper but this is only seen during very high rainfall 

events. The field trip in February was preceded by a few days without rain and thus the soil 

was not at saturation. 
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Figure 10. Conductivity (mS m-1) of the 1.5 ha area for four horizons (0-0.5 m, 0.5-1.5 m, 0.8-

1.5 m and 1-4 m) investigated by EM38-MK2 and EM31 in the dry and wet seasons. The last 

column of figures is the difference in conductivity between the wet and dry seasons with a color 

scale displayed on the right of the figure. X and Y axes are the coordinates in UTM 35J. 
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In the study area, seasonal soil moisture was not homogeneously distributed. The 

north-eastern part had higher soil moisture in the dry season than in the wet season. This is 

unusual but can be explained by the very high clay content (highest EC in the dry season). 

This very clayey zone is not very permeable to water and may promote water logging at its 

surface (Cox and McFarlane 1995). In February, it was apparently not yet moist. After the 

frequent rains of March and April of 2010, deep drainage may finally wet the soil layer which 

then resulted in very high retention properties and remained moist until (at least) June that 

year. In such very clayey areas, soil moisture is often not available for plants due to the high 

retention capabilities. Contrastringly, the south-western part of the area had intermediate clay 

content and became more humid in the wet season.  

 

The geophysical investigation performed in this study provided information on the 

deep subsurface characteristics of the grassland, with a heterogeneous pattern due to different 

combination of geological events. It is however in the first 4 m below the surface that trees 

may be most affected. The association of EM31 and EM38-MK2 results with specific 

Bayesian methods allowed for successful mapping of electrical conductivity at the catena 

scale for three identified layers from the surface to 4 m below the surface. Hydrologically 

active water (seasonal soil moisture) was mainly located in the second layer (0.5-1.5 m) and 

will be used in the next section for determination of correlations with the spatial pattern of 

acacias.  
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III.  Importance des propriétés du sol sur la répartition spatiale 

des acacias 
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1. Introduction 

The causes of woody plant encroachment in grassland have been widely studied 

(Archer et al. 1995; Jeltsch et al. 1996; Brown and Archer 1999; Higgins et al. 2000; 

Sankaran et al. 2004; Briggs et al. 2005; Sankaran et al. 2005; Kraaij and Ward 2006; Meyer 

et al. 2007; Gignoux et al. 2009; Riginos 2009; Van Auken et al. 2009; Grellier et al. 

submitted). Scientists have only recently started to explore the factors that control the 

structure and spatial pattern of encroaching tree populations (Wiegand et al. 2006; Robinson 

et al. 2010; Halpern et al. 2010) which should give new insights on this complex problem that 

is not yet fully understood (Ward 2005; Graz 2008). Various models have been proposed, 

including spatially explicit models (Wiegand et al. 2005; 2006) where trees are aggregated in 

patches whose dynamics is driven mainly by rainfall and inter-tree competition with a shift 

between facilitation and competition (Callaway and Walker 1997; Halpern et al. 2010). Soil 

nutrient patches have also been highlighted as driving spatial patterns of palm trees in tropical 

humid savanna of Lamto (Barot et al. 1999). If other studies mentioned the importance of soil 

properties on dynamics of woody vegetation (Britz and Ward 2007; Schleicher et al. 2011), 

few have tested the effects of soil properties on vegetation spatial pattern in grasslands 

(Browning et al. 2008; Eggemeyer and Schwinning 2009; Robinson et al. 2010, Trinogga 

2010).  

The reasons for the lack of studies are linked with the technical issues of measuring 

soil properties at the landscape scale, which is the most relevant scale to analyze these 

processes. The recent interdisciplinary links between soil science, hydrology and ecology 

(Young et al. 2010) offer useful possibilities for throwing new light on the issue by taking into 

account more factors that could be missed otherwise. Within this concept, Robinson et al. 

(2008) associated geophysics methods for mapping soil properties at the watershed scale and 

vegetation spatial patterns. The same authors also presented a study on tree-grass co-existence 

where they showed that conductivity, related to soil properties were lower under trees (oak) 

than under grass cover, indicating that trees were located on soils with lower clay content 

(Robinson et al. 2010).  

The application of geophysics to ecology and especially to studying spatial vegetation 

patterns needs more attention. Indeed, soil properties and soil moisture are two linked factors 

that could influence tree establishment and growth. The two layer hypothesis of Walter (1971) 

distinguishes the near subsurface soil layer where most grass roots grow (Snyman 2009; 

Kambatuku et al. 2011) and deeper layers where tree roots are mainly found. These two layers 

could increase competition for water as tree roots mostly access deeper water that has not 

been used by grass and has percolated through the soil. This suggests that trees could depend, 

at least in some savannas, on the capacity of water to reach deeper soil layers. However, soil 

moisture content depends on more complex hydrological processes than described by Walter, 

especially on duplex soils with two distinct layers (Chittleborough 1992). Water fluxes 

influenced by hydrology and trees (Nadezhdina et al. 2010) are not only vertical, from the 
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surface to deeper layers, but can also be lateral (Lin 2006) as well as vertical but from deeper 

to shallower layers (e.g. Ludwig et al. 2003). Moreover, soil moisture depends on soil texture 

and other soil properties (that may vary at the landscape scale) and landscape characteristics 

(Robinson et al. 2007). Thus, the identification of different soil properties depending on depth 

could influence tree spatial pattern in grasslands and savannas (Breshears et al. 2009). 

In this study we explore the relationships between spatial pattern of trees and soil 

properties such as clay content and soil moisture through geophysics measurements. As roots 

of adult and younger trees reach different soil layers and different processes affect their 

growth (Callaway 1997; Sankaran et al. 2004), we may find differences in spatial distributions 

between size classes of trees. We focused on Acacia sieberiana that encroaches grasslands of 

KwaZulu-Natal in South Africa. The main question that we aimed to answer is: Does the 

spatial pattern of acacias depend on soil properties and soil moisture at different depths, and 

does this pattern change with acacia size? 

 

2. Materials and methods  

We studied the spatial relationships between acacias, soil properties and soil moisture 

over an area of 1.5 ha where electrical conductivity (EC) had previously been measured (cf. 

part II of this chapter). We obtained maps of EC representing soil properties, consisting 

mainly of clay content at 0-0.5 m (A horizon), 0.5-1.5 m and 0.8-1.5 m (B horizon) and 1-4 m 

depth (mainly colluvial bed rocks), and maps representing relative seasonal soil moisture for 

the same depth. All maps were extrapolated to obtain grids of the same spacing of 10 m using 

Surfer version 9 software (Golden Software 1993-2011). 

All acacias were mapped using a differential global positioning system (DGPS) giving 

a high accuracy of the position (5 cm) in all three coordinates X, Y, Z. Regular grids of 

10*50 m were delimited to map all acacias. Acacias were separated into different size classes 

according to the following criteria: the height of “tall” acacias was >3 m (this size class 

corresponds to more fecund acacias). The height of “medium” acacias was ranged between 1 

and 3 m (they produce fewer pods than tall acacias and they are seldom eaten by cattle and 

goats). The height of “small” acacias was between 0.2 and 1 m (they do not produce any pod 

but cattle and goats have an easy access to their leaves). Acacia seedlings were < 0.2 m high 

(they can either be eaten or trampled by cattle and goats).  

Once mapped, acacias of each size class were counted in an area of 5 m surrounding 

each value of conductivity using ArcGis 9.3 (ESRI 2008). It was thus possible to create a 

density map of acacias for each size and to link this density to soil properties. From the results 

we obtained, especially for medium-sized acacias, we found that there was an important 

influence of maximum density. Thus, we calculated the maximum acacia density for 

conductivity values with a step of 1 mS m-1. Correlations between maximum acacia density 
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and conductivity were tested with general additive models (GAM) using R software version 

2.11 (R Development Core Team 2010, http://www.R-project.org).  

Topography maps were obtained using regular spaced DGPS points from the area and 

kriging interpolation in Surfer 9 (Golden Software 1993-2011). To visually enhance the minor 

variations in mean topography, we adjusted using least-square regressions and removed the 

parabolic surface from the data.  

 

3. Results  

3.1 Acacia density map 

The three size classes of acacias showed different patterns (Fig. 1). Tall acacias were 

mostly located in the south-eastern part and in the north-western part of the plot. Two areas 

(in white on Fig. 1a) had no tall acacias. Medium acacias mainly occurred at a high density in 

the north-western and central parts (Fig. 1b). Two areas had lower medium-sized acacia 

density (Fig. 1b). Small acacias followed the pattern of medium acacias, with a higher density 

in the central part of the plot (Fig. 1c). Seedlings were almost regularly dispersed on the plot 

with higher density in the north-eastern part of the plot (Fig. 1d).  
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Figure 1. Acacia density map of the 1.5 ha area. a) Tall acacias > 3 m height. b) Medium 

acacias between 1 and 3 m height. c) Small acacias between 0.2 and 1 m height. d) Acacia 

seedlings < 0.2 m height. Crosses represent each acacia. 

 

  

a b 

c d 

Tree density 

(tree 100 m-2) 
Tree density 

(tree 100 m-2) 



 

Chapitre 3. III  87 

3.2 Correlations between acacia density and soil properties (clay content) 

The results for conductivity and differences in conductivity for each soil layer were 

presented in the previous part of this chapter. As the conductivity of the first layer (0-0.5 m) 

(σ1) obtained during the dry season was very homogeneous, we did not correlate σ1 with tree 

density. The homogeneity of this first layer (which corresponds to the A horizon) indicates 

that this horizon did not show any clear heterogeneity in terms of soil properties related to 

conductivity. This is confirmed by the results of texture analysis from the three pits dug in the 

field (Appendix 1). Clay content, which most strongly influences the conductivity values 

during the dry season for non-saline soils (Corwin and Lesch 2005), was similar for the three 

pits in the uppermost 40-50 cm soil depths. Below 50 cm depth, conductivity or clay content 

had a higher spatial variability. σ2 at 0.5-1.5 m had similar patterns than σ2 at 0.8-1.5 m but 

with globally lower and less extreme values. Correlations with acacia density were very 

similar for both layers being higher with σ2 from 0.8-1.5 m. For that reason, we only present 

here the correlations with σ2 from 0.8-1.5 m depth. We displayed the two selected maps of 

conductivity for this study (Fig. 2).  

 

 

 

 

  
 

 
 

Figure 2. Conductivity maps at 0.8-1.5 m and 1-4 m depths obtained with EM38-MK2 and 
EM31 respectively on a plot of 1.5 ha in the dry season. X and Y axes are the coordinates in 
UTM 35J. 
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The density of tall acacias plotted against the conductivity of the 0.8-1.5 m depth (Fig. 

3a) showed that > 24.3 mS m-1 the density of tall acacias dropped to zero. The mean value of 

conductivity where tall acacias were present was 15.72 ±3.69 mS m−1. A similar threshold 

was also observed at 1-4 m depth with a value at 31.9 mS m-1 (Fig. 3b) and a mean value of 

26.88 ±2.09 mS m−1. The conductivity values above these thresholds were found in the north-

eastern part of the plot where conductivity reflects higher clay amount at both depths. 

Medium acacias did not show as clear a threshold but showed a decrease of the maximal 

density with an increase of conductivity (Fig. 3c and 3d).  

 

 

 
 

    
 

 

Figure 3. Tall and medium acacia densities (tree.100m-2) are plotted against soil electrical 

conductivities (mS m-1) for two depths: 0.8-1.5 m and 1-4 m. (a) Tall acacias at 0.8-1.5 m 

depths. (b) Tall acacias at 1-4 m depths. (c) Medium acacias at 0.8-1.5 m depths. (d) Medium 

acacias at 1-4 m depths. 
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We thus modeled the maximal densities of medium acacias with GAM (Fig. 4a and 

4b). For the 0.8-1.5 m depths, the model was highly significant (F=18.74, p<0.0001) and 

explained 82.7 % of the deviance in maximum medium acacia density (Fig. 4a), being 

maximal at 14 mS m-1. At 1-4 m depths (Fig. 4b), the model was highly significant (F=245.8, 

p<0.0001) and it explained 99.8 % of the deviance in maximum medium acacia density, with 

a miximum at 25 mS m-1.  

 

  
 

Figure 4. Maximum values of medium acacia density versus soil electrical conductivity. The 

best fit curve was estimated by GAM.  

 

Small acacias showed a less clear pattern than taller acacias but similar thresholds to 

those of tall acacias were still visible (Fig. 5a and 5b). At 0.8-1.5 m depths, small acacia 

densities dropped below 10 trees 100 m-2 for conductivity values above 25 mS m-1. For 1-4 m 

depths, the threshold was at 32 mS m-1. Seedlings did not show any specific patterns (Fig. 5c 

and 5d). 
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Figure 5. Small and seedlings acacia densities (tree.100m-2) are plotted against the soil 

electrical conductivities (mS m-1) for two depths: 0.8-1.5 m and 1-4 m. (a) Small acacias at 

0.8-1.5 m depths. (b) Small acacias at 1-4 m depths. (c) Seedlings at 0.8-1.5 m depths. (d) 

Seedlings at 1-4 m depths. 
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3.3 Correlations between acacia density and relative seasonal soil moisture 

As explained in part II of this chapter, seasonal soil moisture was higher at 0.8-1.5 m 

depths than at the surface and deeper than 1.5 m (Fig. 6). Tall acacias had a threshold only for 

0.8-1.5 m depths which was at zero (Fig. 7b). For all negative values matching to higher 

seasonal soil moisture in the dry season, tall acacia density was zero. Medium acacias were 

slightly influenced by the first layer at 0-0.5 m depths (Fig. 7d), showing lower density values 

for greater differences in conductivity (above 3 mS m-1), where seasonal soil moisture was the 

highest. Small trees and seedlings were both positively correlated with soil moisture of the 

uppermost layer (Fig. 8a and 8d) with decreasing density values with increasing seasonal soil 

moisture. The soil moisture of the deeper layer at 1-4 m did not affect any of the size classes 

of acacia.  

 

 

 
 
 
 

Figure 6. Difference in soil electrical conductivities between the wet and the dry seasons for 
three depths of investigation: (a) 0-0.5 m, (b) 0.8-1.5 m and (c) 1-4 m depths obtained with 
EM38 and EM31 geophysical methods on a plot of 1.5 ha. X and Y axes are the coordinates 
in UTM 35J. 
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Figure 7. Tall and medium acacia densities (tree 100 m-2) are plotted against the difference of 

soil electrical conductivities (mS m-1) between the wet and the dry seasons for two depths: 

0.8-1.5 m and 1-4 m.   
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Figure 8. Small and seedling acacia densities (tree 100 m-2) are plotted against the difference 

of soil electrical conductivities (mS m-1) between the wet and the dry seasons for two depths: 

0.8-1.5 m and 1-4 m. 
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4. Discussion 

The different spatial patterns of trees in this study showed that seedlings and small 

acacias are located away from taller acacias. This suggests that competition under tall acacias 

may be too strong for small acacias to germinate and or survive (for similar results see e.g. 

Riginos et al., 2005). 

The correlations between acacia densities and conductivities are consistent with the 

study of Robinson et al. (2010) regarding oaks growing in semi-arid areas near Stanford 

(California, USA). They showed that oaks in this savanna developed preferentially on soils 

with lower conductivity in the first 1 m (~21 mS m−1) associated with lower clay content than 

areas where only grass was present (~32 mS m−1). In our study, taller acacias with their 

deeper roots were most affected, with a net threshold of conductivity that limited their 

development (see e.g. Fig. 3a and 3b). Due to the increasing clay content with depth, the main 

limitation for tall acacia growth appears to be the higher values of conductivity at 1-4 m 

where the mean values where acacias are present was 26.88 mS m−1 and the threshold was 

31.9 mS m−1. Conductivities depend on both soil characteristics and properties (McNeill 

1992; Lesch and Corwin 2003) making the comparison of absolute values between two 

different sites difficult.  

Overall, medium acacias followed the same pattern as tall acacias but were not 

completely absent from the area of high conductivity (unlike tall acacias). Presumably, with 

their shallower roots, small acacias and seedlings were less affected by the high clay content 

in layers at 0.8-4 m depth. Differential mortality of size classes of acacias explains this pattern 

(Barot et al. 1999). Clay amount had a negative impact on acacia development which is linked 

to soil texture. Several studies have identified soil type as influencing tree populations either 

at the seedling stage (Kambatuku et al. 2011), or for the population at large (Schleicher et al. 

2011). Clayey soils have a fine soil texture which determines the porosity, the saturated 

hydraulic conductivity and available soil moisture for plants (Saxton et al. 1986; Fernández-

Illescas et al. 2001; Fravolini et al. 2005). Fine-textured soils, in contrast to coarse-textured 

soils, have smaller pores and limit the drainage of water. This is especially true on duplex 

soils with an upper sandier layer and a second more clayey layer, sometimes promoting 

waterlogging at the surface of the less permeable second layer (Cox and McFarlane 1995). In 

very fine-texture soils, tree roots may not grow as deep as in coarse-textured soils (Xu and Li 

2008; Macinnis-Ng et al. 2010), limiting tree growth. While clay can have positive effects on 

nutrients and water availability (Bechtold and Naiman 2006), high clay content can also limit 

the access to water for trees and thus limit their development (Xu and Li 2008). Grass and 

smaller trees do not face this problem as they mainly explore the uppermost layer which is 

more permeable, with larger pores and with more available water (Chittleborough 1992; 

Gregory et al. 1992). In this grassland, clay content of the second and third layer is 

heterogeneous due to heterogeneous deposition of colluviums, which affects the spatial 

distribution of acacias.  
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Soil hydraulic properties, linked to soil texture, play a major role in modifying spatial 

and temporal availability of water to plants (Fravolini et al. 2005; Wu and Archer 2005; 

Robinson et al. 2010). Medium, small and seedling acacias were less dense in areas where soil 

moisture of the uppermost layer was highest (Fig. 7d, 8a and 8d). The south-eastern area of 

the study plot (Fig. 6a) did not match deeper layers with high clay content where water could 

have accumulated which may be the case for the small areas in the north-eastern part of the 

plot. The south-eastern area was not located on a topographic depression which could have 

enhanced soil moisture (data not shown). This suggests that, rather than looking at the impact 

of soil moisture on the spatial pattern of acacia population, we should look at the impact of 

trees on soil moisture in this uppermost layer. The difference in soil moisture between the dry 

and the wet seasons is very low indicating that herbaceous layers as well as acacias (that use 

part of the uppermost subsurface water (Grellier et al. in prep)) dry out the first layer during 

the growing season. Other drainage and evaporation processes may also contribute to this 

result (Ward and Dunin 2001) during the wet and hot season which is the growing season in 

this habitat. For a reason that is not explained by the abiotic factors studied here, lower 

densities of medium, small and seedling acacias were found in this area, which is thus not 

completely dried out by reduced acacia transpiration. 

The deeper soil moisture at 0.8-1.5 m depths mainly affected tall acacias is partially 

linked to clay content. The north-eastern part of the plot had higher soil moisture in the dry 

season (negative values on Fig. 6b) that we considered to be linked to the retention properties 

of such clayey soils in Part II of this chapter. Because of the high clay content, low porosity 

and thus low hydraulic properties of this kind of layer, tall acacias do not established at all.  

 

5. Conclusions 

In this mesic grassland, the distribution of taller acacias is mainly driven by the 

heterogeneity in clay content of soil layers at 1-4 m depth. Soil moisture, besides influencing 

the spatial pattern of the A. sieberiana population, was influenced by smaller acacias in the 

surface layer. Duplex soils induce specific soil properties that influence the spatial pattern of 

taller acacias that depend on deeper layers. We can thus answer the question we asked in the 

introduction: soil properties, especially clay content at different depths affect the spatial 

pattern of A. sieberiana differently according to their size.  

These results could aid our understanding and prediction of the spatial distribution of 

acacias during encroachment. Focusing management practices on these areas particularly 

favorable to the taller acacias should be more effective. Finally, these results confirm that 

using geophysical tools in ecology allows for large scale investigations. 

In order to investigate further the question and to extend the results to a larger scale, 

several improvements could be made. Developments of the inversion software are possible by 

taking three soil layers into account, for example. We could not have done this here but due to 
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the particularity of the transition layer between the first and the second layer, it could have 

improved the interpretation.  
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Chapitre 4. Les facteurs de contrôle de l’invasion ligneuse 

 

Jeune plantule d’Acacia sieberiana possédant encore ses deux cotylédons.   
© S. Grellier 
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Le chapitre précédent a permis d’établir un état des lieux de l’écosystème étudié à une 

large échelle spatiale et temporelle montrant à la fois l’évolution des ravines et de la 

population d’A. sieberiana et le rôle des propriétés du sol sur la répartition des acacias. Afin 

de comprendre plus finement certains mécanismes intervenant sur le système « arbre-herbe », 

nous allons aborder dans le présent chapitre, l’inter-compétition (compétition arbre-herbe) qui 

pourra être déterminante pour l’évolution de l’invasion ligneuse. L’approche multi-facteurs 

est le meilleur moyen de mettre en évidence des interactions entre les principaux facteurs de 

contrôle de l’invasion ainsi que leur importance respective dans cet écosystème semi-humide. 

La première partie présente une étude multi-facteurs comprenant le feu, l’herbivorie (simulant 

à la fois la réduction du couvert herbacé et le transit intestinal des graines) et les nutriments 

(par apport de bouses de vache) en testant leurs différents effets et interactions sur des stades 

déterminants de la population d’A. sieberiana, c'est-à-dire la germination et la croissance de 

jeunes plantules. Toujours dans un but de compréhension des facteurs de contrôle de la 

population d’A. sieberiana, la deuxième partie traite de l’étude du facteur « eau » et plus 

précisément de la ressource en eau du sol. Cette étude écohydrologique cherche à montrer 

comment les arbres utilisent la ressource en eau (profondeur de prélèvement de l’eau) en 

fonction de leur taille et de leur position dans le bassin versant afin de mettre en évidence de 

possibles adaptations favorisant l’invasion ligneuse. Il s’agit donc de deux démarches 

différentes mais qui permettront des avancées scientifiques dans la compréhension des 

facteurs de contrôle de l’invasion ligneuse. 

 



 

Chapitre 4. I  102 

I. L’étude des principaux facteurs influençant le stade jeune plantule 
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Abstract 

 

Numerous models have suggested that fire and herbivory play an important role in tree 

encroachment in grasslands. However, little field data are available to support these 

assumptions. Furthermore, interactions between fire and herbivory are not well understood. 

We tested the effects of fire, grass, cattle ingestion (digestive transit) and dung (as a source of 

nutrients) on germination as well as growth and mortality of Acacia sieberiana seedlings in a 

subhumid grassland of South Africa. About 8000 seeds were planted in the field in a 

randomized block design. A similar experiment with cattle ingestion and dung treatments was 

undertaken in a shadehouse. Frequency of natural rainfall was an important factor influencing 

germination and seedling mortality in the first growing season. Fire and grass decreased 

seedling survival through burning, heat and competition for light, water and nutrients. In the 

shadehouse, cattle had a positive effect on germination through the combination of gut transit 

(which removes the hard seed coat) and dung (which supplies nutrients) and may thus 

promote tree encroachment. In the field, we found that transit through cattle did not have an 

important effect. Competition with grass had a far stronger negative effect on seedling 

survival. Although it is often claimed that gut passage through animals is a key factor of tree 

success in grassland and savannas, the removal of grass by grazing and/or fire had a far more 

important effect on acacia recruitment. 
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1. Introduction 

Woody plant encroachment is widespread on most continents (Archer et al. 1995; 

Bond 2008). The impact of woody plants on grassland ecosystems is of great concern for 

human and wildlife as encroached areas are an important resource for domestic livestock and 

wild herbivores (Van Auken 2009). Trees decrease the available grazing area (Kraaij and 

Ward 2006; Wigley et al. 2009) having economical consequences on ranch yield (Burkinshaw 

and Bork 2009). While some authors describe trees as “islands of fertility” due to their 

positive effects on nutrient availability (Treydte et al. 2007; Ravi et al. 2010), others have 

reported negative consequences for the precarious balance of ecosystem functioning (Scholes 

and Archer 1997; Smit 2004). Effects are highly variable and depend on climate, location, tree 

density and site specificity (Smit 2004). Managers try to mitigate the negative impacts of tree 

encroachment by tree eradication (Smit 2004) or attempt to take advantage of the positive 

impact of trees on nutrient availability by maintaining trees at a specific density (Treydte et al. 

2007). However, management can only be conducted efficiently if the causes of woody plant 

encroachment are well understood. There is consensus that water, nutrients, fire and herbivory 

are key variables of tree-grass balance in grasslands (Sankaran et al. 2004; Ward 2005; 

Wiegand et al. 2006). Other factors have also been recorded to influence tree populations, 

such as rodents (Goheen 2004) or bruchid beetles (Coe and Coe 1987; Or and Ward 2007) 

that feed on Acacia seeds and destroy them.  

There is thus little consensus on the four main factors cited above and their relative 

influence. Different models have been proposed to explain the coexistence of trees and 

grasses and changes in tree densities: (1) Competition models such as the two layer model of 

Walter (1971) are based on rooting niche separation but cannot be generalized (Sankaran et al. 

2004; Ward 2005), especially in wetter areas where water availability reduces competition 

between grass and trees (Jeltsch et al. 1996) and in areas where the soil is too shallow to allow 

separation of tree and grass roots (Wiegand et al. 2005). (2) Demographic-bottleneck models 

are based on different impacts of climatic variability and disturbances between life-history 

stages of trees which are essential in the tree-grass equilibrium (Higgins et al. 2000; Sankaran 

et al. 2004; Gignoux et al. 2009). (3) Other models consider grasslands or savannas as patch-

dynamic systems (Wiegand et al. 2006; Meyer et al. 2007) where landscapes are composed of 

many patches in different transition states between grassy and woody dominance.  

Sankaran et al. (2005) suggested a global model for African savannas where mean 

annual precipitation (MAP) is the main determinant of woody plant encroachment: trees in 

dry areas (MAP<650mm) are limited to a maximal density by MAP, whereas trees in mesic 

areas (MAP>650mm) are not limited by water and will be driven by disturbances such as fires 

and herbivores. In such “disequilibrium” systems, inter-annual climatic variability, fire and 

herbivory limit germination, seedling survival and sapling growth and, thus, the transition to 

mature trees (Sankaran et al. 2004; Prior et al. 2009). However, the respective influence of 
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these disturbances and their interactions are not well understood due to the scarcity of field 

data and the complexity of the interactions. 

Multi-factorial experiments, taking fire and herbivores into account, have been 

emphasized as the only way to study the causes of woody encroachment (Ward 2005; Kraaij 

and Ward 2006) especially on seed and seedling stages which are a prerequisite for an 

increase in tree abundance and are very influential in the process of woody encroachment 

(Kraaij and Ward 2006). Herbivores are often studied for their grazing activities (Mbatha and 

Ward 2010) that drive competition between grass and trees (Kraaij and Ward 2006; Riginos 

2009; Goheen et al. 2010). However, herbivores can also affect tree dynamics through their 

effects on seeds: seed transit via large mammals and seed deposition in dung may indeed 

enhance seed germination and survival and subsequent recruitment (Halevy 1974; Miller and 

Coe 1993; Andresen 2001; Or and Ward 2003; Bodmer and Ward 2006). To better understand 

and clarify the mechanisms involved, we studied the encroaching Acacia sieberiana seedling 

establishment, a tree that is common in subhumid grasslands in KwaZulu-Natal (South 

Africa). Our study manipulates passage through animals (hereafter called Transit), presence 

or absence of animal faeces (Dung), competition with grasses (Grass), Fire and tests their 

effects on seed germination, seedling growth and mortality. 

 

2. Materials and methods 

2.1 Study site 

The study site is located in a commercial grassland 8 km south-east of Bergville (28º 

47' 14" S; 29º 22' 38" E) and is included in the Tugela basin (30,000 km²). The altitude of the 

site is 1235 m and is representative of the grassland biome present in the KwaZulu-Natal 

Drakensberg foothills. The vegetation of the site belongs more specifically to the Northern 

KwaZulu-Natal moist grassland (Mucina and Rutherford 2006). The climate is subhumid 

subtropical with four seasons and a rainy summer (October–April). The mean annual 

precipitation calculated for the last 65 years is 745 mm. The mean annual temperature is 13 

°C (Schulze et al. 1997). Potential evaporation is between 1600 mm and 2000 mm (Guy and 

Smith 1995). Encroachment by Acacia sieberiana var. woodii (Burtt Davy) Keay & Brenan is 

observed in the valley, especially in the adjacent communal grassland. The main grass species 

on the site were Hyparrhenia hirta (L.) Stapf, Cymbopogon excavatus (Hochst.) Stapf ex 

Burtt Davy, Eragrotis curvula (Schrad.) Nees, Eragrotis plana Nees and Sporobolus 

africanus (Poir.) Robyns & Tournay. The general soil type is a luvisol (World Reference Base 

1998) with two well-delimited main horizons. This grassland is exclusively grazed by cattle. 
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2.2 Experimental design in the field 

Two identical large fenced plots 20 m by 20 m were installed in the grassland, one on 

an area burnt every year for at least 12 years (burnt plot) and the other on an area not burnt for 

at least 5 years (unburnt plot). These plots were 20 m apart. This constitutes our first 

treatment (1) Fire vs. No-Fire. Within each large plot, three other treatments were studied 

according to a completely-crossed randomized block design with three replicates per 

treatment: (2) Grass vs. No-Grass; (3) Dung vs. No-Dung; (4) Transit seeds vs. No-Transit. 

The three other treatments applied in this study were as follows: 

Grass vs. No-Grass  

Absence of grass simulates an indirect effect of grazing. Twenty four plots were cut 

manually before planting and then every month to keep the grass as short as possible during 

the experiment. Attention was made to conserve all seedlings and cut the grass around them.  

Dung vs. No-Dung  

Dung collected from the Ukulinga research farm of the University of KwaZulu-Natal 

in Pietermaritzburg were used to ensure the absence of A. sieberiana in the dung as the study 

area was not previously encroached. We applied 60 cm3 of fresh dung on each seed in 24 

plots just after planting to simulate the effect of dung on a seed just after transit.  

Transit vs. No-Transit  

Transit seeds were collected in the adjacent grassland encroached by A. sieberiana in 

an area where cattle rest and deposit dung. Molar teeth marks observed on seeds confirmed 

that all seeds were ingested by cattle. No-Transit seeds were collected in the same grassland 

directly from pods that were lying on the ground under trees (to ensure maturity of seeds). 

Pods were opened and seeds were removed. All Transit and No-Transit seeds were sorted in 

the laboratory to exclude seeds that were either infested by bruchid beetles, germinated or 

mechanically damaged. As both types of seeds were harvested in June 2009, once sorted, they 

were kept in the refrigerator until planting in October 2009. Viability tests of sub-samples 

(150 Transit seeds and 150 No-Transit seeds) were conducted in the laboratory. After clipping 

of one extremity, seeds were cultivated in petri dishes on agar gel at 25 °C for 10 days.  

Taken together, this experimental design comprised 48 plots (24 burnt, 24 not burnt 

with three replicates of each treatment combination). Each of the 48 plots was 1 m by 2 m in 

size. All plots were separated from each other by a 1 m-wide buffer zone. Seeds were planted 

10 cm apart in parallel lines at 1 cm depth in the soil and covered by soil (or dung if it was a 

Dung treatment plot). One hundred and sixty seeds were planted per plot, making a total of 

7680 seeds. 

 

2.3 Monitoring of field experiment 

The field experiment lasted for one year. All seeds were monitored every week at the 

beginning of the experiment and then every month to record germinated seeds, seedling 
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heights, and mortality until June 2010. An extra record was achieved in November 2010 at the 

beginning of the wet season to assess seed germination and seedling growth after the dry 

season and one burning event in burnt plots.  

Due to potential soil surface differences between burnt plots and unburnt plots, we 

described soil surface features of the 48 plots. Expert judgment visually estimated in February 

2010 the percentage cover of the main features including soil crust, vegetation cover, micro-

aggregates and undecomposed dung (usually dry dung), based on the classification of 

Valentin and Bresson (1992).  

 

2.4 Shadehouse experiment 

We set up an experiment in the more controlled environment of a shadehouse for two 

years to test for the effect of dung and transit on seed germination. We tested the Dung factor 

(as discussed for the field experiment) and a Seed factor with three treatments on A. 

sieberiana seed germination: Transit (seeds were ingested and had passed through the cow’s 

rumen), Acid (seeds were soaked in 1 M sulphuric acid solution for 60 min to make the seed 

coat water-permeable (Brown 1965)), Control (no specific treatment was used). Two 

thousand seeds were planted, consisting of 700 Acid seeds, 450 Transit seeds and 850 Control 

seeds, (half of each treatment planted in dung). Seeds were collected in June 2008 (one year 

prior to the seeds being collected for the field experiment) on the same grassland encroached 

by A. sieberiana. Control and Acid seeds were harvested as described above for the field 

experiment. Transit seeds came from pods collected on the ground and given to cattle from 

Ukulinga research farm, University of KwaZulu-Natal, Pietermaritzburg, South Africa. Cattle 

weighed between 250-300 kg. Seeds were harvested from their dung five to eight days after 

ingestion. All seeds were separated in the laboratory to exclude bruchid-infested seeds and 

damaged seeds. Planting was done at the beginning of the wet season in 2008 in pots of 5 cm 

diameter (two seeds per pot) and filled with disturbed soil collected in the studied grassland 

from the first 10 cm and sieved at 4 mm to exclude all A. sieberiana seeds. Daily watering 

was conducted during the wet season (October to April) with complete cessation of watering 

during the dry season (May to September). Seeds were followed weekly during the wet 

season. The number of germinated seeds and dead seedlings were recorded for two years. 

 

2.5 Statistical analyses 

All statistical analyses were done with R version 2.12.1 (R Development Core Team 

2010). The effect of the four treatments on the probability of seeds germination, seedlings 

mortality and seedlings survival (germination minus mortality) was analyzed at the end of the 

first growing season (June 2010) and after the dry season (November 2010) by Nested 
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ANOVA with a mixed effects model (binomial model for binary response variables) with a 

random term for plots nested within Fire (large plots).  

Effects of the four treatments on maximal height reached by A. sieberiana seedlings in 

the field during the growing season and on height of seedlings after the dry season were 

analyzed by nested ANOVA (GLIM) with a random term for plots nested within Fire (large 

plots). However both variables had non-normal residuals and heterogeneity of variance. 

Consequently, height after the dry season was Box-Cox transformed (λ=0.44). No 

transformation worked on maximal heights so we used Kruskal-Wallis non-parametric tests 

for this variable. Due to the nesting of treatments within the Fire treatment, we first tested for 

the Fire effect with a non-parametric Kruskal-Wallis test and then tested the three other 

factors separately for each large plot (Fire and No-Fire) with further Kruskal-Wallis tests. For 

the same reason, Kruskal-Wallis non-parametric tests were applied to test for the effect of 

Fire on soil variables due to non-normal residuals and heterogeneity of variance even after 

appropriate transformations. 

The effects of “Dung’’ and “Seeds” factors on the probability of germination in the 

shadehouse at the end of each year were tested by two-way ANOVA with a generalized linear 

binary model. A post hoc χ2 test was used to test for each treatment of the factor Seeds. 
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3. Results 

3.1 Field experiment 

The viability test for Transit seeds of A. sieberiana was significantly higher than for 

No-Transit seeds, with 98.7% and 79% germination, respectively (X2 =17.5, p=<0.001).  

Percentage of structural crusts (Fire: 26.3 ±15.9 %, No-fire: 3.9 ±6.1 %) and 

percentage of vegetation cover (Fire: 67.6 ±11.9 %, No-fire: 92.6 ±7.4 %) were significantly 

different between Fire and No-Fire. The percentage of crusts was significantly higher in Fire 

plots (obs. dif.=19.91, critical dif. =7.92) while vegetation cover was lower in Fire plots (obs. 

dif.=22.5, critical dif.=7.92). Percentage of dung (Fire: 4.3 ±4.7 %, No-fire: 1.0 ±1.5 %) and 

of soil micro aggregates (Fire: 1.7 ±3.2 %, No-fire: 2.5 ±3.5 %) did not differ significantly. 

3.1.1 Rainfall effects and seasonal changes in germination and mortality for 

2009-2010 

From the beginning of the experiment (15th October, week 1) to the survey in April 

(after 22 weeks), rainfall increased regularly except between the 14th and the 18th weeks, 

where the rainfall amount stayed almost constant. Thereafter, and until the end of the growing 

season, rainfall decreased drastically to be close to zero in June 2010 in this summer rainfall 

area of the Southern Hemisphere. Over the growing season, germination of all treatments 

showed a similar tendency, with an important decrease at week 18 in February (Fig. 1). This 

event was associated with a high peak of seedling mortality during the same period (Fig. 2). 

This mortality peak for a single census represented 56% of the dead seedlings for the whole 

growing season (10 censuses in total). 

 

 
Figure 1. Change in the number of germinated Acacia sieberiana seeds over the growing 

season (from 15th October 2009 to 15th June 2010) for two treatments, Fire and Grass.  
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Figure 2. Change in mortality of Acacia sieberiana seedlings over the growing season (from 

15th October to 15th June 2010) for two treatments, Fire and Grass.  

 

3.1.2 Seed germination, seedling mortality, survival and heights during the first 

growing season (2009-2010) 

The mean germination for all treatments at the end of the growing season reached 

10.3 %; 78.1 % of those germinated seeds survived until June 2010. All four treatments 

significantly affected germination of A. sieberiana seeds over the season (Fig. 3). Fire 

increased germination by 3.6 % (z=-4.01, p<0.0001) while Grass (z=-6.63, p<0.0001), 

Transit (z=-6.22, p<0.0001) and Dung (z=3.28, p=0.001) decreased germination of A. 

sieberiana seeds by 9.4 %, 8 % and 4 %, respectively. One interaction was significant: 

GrassXTransit (z=2.72, p=0.006) showing that grass had a stronger (negative) impact on 

germination for Transit seeds, decreasing germination by 76.4 % (relative to the No-Grass 

treatment) versus by 55.9 % for No-Transit seeds.  

Seedling mortality during the first growing season was significantly affected by Fire 

(z=-2.9, p=0.003) and Transit treatments (z=-2.73, p=0.006). Fire increased mortality by 

11.1 % while Transit decreased mortality by 5.3 %. Three nested factors were significant 

(Fig. 4): Fire{Grass} (z=-2.5, p=0.012), Fire{Transit} (z=2.76, p=0.005) and Fire{Dung} 

(z=2.28, p=0.022). Grass significantly increased mortality but only in unburnt plots while 

Transit significantly decreased mortality only in burnt plots and Dung significantly decreased 

mortality only in unburnt plots (Fig. 4).  

Seedling survival (= germination – seedling mortality) was not significantly affected 

by Fire, while Grass (z=7.17, p=<0.001), Transit (z=-4.15, p=<0.001) and Dung (z=3.69, 

p=<0.001) significantly decreased survival. The nested Fire{Transit} effect was significant 

(z=-4.24, p=0.002) and showed that Transit decreased seedling survival more in unburnt plots 

(from 5.54 % of survival for No-Transit seeds to 1.61 % for Transit seeds) than in burnt plots 
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(from 5.39 % of survival for No-Transit seeds to 3.51 % for Transit seeds). The 

TransitXGrass interaction was also significant (z=2.40, p=0.016) and showed that Grass 

decreased seedling survival more for No-Transit seeds (from 7.91 % for No-Grass to 3.02 % 

for Grass) than for Transit seeds (from 4.22 % for No-Grass to 0.91 % for Grass). 

Seedling height was affected by three of the four factors (Fig. 5). Fire (χ2=16.64, 

p<0.001) and Transit (F-T: χ2=27.12, p<0.001; NF-T: χ2=5.00, p=0.025) significantly 

decreased seedling height (Fire= 11.59 ±5.00 cm, No-fire= 13.71 ±6.48 cm, Transit= 10.62 

±5.31 cm, No-transit= 13.47 ±5.84 cm) while Grass (F-G: χ2=22.88, p<0.001; NF-G: 

χ2=52.28, p<0.001) had the opposite effect (Grass= 15.58 ±6.33 cm, No-grass= 11.46 

±5.22 cm). 

 

 

Figure 3. Comparison of A. sieberiana seed germination among the four treatments for the 

first growing season. All treatments had significant effects. F=fire, NF=no fire, G=grass, 

NG=no grass, T=transit, NT=no transit, D=dung, ND=no dung. 
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Figure 4. Comparison of A. sieberiana seedling mortality among the four treatments for the 

first growing season. G=grass, NG=no grass, T=transit, NT=no transit, D=dung, ND=no 

dung. Stars indicate significant differences. 
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Figure 5. Box and whiskers comparison of median maximal heights of A. sieberiana 

seedlings among the treatments during the first growing season (until June 2010). F=fire, 

NF=no fire, G=grass, NG=no grass, T=transit, NT=no transit, D=dung, ND=no dung. 

Different letters indicate significant differences. 
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3.1.3 Seed recruitment after the dry season (November 2010) 

In November 2010, after one dry season and a fire (only in the burnt plots), only 16 

seeds had germinated (since June 2010) out of ungerminated 7070 seeds. There was no 

significant effect of treatment due to the low number of germinated seeds. Thus, results for 

mortality and survival were very similar. We only present results for seedling survival (Fig. 6 

and 7). After the dry season, 40.6 % of the seedlings that were still alive at the end of the 

preceding year survived on average for all treatments. All four treatments significantly 

negatively affected the survival of these seedlings (Fire: z=-5.19, p=<0.001, Grass: z=-3.86, 

p=<0.001, Transit: z=-2.14, p=0.032, Dung: z=-2.34, p=0.018) (Fig. 7). The most important 

result showed in Fig. 6 is the highest survival value for the control treatment (No-Fire, No-

Grass, No-Transit, No-Dung). The significant Fire{Grass} nested factor (z=2.71, p=0.006) 

showed that the presence of grass had a greater negative effect on seedling survival in burnt 

plots (decrease by 29.6 %) than in unburnt plots (decrease by 13.1 %). The significant 

TransitXGrass interaction (z=2.1, p=0.035) showed that grass decreased survival more for 

No-Transit seeds (by 31.7 %) than for Transit seeds (by 7 %).  

Fire significantly affected the height of seedlings after the dry season. Fire was the 

only factor that was significant (F=13.46, p=0.001) and decreased the mean heights from 7.8 

±5.3 cm to 5.8 ±3.8 cm. The nested Fire{Grass} factor was also significant (F=8.25, p=0.007) 

and showed that the presence of grass in burnt plots decreased the mean height of seedlings 

from 5.9 ±3.8 cm to 3.3 ±3.2 cm while grass in unburnt plots increased seedlings’ mean 

height from 7.3 ±5 cm to 9.7 ±5.9 cm. 
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Figure 6. Comparison of A. sieberiana survival among the four treatments after the dry 

season in November 2010. All treatments had significant effects. F=fire, NF=no fire, G=grass, 

NG=no grass, T=transit, NT=no transit, D=dung, ND=no dung. 

 

 

 

 
Figure 7. Comparison of Acacia sieberiana survival among the four treatments after one dry 

season in November 2010. All treatments were significant and are thus displayed. F=fire, 

NF=no fire, G=grass, NG=no grass, T=transit, NT=no transit, D=dung, ND=no dung. 
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3.2 Shadehouse experiment 

The % germination during the first year of experiments reached 13.1 % on average for 

all treatments. Transit seeds were significantly different from Control seeds and Acid seeds 

(z=9.85, p<0.0001) (Fig. 8A). Transit seeds germinated more than other seeds. Surprisingly, 

Acid-treated seeds did not differ from Control seeds (p=0.9). The SeedsXDung interaction 

was significant (z=-1.97, p=0.045) and showed that dung presence significantly increased the 

germination of Transit seeds only. 

In the second year, germination was higher than during the first year: 29.2 % of seeds 

germinated on average for all treatments. For the two years of survey, 42.4 % of A. sieberiana 

seeds germinated. In the second year, Dung decreased germination (z=5.72, p<0.0001). The 

Seeds treatment was also significant (z=5.73, p<0.0001) and can be better understood 

considering the significant SeedsXDung interaction (Fig. 8B): Acid and Transit seeds 

germinated significantly more than Control seeds. However, the addition of Dung decreased 

germination of Acid seeds and Control seeds but Dung did not significantly decrease 

germination of Transit seeds. 
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Figure 8. A) Cumulative % of germination of A. sieberiana seeds in the shadehouse in 2008-

2009. B) Cumulative % of germination of A. sieberiana seeds in the shadehouse in 2009-

2010. Treatments indicated in caption. 
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4. Discussion 

4.1 General trends 

A. sieberiana has been reported to germinate in the field with rates between 19 to 

30 % without and with fire treatment, respectively (Mucunguzi and Oryem-Origa 1996). At 

the end of the growing season, our mean percentage of germination was slightly lower than 

those reported above but was similar for the field experiment (10.3 %) and the shadehouse 

experiment (13.1 %). As seed viability was good (98.7 % for Transit seeds and 79 % for No-

Transit seeds), we can attribute these lower values to rainfall frequency and distribution that 

has been showed to particularly influence Acacia germination (Wilson and Witkowski 1998; 

Rohner and Ward 1999; Kraaij and Ward 2006). The low germination and the high mortality 

observed in week 18 was probably linked to the low frequency of rainfall associated with high 

temperatures (peak of summer season) when seedlings needed more water to develop. 

 

4.2 Effects on A. sieberiana germination 

The acid in the digestive tracts of cattle attacks seed coats and favors germination 

(Rohner and Ward 1997). This explained the higher germination for Transit seeds than No-

Transit seeds in the shadehouse. Results from the field experiments lead to the opposite result. 

The test for seed viability in the field experiment (higher viability for Transit seeds than No-

Transit seeds) should have favored higher germination for Transit seeds as in the shadehouse. 

Viability test differences may be explained by the fact that digested seeds that are infected by 

bruchid beetles are weakened by tunnelling larvae (Coe and Coe 1987; Or and Ward 2002). 

Thus, only non-infested seeds were harvested from dung and were more viable (Coe and Coe 

1987; Ernst et al. 1989; Mduma et al. 2007). When clipping the seeds for viability tests, we 

observed a large difference in the hardness of seed coats. Transit seeds were much harder than 

No-Transit seeds. It has been shown that hardness of seed coats limits germination (Miller and 

Coe 1993). However, this does not explain why Transit seeds for the field experiment were 

harder, because we would expect the opposite to be the case due to the attack of seeds by 

rumen acid. Coe and Coe (1987) indicated that Acacia seeds do not always show a damaged 

coat (palisade layer) after transit. Seeds for the shadehouse experiment were directly collected 

from fresh dung on the farm whereas seeds for the field experiment were collected on the 

ground in the field. These last-mentioned seeds stayed on the ground between one to three 

weeks before collection. During that time they were trampled by cattle and dried by the sun. 

We selected 4,000 of them which were not damaged. Seeds passed through the high shearing 

forces of molar teeth, passed through digestive acid fluid and passed through cattle trampling. 

This last stage might have deteriorated the condition of seeds which were scarified by acid 

fluid and/or crushed by molar teeth. This process inevitably resulted in the selection of the 

hardest seeds.  
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The Acid treatment in the shadehouse led to a similar germination rate as the control 

treatment in the first year, indicating that the acid solution might not have been strong enough 

to attack seed coats. However, in the second year, the Acid treatment showed the highest 

germination. This means that the seed coat had been damaged enough to reduce seed 

dormancy, but not enough to allow germination in the first year. One year in the soil, affected 

by water and heat, was necessary to complete the breakage of the seed coat. 

Transit seeds in the shadehouse were affected by Dung treatment. The germination of 

first year Transit seeds increased with Dung. With continuous watering during the first year, 

dung may favor a humid and warm environment, which is better for seed germination 

(Coughenour and Delting 1986; Mwalyosi 1990). Seed germination would be favored if their 

coats were damaged, especially in contact with soil-dung moisture, which was the case for 

Transit seeds. In the second year, dung limited germination of Control and Acid treatments 

although dung also did not significantly alter germination of Transit seeds. The 

decomposition of dung in the ground is usually assisted by dung beetles (Brown et al. 2010), 

ants, termites or other insects (Piñero and Avila 2004). The shadehouse excluded all of them 

so that dung decomposition was slowed. Due to the absence of watering during the dry 

season, dung turned into a hard, dry, waterproof layer at the soil surface (Coe and Coe 1987; 

pers. obs.). Hard layers are physical barriers to germination and explain why dung decreased 

germination in the second year.  

In the field, Grass and Dung decreased germination while Fire increased germination. 

Grass and Acacia seeds compete for the same resources, viz. space, light, water and nutrients 

(Wilson 1988). At the seed stage, Acacia could be disadvantaged by germinating among grass 

(Cramer et al. 2007) due to reduced space (Coffin and Lauenroth 1990), as well as lower 

water and light availability (Bush and Van Auken 1995; Jeltsch et al. 1996). As Transit seeds 

were harder than No-transit seeds, competition with grass may be stronger, which explained 

that grass decreased germination more for Transit seeds than No-transit seeds. In the field, in 

the presence of decomposers (unlike the shadehouse), dung should be decomposed and 

nutrients quickly incorporated into the soil (Guillard 1967; Edwards and Aschenborn 1987). 

However, dung decomposition was not complete as we observed dry dung patches on the 

plots after a few months. As in the shadehouse, dry dung may limit seed germination due to 

the hard dung layer (Coe and Coe 1987) favored in the dry season when pods are available.  

The positive effect of fire on germination is consistent with other studies (Du Toit 

1972; Trollope 1980) but is not due to the direct effect of heat on breaking the seed coat 

(Babalwa and Witkowski 1997) because, in our experiment, seeds were planted after the fire. 

Germination on burnt plots may increase due to less dense grass cover, reducing the 

competition between grass and seeds for space, water (O’Connor 1995) and light (Campbell 

and Clarke 2006), which has been shown to increase germination.  
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4.3 Effects on A. sieberiana seedling mortality 

For the first growing season, Fire increased mortality. Again, this result does not come 

from the direct effect of fire on seedlings (see above). However, annual fires for 12 years 

induced higher structural crust percentages on the soil surface, as was also found by Hilty et 

al. (2003). Crusts are known to increase runoff and limit water infiltration (Casenave and 

Valentin 1992; Podwojewski et al. 2011). Thus, seedlings would have less water accessible 

and mortality may ensue. 

The dense vegetation cover in unburnt plots reduced soil detachment by dissipating the 

kinetic energy of raindrops. Thus, lower crust percentages occurred and allowed higher water 

infiltration and soil moisture (Neave and Rayburg 2007; Podwojewski et al. 2011). However, 

on vegetated plots, grass significantly increased mortality. We can attribute this result to 

above-ground light competition created by the dense vegetation cover (Kanz 2001; Campbell 

and Clarke 2006) and to competition for water as the seedlings grow through the grass roots. 

The two layer hypothesis proposed by Walter (1971) is thus not appropriate here when 

considering the seedling stage because grass and Acacia seedling roots share the same layers 

and compete for water and nutrients.  

Dung, acting as a nutrient input (Guillard 1967; Edwards and Aschenborn 1987), 

decreased mortality in unburnt plots only. This result suggests that water availability was high 

enough to allow limitation by nutrients, unlike in burnt plots where water availability was the 

major constraint. 

Transit seedlings had a lower mortality on burnt plots only where water was the main 

limitation. This indicates that seedlings emerging from Transit seeds may survive better with 

less water, linking seed quality (higher viability, harder coat) with seedling resistance. High 

quality seeds may have a positive impact until the seedling stage. 

 

4.4 Effects on A. sieberiana seedling survival 

The effect of Fire on survival after the first growing season was not significant, 

indicating that the positive effect on germination was suppressed by the negative effect on 

mortality. This result did not take into account the direct effect of fire in November 2010, 

which significantly decreased seedling survival. The heat and intensity of fire-killed seedlings 

has been commonly recorded (e.g. Trollope 1984; Roques et al. 2001). 

Grass, Transit and Dung had the same negative effects on seedling survival in the first 

growing period and after the dry season. For the first growing season, Grass had the strongest 

negative effect on survival, consistent with the results of Ward and Esler (2010) and is a 

consequence of the germination decrease and the mortality increase with Grass competition. 

No-Transit seedlings were more affected by the negative Grass effect in the first growing 

season and in November 2010 probably due to the reduced ability to compete (see explanation 

above). The lower germination of Transit seeds accentuated by grass competition overrides 
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the reduced mortality of Transit seeds and resulted in lower survival of Transit seeds, 

especially in unburnt plots where grass cover was denser. In November, after the dry season, 

Grass competition decreased survival more in burnt plots than in unburnt plots, because of 

greater competition for water due to the negative effect of structural crusts on infiltration and 

run-off.  

Even if Transit and Dung decreased mortality during the growing season, this effect 

was suppressed by the strong negative effect of Transit and Dung on germination. 

Surprisingly, the control (No-Dung) had the greatest survival percentage after the dry season 

(Fig. 6) when there was no competition with grass and No-Transit, regardless of whether there 

was fire or not. This indicates that the main positive effect of livestock will be to disperse 

seeds away from the mother tree rather than the passage through the animal’s gut per se. This 

favors spreading of seeds in the grassland where competition with adult trees is reduced 

(Miriti 2006; Kambatuku et al. 2011). 

 

4.5 Effects on A. sieberiana height 

The decrease in seedling height with fire during the first growing season (indirect 

effect) is consistent with the decrease of seedling mortality explained above. The direct effect 

of fire observed in November 2010 decreased seedling height as well. Seedling height was 

directly affected by heat (Trollope 1984; Roques et al. 2001) which reduced leaf quantity by 

burning and reduced post-fire regrowth.  

Contrastingly, Grass increased seedling height for the first growing season. Other 

studies usually mentioned a decrease in size or biomass of seedlings with grass due to 

competition for water and nutrients (Wilson 1988; Kraaij and Ward 2006). Facilitation by 

grass could explain the results. Grass acts as a protection against high solar exposure of the 

day, maintaining higher soil water content (Callaway and Walker 1997). However, the 

negative results of grass on germination and mortality indicates that competition for light is 

more likely to happen than facilitation. Competition for light has been shown to be very 

influential when adequate water and nutrients are available (Wilson 1988). In the presence of 

grass, light can be a limiting factor and induce etiolation of seedlings, resulting in an increase 

of size (O’Connor 1995). 

 

5. Conclusions 

The results obtained in this study showed that even in a subhumid grassland (MAP = 

745 mm), rainfall frequency was an important parameter controlling germination and 

mortality of A. sieberiana. Several days without rainfall during the growing season are critical 

to seedling establishment in the first year. After the first year, seedlings are strong enough to 

survive the dry season (Ward 2005). Years with frequent rainfall will thus promote higher 
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seedling establishment than drier years. As fire has a direct negative effect on young 

seedlings, fire could be used especially at the end of high or frequent rainfall periods to limit 

tree establishment. However, the frequent use of fire can limit water infiltration and grass 

cover, which then increases seedling survival.  

Grass competition was the main factor affecting seedling recruitment. Cattle, by 

reducing grass biomass promote a higher recruitment of A. sieberiana. Similarly, fire reduces 

grass biomass. In a controlled environment, cattle induced a higher germination of A. 

sieberiana through the combined effect of transit and dung. Similar results were obtained by 

Halevy (1974), Rohner and Ward (1999), and Bodmer and Ward (2006). Indeed, Bodmer and 

Ward (2006) have shown that the larger the animal ingesting the seeds, the higher the 

likelihood of germination. These results were all obtained under highly controlled conditions. 

However, in the field, the effects were opposite and the main role of cattle may be to 

disseminate the seeds from the mother tree. Effects of cattle are however much more complex 

and interactive with other factors (such as trampling and grazing of seedlings, bruchid beetle 

attacks on non-ingested seeds, and indirect effects of nutrient addition in dung). Further 

research is needed to understand the direct and indirect effects of livestock on tree 

encroachment. 
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Abstract 

 

Processes linked to woody plant encroachment in grasslands are still not understood, 

especially the interaction between trees and water which is one of the main drivers of 

encroachment. We studied the depth of water uptake of Acacia sieberiana of different size 

classes in a subhumid mountainous grassland of KwaZulu-Natal (South Africa). Water 

potential measurements of acacia leaves at predawn and midday were done to assess the water 

stress of acacias during the year. Soil samples, up to 2 m depth, and sap flow of acacias were 

analyzed for water isotopes (δ18O) along a catena in the dry and the wet seasons. Seasons, size 

classes of acacias as well as position in the catena did influence water potential and δ
18O 

values. Acacias were the least water stressed in September (end of the dry season-beginning 

of the wet season). Smaller acacias (>1 m height) were less water stressed than taller acacias 

(> 1 m height) which were more water demanding. Small acacias switched the dominant zone 

of water uptake depth from the dry to the wet season between the first 40 cm depth to deeper 

layers, avoiding a possible competition with grass in the wet season. Taller acacias 

exclusively used water sources >1 m depth except in the upper part of the catena, where the 

shallow water contribution by these trees was higher. Soil depth and hydraulic characteristics 

induced an adaptation of acacias for water uptake, which differs according to water 

availability (seasons) and size of acacias. These adaptations could favor encroachment in the 

long term.  
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1. Introduction 

Woody plant encroachment is a world-wide phenomenon which can have important 

consequences on grassland properties (Grellier et al. submitted 1), soil erosion (Grellier et al. 

submitted 2), or tree-grass (i.e. savanna) systems (Walter 1971, Casper 1997, Eggemeyer et 

al. 2008) but also on off-site effects by decreasing stream water (Wilcox 2002, Huxman et al. 

2005). Identifying the depth of water uptake by trees in such grasslands is essential to 

understand where trees will have the strongest impact in the subsurface soil compartments 

(McCole et al. 2007). Water availability can determine species dynamics (West et al. 2007), 

and is part of the larger research question on tree-grass interaction in grassland which is 

actively being debated (Kraaij and Ward 2006, Van Auken 2009, Grellier et al. submitted 3). 

Due to the dimorphic architecture of Acacia tree roots, with many shallow horizontal roots 

and a strong deep tap root (Fig. 1), this tree could potentially draw water from near-surface 

and deeper horizons (Schenk and Jackson 2002). Contrastingly, most grass roots have been 

found to be shallow (>75 % in the first 10 cm), (Weaver 1958). Even if they can penetrate 

deeper, sometimes as much as to 2 m depth (Weaver 1958), grass roots are mostly found in 

the first 30 cm (Snyman et al. 2009, February and Higgins 2010). If trees only use water from 

the upper layers (first 50 cm) through their shallow roots, they would compete with grass for 

water and grass should be favored (Belsky 1994, Daly et al. 2000). The two layer model of 

Walter (1971) states that trees, using deeper layers are disadvantaged compared to grass, 

because the grass uses the water in the uppermost layer and consequently the water is 

unavailable for extraction by trees from the deeper horizons.  This is in contrast to naturally 

occuring hydrological soil processes, especially in duplex soils (Cox and McFarlane 1995) 

where deeper layers may be more humid than surface layers, particularly in the dry season. In 

this case, and because trees using deeper layers could have access to other water sources 

(ground water), they should be able to survive better than grass during dry periods.  

We cannot easily determine the depth of water uptake from root architecture, partly 

because root presence does not necessarily imply water uptake (Ehleringer and Dawson 

1992), and because of dimorphic tree root structures (viz. in the uppermost and deeper layers). 

Thus, methodologies such as those which include the use of stable isotopes have been 

developed to determine the water uptake depth of plants (Midwood et al. 1998, Boujamlaoui 

et al. 2005, Eggemeyer et al. 2008, Sher et al. 2010, Reinsch et al. in press). The ratios of the 

natural stable isotopes of hydrogen and oxygen in water and particularly the changes to these 

ratios (fractionation), can be used in this context.  Fractionation is the modification of the ratio 

between two isotopes, for example 2H/1H and is mainly driven by two processes: 1) 

evaporation of soil water during which the lighter isotope is lost more rapidly than the heavier 

isotope. This creates a decreasing isotopic gradient from the surface to deeper layers, and 2) 

precipitations which has a specific signature depending on the climate (Gat 1996) and which 

can modify the soil water isotopic composition by mixing with soil water.  Because 

fractionation is not modified during water uptake by vegetation, (Dawson et al. 2002), tree 
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stem (xylem) water has the same isotopic signature as the so

time.  

Figure 1. View of an Acacia sieberiana

numerous lateral roots in the shallow soil and the strong 

layers. 

 

In this study, we sampled the soil and tree stems, 

composition of the water extracted in order to determine 1) whether trees vary the depth of 

water uptake during two distinct seasons (September 2009 and February 2010) and 2) whether 

the size and the position of trees in the mountainous landscape of the studied grassland, 

influences water uptake. We 

extraction from shallow horizons due to their shorter roots, while taller trees should be

draw water from both shallow and deeper horizons. 

study presented in previous chapter

associated with heterogeneity of soil water avai

 

stem (xylem) water has the same isotopic signature as the soil water at the uptake depth and 

Acacia sieberiana on the bank of a gully showing its roots system with 

numerous lateral roots in the shallow soil and the strong tap root disappearing into the deeper 

e sampled the soil and tree stems, and analyzed the isotopic 

composition of the water extracted in order to determine 1) whether trees vary the depth of 

water uptake during two distinct seasons (September 2009 and February 2010) and 2) whether 

the position of trees in the mountainous landscape of the studied grassland, 

influences water uptake. We hypothesize that smaller trees should be restricted to water 

extraction from shallow horizons due to their shorter roots, while taller trees should be

draw water from both shallow and deeper horizons. Following the subsurface investigation 

in previous chapter, spatial heterogeneity of soil properties (clay content) 

associated with heterogeneity of soil water availability may modify tree uptake

© J.L. Janeau
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il water at the uptake depth and 

 
on the bank of a gully showing its roots system with 

disappearing into the deeper 

analyzed the isotopic 

composition of the water extracted in order to determine 1) whether trees vary the depth of 

water uptake during two distinct seasons (September 2009 and February 2010) and 2) whether 

the position of trees in the mountainous landscape of the studied grassland, 

that smaller trees should be restricted to water 

extraction from shallow horizons due to their shorter roots, while taller trees should be able to 

surface investigation 

spatial heterogeneity of soil properties (clay content) 

fy tree uptake-water depth.  

L. Janeau 



 

Chapitre 4. II  131 

Because water availability and thus plant water stress can also influence the depth of 

water uptake by trees (McCole et al. 2007, Eggemeyer et al. 2008), we also measured the 

water potential of acacia leaves. This water potential, being a consequence of the soil-plant-

atmospheric continuum is a quick measure of the combined plant and soil water status 

(Kramer and Boyer 1995, Gebrekirstos et al. 2006).  

 

2. Materials and methods 

2.1 Description of the study site 

This study was conducted in the communal grassland of the Potshini village (8km 

south-east of Bergville) (28º 48' 37" S; 29º 21' 19" E), Kwazulu-Natal province, South Africa. 

The altitude is between 1217 m and 1452 m. The surface area of the watershed is 2.5 km2. 

The climate is subhumid, subtropical with two distinctive seasons: a rainy summer (October–

April) and dry winter (May-September). The mean annual precipitation is 745 mm. The 

average annual temperature is 13 °C (Schulze 1997). Potential evaporation is between 1600 

mm and 2000 mm (Guy and Smith 1995).  Rainfall (mm), air temperature (C°) and soil 

temperature (C°) at 5 cm depth are shown for the study period in Fig. 2. This site belongs to 

the Northern KwaZulu-Natal moist grassland biome (Mucina and Rutherford 2006). 

Encroachment by Acacia sieberiana var. woodii (Burtt Davy) Keay & Brenan is observed in 

the valley. Aerial photography of our site clearly confirms woody plant encroachment over 

the last 30 years (Grellier et al. submitted 2) and the encroached zone represented 9.45 % of 

the watershed area in 2009. 

 

 
Figure 2. Meteorological data at Potshini weather station during the study period from 

August 2009 to December 2010. Weekly air temperature (C°), weekly soil temperature (C°), 

and daily rainfall (mm) are displayed.  
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The geology of the site is characterized by fine-grained sandstones, shales, siltstone 

and mudstones of the Beaufort and Ecca Groups of the Karoo Supergroup that alternate in 

horizontal successions (King 2002). Unconsolidated colluvial deposits from the Pleistocene 

fill the valleys. These soils are very prone to linear erosion in gullies, locally called “dongas” 

(Botha 1994, Rienks et al. 2000). Dykes of dolerite from the Jurassic, from 1 - 8 m wide 

intrude through the parent rock (Mucina and Rutherford 2006). The general soil type of the 

bottom of the watershed is luvisol (World Reference Base 1998) with two well-delimited 

main horizons. The A horizon is coherent, with brown color (10YR 4/1 to 10YR 4/3) and 

20% clay, with many fine and medium roots. The Bt Horizon (up to 50% of clay) is dark 

brown, very coherent and hard with a coarse blocky structure. 

Four geomorphological and ecological areas can be distinguished along the catena 

from the upper zone of the watershed (1452 m a.s.l.) to the lower zone (1217 m a.s.l.), where 

a gully is located. The very steep upper zone of the catchment (slope = 29 ±4.5 degrees) is 

very rocky (horizontal sandstone blocks), comprises shallow soils and supports various grass 

species and Aloe ferox (Asphodeladeae). The second zone with steep slope (17.5 ±4.5 

degrees) and rocky areas (dolerites) has deeper soils and scattered A. sieberiana (12 acacias 

ha-1, mainly tall acacias). The third zone of the catena with a lower slope (9.7 ±2.5 degrees) 

has higher A. sieberiana density (31 acacias ha-1) than second zone with more medium-sized 

and small acacias. The fourth area, located at lower slope (5.9 ±1.4 degrees), has a similar soil 

depth  than the third area and a higher density of A. sieberiana (60 acacias ha-1) with many 

medium-sized and small acacias. 

 

2.2 Experimental design 

The study was carried out on three of the four geomorphological areas described 

above. The highest steep area was excluded as there were no acacia trees. The three other 

areas will be called upper, middle and lower zones according to their position in the 

landscape. Soil samples and acacia stems and leaves were collected in these three zones.  

2.2.1 Water potential measurements 

Water potential of fresh acacia leaves at predawn (3h30-5h00) and midday (11h30-

13h00) were measured during three field trips: in September 2009 (beginning of the wet 

season), February 2010 (middle of the wet season) and June 2010 (middle of the dry season). 

The meteorological data for each period are presented in Table 1. Three acacias of three 

different size classes (0.2 m <Small<1 m, 1 m<Medium<3 m and Tall> 3 m) were randomly 

selected in each zone. For each acacia, three terminal freshly cut shoots were used and water 

potential was measured by a Scholander type pressure chamber (Scholander et al. 1965). 
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Table 1. Meteorological data during each sampling period of water potential measurements. 

Season Time 

Air 

Temp 

(C°) 

Soil surface 

Temp 

(C°) 

RH % 
Solar Rad 

(down) 

Rain 

(mm) 

Sept 2009 
Predawn 11,9 ± 0,3 14,4 ± 0,3 93,5 ± 2,9 0,0 ± 0,0 0,2 

Midday 26,0 ± 2,4 18,9 ± 1,5 34,5 ± 10,4 581,9 ± 103,8 0,0 

February 

2010 

Predawn 16,6 ± 1,1 21,2 ± 0,7 95,9 ± 0,3 0,5 ± 0,8 0,4 

Midday 30.4 ± 3,1 24,7 ± 1,7 58,9 ± 12,5 595,1 ± 150,3 0,0 

June 2010 
Predawn 3,3 ± 1,7 9,2 ± 0,5 83,5 ± 1,8 0,4 ± 1,3 0,0 

Midday 18,2 ± 1,3 11,8 ± 0,6 36,4 ± 6,1 459,8 ± 10,8 0,0 

 

2.2.2 Isotope samples collection  

Soil and acacia stem samples were collected in September 2009 and in February 2010 

in the three zones (upper, middle and lower). The same acacias selected for water potential 

observation were selected for isotope analysis. Stem samples were collected with a manual 

corer at the base of the stem where isotopic mixing between roots and leaves is usually 

reduced. Each core (0.005 m diameter and 0.10-0.15 m length) was taken horizontally in the 

stem except for small acacias where a low branch was cut (0.10 m length). Wood heart and 

bark were excluded before placement in dark, capped glass bottles and stored at -25 °C until 

analyses. For each zone, soil samples were taken from two profiles under tall acacias (the 

same acacias as those selected for stem isotopes and water potential) and from two profiles 

outside the acacia canopy (open grassland). A manual metal corer (0.02 m diameter, 2 m 

length) was used to dig soil as deep as possible until an impenetrable hard layer was reached. 

Soil cores of 0.10 m, extracted every 0.10 m were placed immediately in dark capped glass 

bottles, weighed and stored at -25 °C until analysis. 

Rainfall samples were collected during the rainy season of 2009-2010. Samples were 

collected in sealed glass bottles connected to an automatic rain gauge during each rain event. 

Rainfall samples were stored in a refrigerator at 3 °C until analysis.  

 

2.3 Isotope analyses 

Water was extracted from soil and acacia stem in a cryogenic vacuum extraction line 

(Araguas-Araguas et al. 1995, West et al. 2006) and sealed in closed glass containers. The 

isotopic ratio of 18O/16O was determined using a mass spectrometer. The results were reported 

relative to VSMOW (Vienna Standard Mean Ocean Water, Gonfiantini 1978) according to the 

following formula: 
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smow-v
18

smow-v
18

sample
18

18

OR

)O R- O(R
 = Oδ   where R18Osample and R18Ov-smow are the 18O/16O ratios 

for the sample and the reference V-SMOW.  18O/16O and 1H/2H isotopic ratios of rainfall 

samples were analyzed using a Liquid-Water Isotope Laser Analyzer (Los Gatos Research 

(LGR), Inc., model DLT100), calibrated against known international standards, (LGR2 (δ
2H -

117.00, δ18O -15.55), VSMOW2 (IAEA) (δ2H 0.0, δ18O 0.0) and IA-RO53 (IAD) (δ2H -

61.97, δ18O -10.18). Results were also reported as delta values, expressed in parts per 

thousand. 

 

2.4 Data analysis 

2.4.1 Water potential 

Predawn and midday leaf water potential were studied separately as two response 

variables. The difference between respective predawn and midday values was also calculated 

and called the diurnal range which indicates the range of daily relaxation (Gebrekirstos et al. 

2006).  

2.4.2 Isotopes  

An empirical relationship exists between δ
18O and δ2H that we can call the meteoric 

water line. It was first determined by Craig (1961). A global meteoric water line has been 

determined from the Global Network for Isotopes in Precipitation (GNIP) in collaboration 

with the International Atomic Energy Agency (IAEA) and the World Meteorological 

Organization (WMO) with samples from more than 700 stations in the world. This equation 

commonly used for this relationship is: δ2H = 8 × δ18O +10. For each site, a local 

meteorological water line (LMWL) can also be determined. The comparison between the 

LMWL and the GMWL helps in understanding the precipitation pathways of a given region.  

Isotope signatures of tree stem (xylem) are often a mixing combination of different 

soil sources. In order to determine the depths of water tree uptake in the soil, mixing models 

can be used (Phillips and Gregg 2001, Dawson et al. 2002, Reinsch et al. in press). As we 

were measuring a duplex soil with two layers (A and B horizons) showing distinct isotopic 

signatures, a two sources model is appropriate for this area. The single isotope signature 

(δ18O) permitted the use of a two source mixing model described by Phillips and Gregg 

(2001). The two sources mixing model IsoError (Phillips and Gregg 2001, version 1.04) 

calculates estimates and confidence intervals (95 %) of source proportional contributions to a 

mixture using linear mixing models and a single isotopic variable.  
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2.4.3 Statistical analyses 

All statistical analyses were done in R version 2.11.1 free online software 

(http://www.R-project.org). The effect of Season (Sept 2009, Feb 2010, June 2010) on the 

diurnal range (difference between midday and predawn water potential) and the effect of 

Season and Time (Predawn, Midday) on the water potential of acacia leaves were evaluated 

using Kruskal-Wallis non-parametric test due to non-normality of residuals and heterogeneity 

of variances. As treatments were all significant (p < 0.05) we then analyzed the effect of Size 

(S1, S2, S3) and Zone (upper, middle and lower) for each season and time of day separately. 

We used nested ANOVA with mixed generalized linear models (GLIM) to take into account 

the spatial pseudoreplication of the three replicates taken for each tree. Trees were used as 

random factors. Normality of residuals and homogeneity of variances were tested for each 

model. Variables with non-normally distributed residuals or non-homogeneous variances 

were log-transformed, square root transformed or Box-Cox transformed. Post hoc t-tests with 

Bonferroni corrections were used to compare means between the significant factors. 

δ
18O for acacia stems was not normally distributed and there was heterogeneity of 

variances. We thus used the Kruskal-Wallis non-parametric test to study the effects of Season, 

Size and Zone on δ18O of acacia stems.  

 

3. Results 

3.1 Water potential 

The three sampling periods (September 2009, February 2010 and June 2010) matched 

1) the beginning of the wet season, 2) the middle of the wet season and 3) the middle of the 

dry season. Water potentials (ψ) of A. sieberiana leaves differed for each season (χ
2 =149.23, 

p<0.001), being the highest (less negative and lower stress) in September 2009 and lowest 

(more negative, higher stress) in June 2010. ψ also differed between predawn and midday 

(Sept 2009: χ2 =83.22, p<0.001, Feb 2010: χ2 =105.62, p<0.001, June 2010: χ2 =27.95, 

p<0.001) being generally higher at predawn. We thus presented data for each season and each 

time period, the effect of tree size (Tsize) and Zone on water potential of acacia leaves (Table 

2). The size of acacias had a significant effect (small acacias being less water stress than 

medium and tall acacias) in September 2009 and in February 2010 but not in June 2010 (Fig. 

3). Zone was significant for all predawn leaf water potentials and for midday leaf water 

potentials in June 2010. The interaction Tsize X Zone was significant for predawn water 

potential in Sept 2009 and February 2010.  
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Table 2. Nested ANOVA results (F values and df) of mixed linear models applied on 

diurnal range and water potential (WP) of A. sieberiana leaves during the three study periods 

and for predawn and midday measurements. * indicates significant p values. Each model was 

simplified so some F values cannot be displayed (-). Three-way interaction was not significant 

and is thus omitted. 

 
Factors Tree Size Zone Tree Size X Zone 

Sept 2009 

df 24 24 24 
Predawn WP 28.35*** 23.74*** 4.52* 

df 36 
  

Midday WP 8.80*** - - 
Diurnal range - - - 

Feb 2010 

df 28 28 28 
Predawn WP 8.98** 5.32* 13.2*** 

df 34 
  

Midday WP 40.86*** - - 
df 28 

 
28 

Diurnal range 22.77*** - 3.82** 

June 2010 

df 
 

31 
 

Predawn WP - 16.28*** - 
df 

 
30 

 
Midday WP - 33.34*** - 

df 
 

30 
 

Diurnal range - 40.55*** - 
 

The results of June 2010 differed from the others, particularly for the middle zone of 

the catena which present extreme low midday water potential and extreme high predawn 

water potential. This may be due to manipulation error during the measurements and 

connection problems between the Scholander chamber and the gas bottle. Consequently, we 

did not take the results of the middle zone into account for the rest of the study.  

Predawn measurements were higher (less negative) than midday measurements, except 

in June 2010 for the upper zone of the catena (Fig. 3). Predawn water potentials showed lower 

values (more negative) than midday water potential except again for the upper zone in June 

2010. We observed a negative gradient of water potential values from small acacias to taller 

acacias especially at midday in September and February (Fig. 3). 

The diurnal range of predawn and midday water potentials was significantly different 

for each season (χ2 =51.85, p<0.001). In September 2009, diurnal ranges were lower than in 

February 2010 (Fig. 4). The diurnal range was non-significant for both Tree Size and Zone in 

September 2009, while in February 2010 ψ had significant lower (more negative) values for 

small acacias than medium and tall acacias for the middle and upper zones (Fig. 4). If we 

ignore the results for the middle zone in June 2010, the diurnal range values in June 2010 was 

very low and with high standard deviations (Fig. 4).  
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Figure 3. Water potential results of Acacia sieberiana leaves for the three study periods at 

predawn (dark grey) and midday (light grey) according to zones of the catena (upper, middle 

lower) and size of acacias (20 cm height<S1<1 m height, 1 m height <S2<3 m height, S3>3 m 

height). Different capital letters indicate significant p values between zones while different 

lower case letters indicate significant p values between acacia sizes (p<0.05). Significant 

differences among groups are indicated by different letters. 
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Figure 4. Means and standard deviations of diurnal range between predawn and midday water 

potentials of A. sieberiana leaves for the three study periods (September 2009, February 2010, 

and June 2010), for each zones in the catena (upper, middle, lower) and for the three sizes of 

acacias (S1= small acacias, S2= medium acacias, S3= tall acacias). Different letters indicate 

significant differences (p<0.05). 
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3.2 Rainfall isotopes 

The high variation of δ18O (from -13.03 ‰ to 1.68 ‰) was associated with a similar 

variation for δ2H (from -87.09 ‰ to 24.28 ‰). In our study site, the intercept (15.12 ‰) of 

the local meteorological water line (LMWL) was higher than that of the global meteoric water 

line (GMWL) (10 ‰) (Fig. 5). However, the LMWL was not significantly different from the 

GMWL in both, slope (p=0.4) and intercept (p=0.1), (the extreme point was removed as it has 

a high leverage).  

 

 

Figure 5. Isotopic values of rainfall in 2009-2010 with δ2H (‰) plotted against δ18O (‰). 

The Global Meteoric Water Line (GMWL) and the Local Meteoric Water Line (LMWL) are 

represented.   
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3.3 Soil water content and δ18O isotopic composition in soil 

Contrary to our expectation, soil water content did not vary significantly in all profiles 

between September 2009 and February 2010 (Fig. 6). The upper soil layer (0-10cm) often had 

higher soil water content in September than in February. Almost all profiles had a bump of 

soil water content in depth for both sampling periods (Fig. 6, see also Appendix 7). The lower 

and middle zones showed a more pronounced soil water content bump than the upper zone but 

the depth varied between 40 cm to 100 cm. For the middle zone, the depth of the bump was 

around 80 cm and matches an increase in clay and decrease in silt at similar depth on the 

reference soil profiles (Appendix 1). For the lower zone, the bump was located around 60 cm 

and matches an increase in clay and decrease in silt on the reference soil profiles (Appendix 

1). For profiles taken under a canopy, soil water content was globally higher than outside 

canopy for the first 60 cm, especially in February.  

The isotope values of δ18O for all profiles had a similar trend for both sampled seasons 

(September and February) being higher at the surface (approaching zero or being positive) 

and lower deeper, close to -6 ‰ (Fig. 6). The transition between higher surface values and 

lower values at depth was abrupt and localized in the A horizon (0-40 cm). After 40 cm, δ
18O 

values stayed more or less constant. September 2009 and February 2010 showed a slightly 

different pattern especially in the A horizon: September values showed a stronger decrease 

than in February in the first 20 cm. This surface depletion was often stronger outside the 

canopy for September values. 

 

3.4 δ18O isotope values of A. sieberiana stems 

A Kruskal-Wallis non-parametric test showed that δ
18O values did not differ with 

Season and Zone. However Size had a significant effect (χ2 = 14.32, p<0.001) with small 

acacias being higher than medium acacias (p = 0.012) and tall acacias (p = 0.005). This result 

was observed in September 2009 only (Fig. 7). Small acacias had higher values of δ
18O for all 

zones in September. This was closer to the isotope values of rainfall from the 24th of 

September before sampling being -3 ±0.26 ‰.   
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Figure 6. δ18O (‰) and soil water content (%) values for each soil profile sampled under tall 

acacia canopy and outside canopy in the three zones in the catena (upper, middle, lower) in 

September 2009 (dotted lines) and in February 2010 (solid lines). 
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Figure 7. δ18O (‰) values of Acacia sieberiana stems measured in September 2009 and 

February 2010 in the three zones of the catena and three sizes of acacias (S1 = small acacia, 

S2 = medium acacia, S3 = tall acacia).  

 

3.5 Two sources mixing model results 

Small acacias had similar behavior between September (end of the dry season) and 

February (middle of the wet season) for all zones, switching from lower layers (0-40 cm 

depth) to deeper layers (>40 cm depth) while tall and medium acacia sites manifested an 

inverse pattern in the upper zone only (Table 3). In the middle and lower zones, tall and 

medium-sized acacias used water mainly from the B horizon for September and February. 

Small acacias took up water mainly in the A horizon in September while in February they 

used a mixture of A and B horizon water in the lower zone and used virtually only B horizon 

water (92 %) in the middle zone.  

The upper zone showed unique results: in September, tall and small acacias used water 

from both horizons with a higher proportion in the B horizon while medium acacias used B 

horizon water only. In February, all sizes switched: tall and medium acacias increased their 

fractional uptake from the A horizon to 32 ±7 % and 27 ±14 % respectively while small 

acacias used water from the B horizon only (Table 3).  
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Table 3. Two sources mixing-model applied on depth of water uptake by A. sieberiana in a 

duplex soil. Source A= A horizon (0-40cm); source B= B horizon + deeper horizons (>40cm). 

Three zones in the catena (upper, middle, lower) and three sizes of Acacia (Tall, Medium, 

Small) are presented for each sampling period (September 2009 and February 2010). When 

δ
18O (‰) values of acacia stem was higher than average δ

18O (‰) values of A horizon or 

lower than average δ18O (‰) values of B horizon, the model was not valid (grey cells) as 

water uptake depth was almost exclusively done in A horizon or B horizon and deeper, 

respectively. 

 

September 2009 February 2010 

Zone Size Source 
fraction of 

uptake 

confidence 

interval 

fraction of 

uptake 

confidence 

interval 

Upper 

Tall 
A 0,13 ± 0,12 0<fA<0,36 0,27 ± 0,14 0<fA<0,72 

B 0,86 ± 0,12 0,63<fB<1 0,72 ± 0,14 0,27<fB<1 

Med 
A 

  
0,32 ± 0,07 0,17<fA<0,48 

B -4,74<Horizon B values (-4,73) 0,67 ± 0,07 0,51<fB<0,83 

Small 
A 0,28 ± 0,27 0<fA<1 

  
B 0,72 ± 0,27 0<fB<1 -4,65<Horizon B values (-4,3) 

Middle 

Tall 
A 

   
B -5,14<Horizon B values (-4,44) -5,10<Horizon B values (-4,68) 

Med 
A 

    
B -5,05<Horizon B values (-4,44) -4,88<Horizon B values (-4,68) 

Small 
A -2,75>Horizon A values (-3,55) 0,08 ± 0,14 0<fA<41 

B 
  

0,92 ± 0,14 58<fB<1 

Lower 

Tall 
A 

    
B -4,59<Horizon B values (-4,01) -4,73<Horizon B values (-4,3) 

Med 
A 

    
B -4,95<Horizon B values (-4,01) -5,32<Horizon B values (-4,3) 

Small 
A -2,12>Horizon A values (-3,82) 0,58 ± 0,91 0<fA<1 

B 
  

0,41 ± 0,91 0<fB<1 
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4. Discussion 

4.1 Water stress of A. sieberiana during the year 

Water potential of leaves is an expression of plant water stress. When the plant is fully 

hydrated, water potential is close to zero, while under severe water stress conditions water 

potential usually decreases, reaching values in excess of -1.5 MPa (Shrestha et al. 2003, 

Bowie and Ward 2004, Gebrekirstos et al. 2006). Water potential decreased from September 

to June. We expected the highest values of water potential in the middle of the wet season (in 

February) when water availability should be the highest. However, it was in September that 

acacias were the least water stressed. This can be explained by 1) the small differences in soil 

water content measured between September and February, 2) the high February temperatures 

with increasing evapotranspiration and 3) acacia physiology. In February, acacias are in the 

middle of the reproductive period and may need more water to produce pods. The lowest 

values in June, the middle of the dry season, followed our expectation that in the absence of 

water, acacias are the most water stressed.  

The higher (less negative) values of water potential measured at predawn vs. midday 

are in the same range as the values found by Eggemeyer et al. (2008). At predawn, in the 

absence of light, the plant is expected to recover from the midday stress and show higher (less 

negative) water potential values. However, it is not often a complete recovery because trees 

can transpire overnight, especially in mesic areas, where they have adequate access to water 

(Donovan et al. 2001). The diurnal ranges were higher in February than in September, which 

indicates that acacias can recover from the midday water stress more easily in February, due 

to higher rainfall.  

Predawn water potential is considered an estimate of soil water potential (Breda et al. 

1995, Sellin 1996, Donovan et al. 2001). During very dry periods, soil water decreases 

resulting in higher soil matrix forces, which makes the uptake of water more difficult for 

plants. Thus, even at predawn, water potential values can be low (Halvorson and Patten 1974, 

Donovan et al. 2001, Gebrekirstos et al. 2006). This is the case in June (if we exclude results 

from the middle zone) when the diurnal range is very close to zero. The plant fails to recover 

from water stress, which can lead to leaf shedding and /or decline in growth of the tree 

(Otieno et al. 2005). We note that the acacias in our study area lost their leaves at the end of 

June, a few days after our measurements.  

 

4.2 Effects of size and position in the catena on water potential 

In June 2010, all sizes of acacias did not significantly differ in their water potential.  

They were all water stressed and not able to recover, even at night. When results were 

significant (especially for midday water potential in September and February), water stress 

increased with acacia height class. Opposite results were expected. Due to their root 
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architecture, taller acacias should be able to adapt their water strategies between deeper soil 

water and shallow soil water and thus be less water stressed than small acacias. Our results 

suggest that, because taller acacias have a higher demand for water than smaller acacias 

(through high evapotranspiration due to their large size) (Dawson 1996) they are thus more 

water stressed by day. However, the diurnal range of leaf water potential of taller acacias was 

greater than for small acacias (especially in February). This indicates that tall acacias, even if 

more water stressed by day, managed to recover at night.  The higher (less negative) predawn 

water potential of smaller acacias indicates that acacias of different sizes may have access to 

different water sources or that smaller acacias have access to a quantity of water that is more 

adapted to their (reduced) requirements. This was not observed for all zones in the catena, 

indicating that soil water content is heterogeneous in this study area. This is commensurate 

with the contribution of soil water content heterogeneity to predawn disequilibrium which 

happens when only some roots are in wet soil and/or when hydraulic conductivity, and thus 

supply of water, are low (Ourcival et al. 1994, Donovan et al. 2001). Indeed, water potential 

measured in the lower zone differed significantly from the middle and upper zones at predawn 

only. Acacias had lower (more negative) water potential values at predawn in the lower zone 

of the catena, meaning that they found it more difficult to access water compared to other 

zones in the catena. The downslope areas where the soil is deeper should provide more soil 

water content due to topographic accumulation. This is in contradiction with the higher water 

stress of acacias. Greater water stress of these trees is probably due to inter-tree competition 

for water (Kambatuku et al. 2011), as tree density was higher in the lower zone than in the 

middle and upper zones of the catena. 

 

4.3 Soil water content and isotopic soil profiles of δ
18O 

The small increase of soil water content in the first 10 cm, especially in September, 

may be due to the two rainfall events that happened just prior to the sampling periods. In 

February, this effect was less apparent because trees and grass were in their peak period of 

water uptake for growth and because strong evaporation occurs at the soil surface due to high 

temperatures in that month.  Moreover, there were 7 days without rainfall before the sampling 

in February, causing lower soil surface water content. The rainfall water input at the soil 

surface is apparent in the δ18O isotope profiles. The decrease of δ
18O from the surface to 

approximately 40 cm resulted mainly from evaporation processes losing lighter isotopes (Gat 

1996). Evaporation processes are more active closer to the surface and increase δ
18O values. 

Below 40 cm, the soil water content increased over a specific interval in the profile in almost 

all profiles. This can be related to soil texture and the accumulation of clay in the B horizon. 

This second layer (or B horizon) may be a reserve of water for both periods, September and 

February. In the δ18O profiles, this elevated water content does not have a specific isotope 

signature, except in the middle zone, outside of the tree canopies where higher values of δ
18O 
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were found in the profile segment with elevated water content. It seems that this water 

compartment evaporated and may come from other sources than predominant vertical fluxes, 

such as lateral circulation due to piping (subsurface tunneling frequent in duplex soils with a 

dispersive C horizon) (Beckedahl 1998, Verachtert et al. 2010). Other δ
18O profiles show 

slightly decreasing δ18O values to the deepest soil layer but are otherwise almost constant 

below 40 cm. Similar δ18O profiles have been measured by Eggemeyer et al. (2008). 

It is necessary to have a clear vertical gradient to be able to relate water uptake by 

trees to δ18O profiles (Ehleringer and Dawson 1992, Brunel et al 1995). Burgess et al. (2000) 

worked on duplex soils such as we had in our study site and could not establish a gradient, 

making the use of stable isotopes less suitable for determining water uptake depth. In this 

study, as in Eggemeyer’s study (2008), the gradient was clear enough, at least to differentiate 

the A horizon between 0 and approximately 40 cm and the B horizon below 40 cm depth.  

 

4.4 Influence of size and position of acacia in the catena on water uptake 

δ
18O values of small acacias were significantly different from those of taller acacias at 

the end of the dry season-beginning of wet season in September. These results have to be 

interpreted taking into account δ18O values of soil profiles for each size-class. Tall and 

medium acacias were related to “under-canopy” soil profiles while small acacias were related 

to “outside-canopy” soil profiles (Fig. 6). 

In September, when grass is dormant, small acacias favor uptake in the A horizon. 

Conversely, in February, when competition with grass is stronger, small acacias eventually 

switched to using water from deeper layers. The upper zone of the catena produced slightly 

different results as small acacias favor deeper layers even in September. Nonetheless, looking 

closer at the δ18O values of small acacias for this area (-4.09 ‰) and the corresponding δ
18O 

profiles, small acacias may take up water from the interface between the A and B horizons 

(40 cm) in September and clearly favored deeper layers in February (probably around 80 cm 

depth where soil water content increased). This indicates that roots of acacias that are 0.2-1 m 

tall may be as deep as 80 cm into the ground. Some acacia species can develop roots to 40 cm 

within 15 days of germination (Wilson and Witkowski 1998), which may indicate that a 

young acacia tree of one or two years growth can reach horizons under 40 cm depth. Ward 

and Breen (1983) showed that small acacias in the Kuiseb river basin in Namibia could follow 

the dropping water table and quickly create deep roots. 

Medium-sized acacias had the same behavior as tall acacias. In the lower and middle 

zones of the catena, they exclusively used deeper layers, sometimes even deeper than the 

maximum depth that we sampled because δ
18O values were lower than the δ18O values 

observed in the B horizon. In this case, their numerous shallow horizontal roots were not used 

for water uptake primarily (Dawson and Pate 1996) and may serve as anchorage (Crook and 

Ennos 1996) or nutrient uptake (Cramer et al. 2009). However in the upper zone, their 
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behavior was opposite to small acacias. They took up water mostly in deep layers in 

September, but in February, they switched partially to shallower layers. Species have been 

shown to increase layer exploration to endure water stress (Reinsch et al. in press).  Soils of 

the upper zone are shallower than those in the middle and lower zones of the catena. Because 

acacias are more water stressed in February, they may need to find more water.  Due to 

shallower soils in the upper zone, medium and tall acacias have to explore the entire soil 

profile to achieve the high water demand. In the middle of the wet season, water may be more 

available closer to the surface and acacias may try to reach these higher water potential zones 

(Plamboeck et al. 1999). A second explanation to the switch for shallower layers is nutrient 

uptake (Cramer et al. 2009). The first horizon is richer in nutrients due to organic matter 

decomposition. Acacias in the upper zones with a shallow soil may have to switch to the 

upper layer during growth periods to find nutrients. Nutrient uptake is associated with water 

uptake and may influence isotope measurements (Cramer et al. 2009). In the middle and 

lower zones, this switch to shallower layers did not happen when we sampled by day. Deeper 

soils should provide higher water content. However, at predawn we saw that acacias in the 

lower zone recovered less than in the middle and upper zone (cf. lower (more negative) water 

potential Fig. 3 in the lower zone). This suggests that nocturnal transpiration may occur and 

this may be controlled by nutrient uptake (Cramer et al. 2009), which can differ depending on 

nutrient availability (Scholz et al. 2007). We thus propose two possible adaptations of acacias 

in this ecosystem: in the upper zone of the catena, taller acacias use more soil layers by day, 

including shallower layers richer in nutrients. In the lower zone, taller acacias exclusively use 

deeper soil horizons by day but may switch to shallower layers by night for nutrient uptake 

(we cannot confirm this because we did not sample stems for isotopes at night).  

 

5. Conclusions 

Water uptake by grass roots usually mainly occurs in the first 30-40 cm depth 

(Snyman 2009, Kambatuku et al. submitted).  If we consider this result for our study site, 

small acacias compete directly with grass for water, but they were flexible in the depth of 

water uptake, especially in the wet season when grass cover was dense. To avoid competition 

with grass, they may quickly develop deep roots, allowing deeper water uptake. Depth of soil 

linked to position in the catena was an important parameter impacting behavior of medium 

and tall acacias that were the most stressed and had the highest water demand. However, they 

did not compete directly with grass for water as they were able to take up water from deeper 

layers (see also Kambatuku et al. 2011, submitted).  

A. sieberiana encroaching this grassland are thus able to adapt their water strategies. 

This can have direct implications on woody plant encroachment in grassland. Indigenous 

acacias, by adapting their water uptake strategies at a young stage may favor their 

establishment and increase their probability of becoming adults.  
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Chapitre 5. Les acacias et leurs conséquences sur un pâturage raviné 

 

 
Impact de l’Acacia sieberiana sur la strate herbacée présente sous la canopée : développement 
d’une astéracée à fleur jaune, Senecio inaequidens, toxique pour les vaches et les chevaux. 

© P. Podwojewski 
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Le chapitre précédent ayant apporté des réponses sur les causes ou facteurs de contrôle 

de l’invasion ligneuse, nous allons dans ce présent chapitre étudier les conséquences de 

l’invasion ligneuse dans les pâturages. En introduction, nous avons déjà évoqué les apparentes 

contradictions entre les différentes études concernant les conséquences positives ou négatives 

des arbres dans les écosystèmes pâturés. C’est en connaissant les effets de l’invasion ligneuse 

que l’on pourra cibler au mieux les actions éventuelles de contrôle des populations ligneuses. 

C’est donc dans un but de compréhension des écosystèmes envahis et de pouvoir fournir des 

conseils de gestion de ces écosystèmes, que ce chapitre comprend trois parties. La première 

porte sur l’impact que peuvent avoir ces arbres sur l’érosion en ravine à l’échelle du paysage. 

Elle constitue la suite de l’article présenté au chapitre 3 sur l’évolution des ravines et de 

l’invasion au cours des 64 dernières années. Elle est donc fondée sur les mêmes photographies 

aériennes. Alors que les données présentées au chapitre 3 concernaient l’ensemble du bassin 

versant, les travaux se concentrent ici sur 15 têtes de ravines et leur zone de drainage 

respective en vue d’étudier l’impact des arbres localisés dans ces surfaces particulières. Cette 

étude s’appuie sur d’autres facteurs de cette érosion tels que des paramètres topographiques.  

Les deuxième et troisième parties de ce chapitre ont été menées à une échelle plus 

fine, celle de la toposéquence. L’idée principale est de déterminer les conséquences des 

acacias et les mécanismes associés sur les propriétés du sol et de la strate herbacée. Il est 

question de travailler à la fois sur le plan écologique (diversité des espèces végétales, 

propriétés du sol) et sur le plan agro-pastoral (qualité et quantité des espèces herbacées 

utilisées dans l’alimentation du bétail). Il s’agit d’une étude multi-facteurs réalisée afin de 

comprendre les interactions entre le bétail, les saisons, la position des acacias dans la 

toposéquence (notamment ceux situés dans les fonds de ravines ou ceux en amont des 

ravines) sur les conséquences des acacias dans cet écosystème raviné.  
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Abstract  

Gully erosion driven by water processes is usually affected by topography, land-use 

change and vegetation cover. We hypothesised that trees, through their effect on overland and 

subsurface flow, may have a negative impact on gully extension. However, very few studies 

have simultaneously considered tree encroachment and gullies. We used aerial photographs to 

study Acacia sieberiana encroachment and gully erosion in a South African grassland 

(KwaZulu-Natal Province) for a period lasting 64 years. The extension of 15 gully heads was 

correlated with topographic parameters and with acacia density and canopy cover of drainage 

areas of each gully head. Extension of the 15 gully heads did not correlate with any of the 

topographic parameters linked to overland flow while a positive correlation occurred with 

acacia canopy area in 2009 when maximum canopy cover was reached. These results, 

associated with the susceptibility of this duplex soil to subsurface flow and the observation of 

pipe systems in the field, showed the importance of subsurface processes in this subhumid 

grassland and that trees can be associated with increased gully erosion.  
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1. Introduction 

Woody encroachment in grasslands has been associated with higher intensities of 

inter-rill erosion in semi-arid areas (Petersen and Stringham 2008) and with higher gully 

extension (Martin and Morton 1993). This was claimed to be due to a higher runoff associated 

with reduced grass cover under trees. Muñoz-Robles et al (2010) could not show that eroded 

gully volume was related to woody vegetation cover in Australia. Trees can increase 

ecosystem evapotranspiration (Scott et al 2006), increase water infiltration by stemflow 

(Dunkerley 2002), possibly move water from deep soil layers to shallower and dryer soil 

layers by hydraulic lift (Ludwig et al 2003), and modify subsurface water flow (Liang et al 

2009; Huxman et al 2005). Despite the influence of surface and subsurface water flow on 

gully erosion, little is known about the effects of tree encroachment on gully erosion.  

The objective of this study is to analyse the main factors affecting gully head 

extension, including woody vegetation cover in the drainage areas of 15 selected gully heads 

located in an encroached grassland of South Africa. 

 

2. Materials and methods 

2.1 Study site 

The study site has been described in Chapter 3 part I.  

2.2 Data collection and processing 

This study is based on the same aerial photographs that have been used in Chapter 3 

part I. A set of 7 photographs has been processed as described in Chapter 3 to obtain six time-

periods: 1945-1961, 1962-1975, 1976-1984, 1985-2000, 2001-2005, 2006-2009.  

A local digital elevation model (DEM) (5 m accuracy) was created from a 

combination of 6000 points obtained in 2009 by a differential global positioning system 

(DGPS) covering half of the catchment and from pre-existing contour data from NGI. 

In order to highlight a possible relationship between trees and gully extension, as well 

as to understand what topographic/geomorphologic parameters influence gully extension, 15 

gully heads were selected in the catchment. Selection was driven by the stage of gully head. 

Only gully heads that had the potential to increase were chosen. Gully heads already located 

at the top of the catchment were excluded from the analyses. Gully length (GL), gully head 

area (GA), retreat length (RL, m y-1) and retreat area (RA, m2 y-1) of 15 active gully heads 

were measured and calculated for the six above time-periods in ArcGIS 9.3. Because retreat 

area (RA, m2 y-1) is not independent from gully size we calculated the standardized retreat 

area (SRA, % y-1) for each gully head for the six time-periods by the following formula: 
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Figure 1. Representation of the parameters used in this study, especially for SPI calculation.
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3. Results  

The 15 gully heads presented high range of values for the different topographic 

parameters measured in 2009 (e.g. Table 1). Mean retreat length of the 15 gully heads varied 

between 0.23 m y-1 in 1945-1961 (data not shown) and 0.77 m y-1 in 2006-2009 (Table 1). 

One gully had a maximum retreat length in 2006-2009 of 1.67 m y-1 (Table 1). The mean over 

the 64 years period was 0.3 m y-1.  

 

Table 1. Topographic parameters measured for the 15 gully heads in 2009: drainage area 

(DA), drainage average slope (DA slope), local gully head slope (β), stream power index 

(SPI), gully length (GL), gully head area (GA). Parameters measured for the last period 

(2006-2009): retreat length (RL), retreat area (RA) and standardized retreat area (SRA). Mean 

and standard deviation (SD) are displayed. 

 

GULLY 

NUMBER 

DA 

(m2) 

DA 

SLOPE 

(degrees) 

β 

(degrees) 
SPI 

GL 

(m) 

GA 

(m2) 

RL 

(m y-1) 

RA 

(m2 y-1) 

SRA 

(% y-1) 

1 41258 15.85 9.82 3.87 120 4844 0.67 68.6 0.6 

2 85597 16.40 16.75 3.79 225 11695 0.33 202.0 0.5 

3 8490 6.87 5.83 3.28 98 2258 1.33 56.3 0.7 

4 105150 17.17 6.94 4.08 218 8101 0.33 56.6 0.6 

5 26467 10.63 3.66 2.66 143 4175 0.33 14.6 0.6 

6 13054 10.63 7.36 3.01 68 875 0.33 4.0 0.6 

7 17412 14.96 7.92 3.81 69 809 0.67 19.0 0.6 

8 14350 10.03 5.00 3.03 71 1393 1.33 38.6 1.0 

9 103776 13.59 5.73 3.84 240 12008 1.33 163.6 0.4 

10 3701 7.33 4.98 2.01 65 1795 0.67 52.6 0.6 

11 2790 5.22 3.06 1.21 57 555 0.33 15.0 1.1 

12 57941 16.91 5.18 5.03 63 1196 1.00 33.0 0.8 

13 38924 15.74 4.04 3.72 132 3585 1.67 113.0 0.7 

14 9240 20.02 8.92 3.41 73 1292 0.67 43.6 0.9 

15 3039 6.02 6.96 1.26 64 911 0.67 35.0 0.5 

mean 35412 12.49 6.81 3.20 113 3699 0.77 61.0 0.68 

SD 36336 4.69 3.34 1.05 64 3881 0.44 56.5 0.19 
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Correlations between retreat area (m2 y-1), gully head area (GA) and drainage area 

(DA) for each of the six time-periods were all significantly positive (Table 2). 

 

Table 2. Correlations for the 15 selected gully heads (n=15) for each period between retreat 

area (m2.y-1) and the three parameters gully length (m), gully area (m2) and drainage area 

(DA) (m2).  

 

Time periods 

Retreat area 

/gully length 

Retreat area 

/gully area 

Retreat area 

/DA 

R2 p value R2 p value R2 p value 

1945-1961 0.59 0.001 0.61 <0.001 0.54 0.001 

1962-1975 0.68 <0.001 0.54 0.001 0.57 0.001 

1976-1984 0.75 <0.001 0.67 <0.001 0.52 0.002 

1985-2000 0.82 <0.001 0.75 <0.001 0.77 <0.001 

2001-2005 0.62 <0.001 0.63 <0.001 0.48 0.004 

2006-2009 0.59 0.001 0.70 <0.001 0.46 0.005 

 

For each period, we correlated SRA (% y-1) of the 15 gully heads (n=15) with 

measured topographic parameters and acacia population parameters. SRA did not correlate 

significantly with either DA or with gully head area (GA). In 2006-2009 where we could 

measure the different slopes on the DEM for each gully head, SRA did not correlate 

significantly with either DA slope (p=0.56) or with local gully head slope (p=0.62). Stream 

power Index (SPI) was also not significantly correlated with SRA (p=0.28). 

We correlated SRA with tree density, large tree density, tree canopy area and large 

tree canopy area measured for each drainage area for each time-period (Fig. 2). The gully 

number 15 was excluded from the analyses as tree density and canopy area was extreme and 

pulled the results. For the first five periods, SRA was not significantly correlated with any of 

the previous factors. For the 2006-2009 period, SRA was significantly correlated with 3 

factors (Fig. 2). Correlation with tree density was low and not significant (R2=0.21, p=0.096). 

The correlation with large tree density were hardly significant (R2=0.29, p=0.045). It was with 

tree canopy area (R2 =0.46, p=0.007) and large tree canopy area (R2=0.45, p=0.008) that the 

correlations were the most significant.  
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Figure 2. Linear regression relationships for the period 2006-2009 between gully 

standardized retreat area (SRA) of 14 gully heads and tree density (a), large tree density (b), 

tree canopy area (c) and large tree canopy area (d). 
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4. Discussion 

4.1 Drivers of gully erosion, subsurface flow and piping 

The retreat length of the 15 selected gully heads in this area is in the range measured 

in other studies. Burkard and Kostaschuk (1997) found over a period of 62 years extreme 

values between 0.97 and 3.64 m y-1 on average with a maximum at 33.39 m y-1. Martínez-

Casasnovas (2003) had values in the range of our study with 0.7-0.8 m y-1 at gully heads. 

Samani et al (2010) found 0.2 m y-1 in an arid area (Iran) whereas in Belgium (mean annual 

rainfall = 750 mm), Nachtergaele et al (2002) reported a mean of 1.8 m y-1.  

Drainage area (DA) is linked hydrologically to gully erosion as it represents the 

surface available for water to runoff and concentrate at a specific point where gully can be 

created (Schumm 1979). Correlations between retreat area (m2 y-1), gully head area (GA) and 

drainage area (DA) were therefore all significantly positive confirming that large gullies are 

growing in area at a faster rate than smaller gullies (Burkard and Kostaschuk 1997).  

Whereas gully heads presented a wide range of SRA values, none of the topographic 

parameters could statistically explain these differences for any of the six time-periods. 

Drainage area, average slope of DA, local gully head slope and SPI are factors linked to 

drainage network and thus to overland flow. As rainfall did not vary for the 15 gully heads at 

each time-period (taking into account a negligible spatial variation) and considering the lack 

of correlations showed above, our results suggest that gully head erosion was not strongly 

linked to surface water runoff. This suggests that gully head erosion might be linked to other 

factors and processes such as subsurface water processes (Imeson and Kwaad 1980). Almost 

all studies related gully headcut retreat to surface runoff parameters (Poesen et al 2003; 

Valentin et al 2005); few studies took into account or tested subsurface hydrologic 

parameters. However gullies have been related to subsurface hydrology such as piping 

(Imeson and Kwaad 1980; Crouch 1983; Planchon et al 1987; Rienks et al 2000; Valentin et 

al 2005). Pipes are not always apparent on the surface and are not easy to follow or to localize 

and consequently to associate with gully erosion. In the study area, there was evidence of 

piping at different locations due to the collapse of the soil surface horizon (Fig. 3).  

Pipes are specifically formed in these duplex soils due to the association of soil 

shrinkage inducing cracks where water concentrates, to the contrasted difference in 

permeability between A and B horizons (Beckedahl 1998; Verachtert et al 2010) as well as to 

the presence of a dispersive C horizon (Imeson and Kwaad 1980). The four pipes represented 

on Figure 3 are probably linked to each other and suggest that it should be subsurface water 

drainage to the gully. The move of the gully head erosion to upstream can be accelerated by 

the presence of upstream pipes in the line of the gully head (Sonnenveld et al 2005; Rienks et 

al 2000). Pipes can be localized and mapped from collapsed soil depressions visible from the 

surface (Verachtert et al 2010). The mapping of pipes that are not visible requires a 

methodological challenge, which was not achieved in this study. Therefore we could not test 
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the relationship between erosion rates and pipe systems. However, field evidences and 

previous non-significant correlations with surface water related factors suggest that 

subsurface processes are more important than surface processes in this area. After Imeson and 

Kwaad (1980), the gully type in our landscape, which presents a typical U-shape, is associated 

with dispersive slope deposits and pediments, and lead to the formation of badlands.  

 

 

Figure 3. Aerial view of a gully head in 2009. Numbers 1 to 5 represent pipes (white circle 

with black perimeter) visible from the soil surface. Pipe number 4 is located at the gully head 

and is probably the exit of the system starting with pipe number 1. 

 

4.2 Impact of trees on gully erosion 

Correlations between SRA and tree canopy cover and tree density only started to be 

significant for the period 2006-2009 when a sufficient area was covered by trees. The 

correlation was not very high and results have to be interpreted carefully although changes 

from 2 % to 6 % of tree canopy area had been associated with increased SRA of gully heads 

from 1.8 % y-1 to 3 % y-1 (Fig. 2). In previous studies, when vegetation cover was related to 

gully erosion it was mainly through surface water processes: high grass cover decreases 

runoff and decreases gully erosion (Graf 1979; Muñoz-Roblez et al 2010). In specific areas, 

trees have been shown to decrease grass cover under canopy and then increase runoff 

(Petersen and Stringham 2008). It is however not always the case as trees can also decrease 

runoff through litter input which protects the soil against splash effect (Descroix et al 2001) or 

through the increase of under-canopy vegetation (Piersen et al 2010). A specific survey on 

grass cover in the study area did show that the herbaceous biomass was similar under tree 
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canopy and in the open grassland (Grellier et al submitted). We can thus make the hypothesis 

that runoff should not differ significantly under canopy and outside. Surface water processes 

may thus not be significantly influenced by trees in this grassland. Trees have been shown to 

modify subsurface water (Liang et al 2009; Huxman et al 2005) and especially to increase 

infiltration by stemflow (Dunkerley 2002; Liang et al 2009). Stemflow infiltrates into the soil 

and can reach deep depth following preferentially tree roots (Martinez-Meza and Whitford 

1996; Johnson and Lehmann 2006). As stemflow increases with canopy size (Martinez-Meza 

and Whitford 1996), sufficient tree canopy area (or tree density in a lesser extent) could favor 

water infiltration at the catchment scale. Sonnenveld et al (2005) mentioned that in specific 

cases (tunneling especially), infiltration could stimulate subsurface erosion and retreat rate of 

downslope gully heads. A higher amount of subsurface water may increase the swelling of 

clays. This may be followed by shrinkage during dry periods. Strong desiccation will create 

cracks and favor bank erosion from gully head walls (De Ploey 1974). Erosion rates might 

thus increase with higher tree canopy area through the effects of stemflow. This scenario has 

not been fully demonstrated in this study and needs to be further investigated.  

 

5. Conclusions 

Our results suggest that the gullies in the foothills of the Drakensberg were not 

primarily affected by surface runoff. The gullying process is more likely induced by 

subsurface runoff in this subhumid grassland.  

Trees can be counter-intuitively associated to increasing gully erosion. This effect 

depends on tree species (architecture and characteristics) but also on the sub-canopy 

vegetation cover and on the drivers of erosion (surface or subsurface processes).  

If the positive effect of trees on gully extension is confirmed on a larger time scale, 

this would have an implication in the management of grasslands where gullies are present and 

where tree encroachment is not controlled. Tree thinning might thus be considered. 
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II.  Impacts ambivalents de A. sieberiana sur les propriétés du sol et 

de la strate herbacée dans un pâturage sud-africain 
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Abstract  

 

Background and aims: Woody plant encroachment in grasslands is a worldwide 

phenomenon. Despite many studies, its consequences on grass and soil properties are still 

unclear. To better understand impacts of trees on grassland properties we asked the following 

questions: Do trees have an impact on grass and soil properties; is the size of trees influential? 

Does this impact change with season (dry and wet), livestock and position of trees in a catena 

(from the bottom to upper parts of the catchment)?  

Methods: We examined a mountainous subtropical grassland of South Africa 

encroached by Acacia sieberiana (indigenous species). Grass and non-grass species diversity, 

biomass, and quality as well as soil properties were studied during the dry and the wet seasons 

(November 2008 and April 2009). 

Results: Non-grass species richness, soil moisture and soil nitrogen increased under 

acacias in the dry season. Non-grass species richness, grass green leaf biomass and grass leaf 

nitrogen increased under tall acacias in the wet season. These positive impacts were 

counteracted by the increase under acacias of the indigenous Senecio inaequidens 

(Asteraceae) which is toxic to horses and cattle. Season did modify tree-grass interaction 

favoring soil properties in the dry season. Medium-sized acacias had negative effects on grass 

quality in the wet season counteracted by increased soil properties in the dry season. 

Livestock resulted in an increase in grass quality whereas position in the catena had no effect.  

Conclusions: We advise that S. inaequidens and A. sieberiana populations are 

controlled to avoid transformation of the grassland into woodland. Adaptive management 

with goats and sheep is proposed as a solution. 
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1. Introduction 

Worldwide, grasslands account for 50 % of the earth’s total land area (Asner et al., 

2004); almost 40 % of the global population depend on them (Reynolds et al., 2007). Any 

degradation or change occurring in grasslands will have a strong impact on local human 

populations, especially on rural livestock-dependent communities. Woody plant 

encroachment in grassland is a widespread phenomenon (Wiegand et al., 2005; Bond, 2008; 

Graz, 2008; Van Auken, 2009), that reduces the area available for grazing. Encroachment has 

been observed in grasslands for at least 140 years (Mayeux et al., 1991) and has been 

recorded in America, Australia, Africa and Southeast Asia (Archer et al., 2001), negatively 

affecting 20% of the world’s population (Turner et al., 1990).  

The causes of woody encroachment in grassland and savannas are still debated by 

numerous authors and remain unclear (Ward, 2005). However, a multi-causal model 

combining geographic location and climate (especially mean annual precipitation) has been 

suggested for savannas by Sankaran et al. (2005). Climate change and especially the increase 

of CO2 in the atmosphere favoring the growth of C3 plants (Ward, 2010) as well as the 

possible reduction in competition for water and soil nutrients between trees and native grasses 

(reduced by grazing) have been reported to increase woody encroachment (Van Auken, 

2009). Fire management may exacerbate woody encroachment (if bare ground is created at a 

suitable time for mass recruitment). Similarly, livestock may also increase the degree of 

encroachment by dispersing tree seeds (Van Auken, 2009).  

In the last 50 years, the phenomenon of woody plant encroachment has increased, and 

both positive and negative effects on grassland and savanna functions and properties have 

been reported (Scholes and Archer, 1997; Van Auken, 2009). For example, trees increased 

grass matter and soil nutrients in Ethiopia (Abule et al., 2005), while they decreased grass 

cover and its ability to uptake carbon and nutrients in grassland of central USA (Lett and 

Knapp, 2003). Results are highly variable. The spatial scale of observation has been 

highlighted as an important factor playing a role in the controversy about impacts of tree 

encroachment. At the individual tree scale, positive effects on grass quality and soil nitrogen 

(for leguminous trees such as acacias) have usually been shown, where trees are described as 

“islands of fertility” (Treydte et al., 2007; Ravi et al., 2010) whereas at the landscape scale, 

effects on grass phosphorus and productivity were found to be negative (Riginos et al., 2009).  

However, this trend cannot be generalized and depends mainly on tree density (Riginos et al., 

2009). Climate and especially rainfall also modify the responses of sub-canopy vegetation. In 

arid and semi-arid areas, water limitation occurs and trees, through shading, can have more 

positive impacts on the grass layer than in more humid areas (e.g. Belsky et al., 1993; Treydte 

et al., 2007). This is, however, not always the case (Knapp et al., 2008). Impact of trees on 

grassland properties in wetter areas seem to be less conspicuous or more difficult to show 

(Treydte et al., 2007). This study will focus on subhumid grassland in order to better 

understand woody plant encroachment in this climate. Grasslands are not always located in 
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vast plains, but also in mountainous areas. Soil properties can differ along a catena (Oztas et 

al., 2003) and may have an impact on tree-grass interaction. This is why we integrated a 

spatial aspect along a catena and focused on the following questions: 

Do trees have an impact on grass and soil properties?  

Is the size of trees influential? 

How do livestock and seasons affect tree-grass interactions? 

Does the position of trees in the landscape (from upper to lower part of the catena) 

modify the impact of trees on grass and soil properties? 

 

2. Materials and methods  

2.1 Description of the study site 

The study area is located in the Potshini village (8km south-east of Bergville) (28º 48' 

37" S; 29º 21' 19" E), Kwazulu-Natal province, South Africa. The site is located in a north-

sloping watershed of the Tugela basin (30,000 km²) and is representative of the KwaZulu-

Natal Drakensberg foothills. The altitude is between 1217 m and 1452 m. The surface area of 

the studied catchment is 2.5 km2. The climate is subhumid subtropical with two well marked 

seasons: rainy summer (October–April) and dry winter (May-September). The mean annual 

precipitation calculated from the last 65 years is 745 mm. The mean annual temperature is 13 

°C (Schulze, 1997). Potential evaporation is between 1600 mm and 2000 mm (Guy and 

Smith, 1995). The area can be characterized as mesic. Mucina and Rutherford (2006) 

classified the vegetation of this site as belonging to the grassland biome, specifically the 

Northern KwaZulu-Natal moist grassland, which is usually dominated by Themeda triandra 

Forssk and Hyparrhenia hirta (L.) Stapf. Geographically, this biome is adjacent to savanna 

biomes. Encroachment by a single indigenous tree species, Acacia sieberiana var. woodii 

(Burtt Davy) Keay & Brenan, is observed in the valley. Aerial photography of our site clearly 

confirms tree encroachment over the last 30 years and represented 9.45 % of the watershed 

area in 2009 (Grellier et al submitted).  

The geology of the site is characterized by fine-grained sandstones, shales, siltstone 

and mudstones of the Beaufort and Ecca Groups of the Karoo Supergroup that alternate in 

horizontal successions (King, 2002). Unconsolidated colluvial deposits from the Pleistocene 

fill the valleys. These soils are very prone to linear erosion in gullies, locally called “dongas” 

(Botha, 1994). Dykes of dolerite from the Jurassic, from 1 - 8 m wide intrude through the 

parent rock (Mucina and Rutherford, 2006).  The general soil type of the bottom of the 

watershed is luvisol (World Reference Base, 1998) with two well-delimited main horizons. 

The A horizon (0 to 40-50 cm) is coherent, with a brown color (10YR 4/1 to 10YR 4/3) and 

20% clay, with many fine and medium roots. The Bt Horizon with up to 50% of clay (from 50 

cm to 100-120 cm) is dark brown, very coherent and hard with a coarse blocky structure.  
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Four geomorphological and ecological areas can be distinguished along the catena 

from the upper part of the watershed (1452 m a.s.l.) to the lower part (1217 m a.s.l.) where a 

gully is located. The very steep upper part of the catchment (slope = 29 ±4.5 degrees) presents 

a vegetation composed mainly of various grass species and Aloe ferox. The second part with 

steep slope (17.5 ±4.5 degrees) and rocky areas (dolerites) has a low acacia density (12 

acacias ha-1) with a majority of tall A. sieberiana trees. The third part in the catena with a 

lower slope (9.7 ±2.5 degrees) has an increasing A. sieberiana tree density (31 acacias ha-1) 

with more medium-sized and small acacias. The fourth area located just upstream of a gully, 

with gentle slope (5.9 ±1.4 degrees), has a higher density of A. sieberiana trees (60 acacias  

ha-1) with many medium-sized and small acacias.  

This grassland is a communally-owned grassland belonging to the community of 

Potshini. Management of cattle and goats mainly follows two rotation periods: 8 months/4 

months. During the maize growing season and until harvest (8 months) the cattle are kept in 

the grassland areas (November to June); during the winter (4 months), the cattle feed on the 

maize residues in the fields (July to October) located around the community settlement.  

 

2.2 Data collection 

2.2.1 Experimental design  

In order to understand the impact of the seasons on the acacia-grass system, we 

sampled soils and vegetation during two periods of the year: at the end of dry season - 

beginning of wet season (November 2008) and at the end of wet season (April 2009). In 2008, 

the rainy season started late and November was still very dry with the first significant rains 

only after our first sampling. 

We selected 40 acacias of two size classes, 20 tall acacias (>3 m height) and 20 

medium-sized acacias (1 - 3 m height) according to their location in the catena to be equally 

distributed in each of the three zones. The tall acacias were on average 5.5 ± 1 m tall; they had 

a mean diameter at breast height of 0.33 ± 0.12 m and a canopy radius of 4.7 ± 1.8 m. The 

medium-sized acacias were on average 2.55 ± 0.5 m tall, with a mean diameter at breast 

height of 0.08 ± 0.02 m and a canopy radius of 1.61 ± 0.33 m. We selected 24 locations away 

from acacias and distributed in the three areas of the catena to be used as “control”, i.e. open 

grassland. Half of the locations for each treatment (tall acacias / medium-sized acacias / 

controls) were fenced in October 2008 in order to exclude livestock. For each location, one 50 

X 50 cm plot (n=64) was delimited for further soil and vegetation sampling. Under acacias, 

these plots were centred at 50% of the canopy radius southwards where acacia effects should 

be the highest due to shade and north-facing orientation of the watershed (NB: southern 

hemisphere). 
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2.2.2 Vegetation collection 

Within each plot, vegetation was clipped to ground level, separating all non-grass 

species and grass species. All non-grass species were identified. Senecio inaequidens DC. 

(Asteraceae) was treated separately from non-grass species, because this species had a very 

high biomass at the end of dry season-beginning of the wet season compared to other non-

grass species. Its sum with other species in a global “non-grass biomass” variable masked all 

other non-grass species. The main grass species were identified and a visual estimation of the 

abundance of each species was made. The number of the main grass species and all non-grass 

species was determined for each quadrat to obtain grass species richness and non-grass 

species richness. Grass green leaf material of April 2009 samples was separated for further 

analyses. We could not sample enough grass green leaf material in November 2008 for 

chemical analyses (due to the dry season). 

2.2.3 Soil collection 

On the same plots, we collected soil samples at depths of 0-20 cm for analysis. The 

determination of soil moisture (SW0-10) and soil bulk density (BD) were performed by 

extracting undisturbed soil cores in 250 cm-3 cylinders (Baize 1988) between 0-10 cm. Soil 

samples at 20-30 cm were collected to obtain SW20-30. All soil samples were stored in closed 

plastic bags and weighed in the field.  

Soil samples for root biomass were collected at 0-10 cm depth on the same plot with 

cylinder 10 cm length and 15 cm diameter.  Soil samples for the measurement of root biomass 

were sieved at 2 mm and washed with clean water to separate roots and soil. Roots were dried 

at 70 ºC for 48 h and weighed. 

 

2.3 Laboratory analyses 

2.3.1 Vegetation and grass leaf analyses 

All grass and non-grass biomass samples from the 50*50 cm plots were dried at 70 ºC 

for 48 h, and then weighed. Grass green leaves of April 2009 were milled at 1 mm prior to 

chemical analysis at the University of KwaZulu-Natal. Total grass leaf nitrogen (Ngrass) was 

analyzed with a Leco FP2000 Nitrogen Analyzer using the Dumas combustion method from 

AOAC Official Method 990.03 (Kenneth, 1990). Phosphorus (Pgrass) was analyzed by 

digestion with sulphuric acid, hydrogen peroxide and a selenium catalyst using a block 

digester at 360 °C, and then using a Technicon autoanalyzer II that measures the absorbance 

of the phosphomolybdovanate complex at a wavelength of 420 nm. The Ngrass:Pgrass ratio was 

then calculated to test for nutrient limitation (Koerselman and Meuleman 1996). Grass fiber 

content was analyzed to evaluate grass quality since the higher the fiber, the harder herbivore 

assimilation. The acid detergent fibre (ADF) content was assessed with a Dosi-Fibre machine 
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according to the AOAC Official Method 973.18 (Kenneth, 1990) and the neutral detergent 

fiber (NDF) was assessed with the same machine but with the method described by Van Soest 

et al. (1991). Gross energy (GE) contained in grass was measured using a digital data system 

isothermal CP500 bomb calorimeter. Dry matter digestibility was measured in vitro with 

cellulose enzymes as described by Zacharias (1986). 

2.3.2 Soil analyses 

SW and BD samples were oven dried at 105 °C for 24 h and weighed. Soil samples 

from 0-20 cm were air-dried and sieved through a 2 mm grid. Total soil nitrogen (Nsoil) and 

total soil carbon (Csoil) were analyzed by automated Dumas dry combustion method using a 

LECO CNS 2000 (Matejovic, 1996). Soil pH was determined in 1:2.5 soil:water suspensions. 

Cation exchange capacity (CEC) was assessed with the Metson method (Metson, 1956); the 

exchangeable cations Ca2+, Mg2+, K+, Na+ and their sum were quantified with the ammonium 

acetate method at pH 7.0. 

 

2.4 Statistical analyses 

Response variables were grouped in three categories.  

• Description of the herbaceous community: dry grass biomass, dry non-grassy biomass, 

grass green leaf biomass, grass species richness, non-grass species richness.  

• Grass quality: dry matter digestibility, Ngrass, Pgrass, Ngrass:Pgrass ratio, GE, ADF, NDF. 

• Soil properties: SW at 0-10 cm, SW at 20-30 cm, BD, total Csoil, total Nsoil, pH, 

exchangeable Na+, Ca2+, Mg2+, K+, CEC. 

Different statistical models were applied in this study as explained below using R 

version 2.11.1. free online software (http://www.R-project.org).  

To test Season effect on variables measured in both periods, we used a mixed 

generalized linear (GLIM) model to take into account the temporal pseudo-replication from 

sampling the same individuals (tall acacias, medium-sized acacias or control) in two different 

periods. Fixed factors were Season, (Dry, Wet), Tree (Tall acacias, Medium acacias, 

Controls), Position in the catena (Upper, Middle, Lower), Livestock (Fenced, Unfenced) and 

the plot was considered as a random factor. Because Season affected almost all variables, to 

aid interpretation of the other factors, we also analyzed each sampling period separately. To 

test for the effect of Tree, Position and Livestock on each response variable described above 

for each season, we used a three-way ANOVA with Tree, Position and Livestock as factors. 

Normality of residuals and homogeneity of variance were tested for each model. Variables 

with non-normally distributed residuals or non-homogeneous variance were log-transformed 

or square root transformed.  

The presence/absence of the main grass and non-grass species were analyzed 

separately by three-way factorial analyses of deviance (using a binomial model due to the 
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binary format of the variables) with Tree, Position and Livestock as factors. Dominance of 

each grass species on a plot (where the concerned grass species was the most abundant) was 

tested following the same method. Even if dry biomass was measured for each non-grassy 

species, the high frequency of zeroes did not allow us to apply a generalized linear model to 

these data (none of the possible transformations was adequate and model residuals were not 

normal). We thus transformed the data into binary format to analyze their deviance as 

described above. We tested the presence/absence and then the number of plots where non-

grassy biomass was greater than the third (upper) quartile.  

Because of the high number of statistical tests in this study, and to avoid rejecting a 

null hypothesis when it is actually true (type I error) we applied adjusted Bonferroni 

corrections to p values for each group of variables (vegetation quantity, grass quality and soil 

properties) for all analyses. Similarly, post hoc t-tests with Bonferroni corrections were 

always used to compare means between the significant factors.  

 

Table 1. Four-way ANOVA results (F values) of simplified mixed model for variables of 

both seasons with fixed factors Season (Dry, Wet), Tree (Tall, Medium, Control=no acacia), 

Position in catchment (Upper, Middle, Lower), Livestock (Fenced, Unfenced) and with a 

random term for each plot. Three-factor and four-factor interactions were not significant and 

are thus omitted. Adjusted Bonferroni corrections were applied to p values. * indicates 

significant p values. Each model was simplified so some F values are not displayed (-). 

 

Vegetation variables 
Error 

Season Tree Livestock 
Tree: Season: Season: 

d.f. Livestock Position Tree 
Root biomass 64 - 3.23* 0.35 3.64* - - 
Dry grass biomass 60 124.85* 5.05* 9.26* - - - 
Non-grass biomass 61 23.33* - - - 2.86* - 
Non-grass species 
richness 

63 28.84* 10.09* 0.99 2.85 - - 

Soil variables 
    

Position 
  

Soil Moisture SW0-10 cm 61 1378.27* - - 33.11* 3.50 5.45* 
Soil Moisture SW20-30 cm 61 1797.83* - - 15.91* 3.12 4.88* 
BD 58 107.37* 3.88* 11.91* 4.90* - - 
Total C (Csoil) 63 21.55* - - 16.65* - - 
Total N (Nsoil) 61 1.252 5.36* 1.44 9.943* - 15.63* 
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3. Results 

3.1 Complete model for both seasons 

Season had an important effect on vegetation and soil variables. Root biomass was the 

only one of nine variables measured in both periods that did not show any significant Season 

effect (Table 1). The only significant effect implicating Season on total soil nitrogen was the 

interaction SeasonXTree (Table 1).  

We present here a short description of the variables significantly affected by Season as 

they will be presented in details for other factors for each season in the next section:  

Soil variables 

SW0-10 and SW20-30 respectively increased by 14.9 % and 10.8 % in April. Csoil and BD 

were lower in April (Csoil: 17.5 ±2.7 g kg-1, BD: 1.29 ±0.07 g cm-3) than in November (Csoil: 

18.95 ±3.2 g kg-1, BD: 1.39 ±0.04 g cm-3).  

Herbaceous community 

Dry grass biomass was much higher in April (453 ±211 g m-2) than in November (222 

±143 g m-2). Non-grass biomass and non-grass species richness followed the same pattern: 

viz. 35.8 ±24.5 g m-2 and 5.59 ±1.95 species per plot in April and 21.6 ±22.4 g m-2 and 3.81 

±2.64 species per plot in November. In November 2008, a high biomass of Senecio 

inaequidens was harvested (22.68 ± 32.52 g m-2 on average). This biomass was almost 10 

times higher than the biomass harvested in April 2009 (2.4 ±7.1 g m-2 on average). Due to the 

seasonal cycles of Senecio inaequidens and a late start to the wet season, November 2008 

samples were old, dry shoots of the previous growing season (2007-2008), while April 2009 

samples were new green shoots from the recent growing season (2008-2009).  
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Variables not affected by season are presented here in details. Root biomass showed a 

significant Tree effect and TreeXLivestock interaction (Table 1) for both seasons. For 

unfenced plots, root biomass was lower under tall acacias than in control plots with 7.96 

±3.04 g l-1 and 12.17 ±4.59 g l-1 respectively (Fig. 1A). 

There was a significant difference in Nsoil between November and April only under tall 

acacias (Fig. 1B) with 1.8 ±0.24 g kg-1 and 1.6 ±0.26 g kg-1 respectively.  

Moreover, Nsoil had higher values under tall acacias than medium acacias and control 

plots in the dry season. Nsoil increased by 17.4 % under tall acacias compared to medium 

acacias and by 15.76 % compared to control plots (Fig. 1B). Nsoil was also higher in the 

middle part of the watershed for both seasons with 1.7 ±0.24 g kg-1 versus 1.6 ±0.23 g kg-1 in 

lower part and 1.5 ±0.23 g kg-1 in the upper part (Fig. 1C). 

 

  
 

Figure 1. Effect of Tree, Livestock and Position for response variables which do not show 

significant results for Season effect. Means and standard deviation are displayed.  Different 

letters indicate significant differences between means. F: fenced, UF: unfenced; dry: dry 

season, wet: wet season; C: control, Med: medium acacia, Tall: tall acacia. Lower, Middle, 

Upper refer to the position in the landscape. 
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Table 2. Three-way ANOVA results (F values) in April 2009 for vegetation variables with 

Tree (Tall, Medium, Control= no acacia), Livestock (Fenced, Unfenced) and Position in 

catena (Upper, Middle, Lower). Only the interaction TreeXLivestock showed significant 

results and is thus presented here. Gross energy was analyzed by a generalized linear model. 

Three-factor and four-factor interactions were not significant and are thus omitted. Analyses 

as for Table 1. 

 

Grass quantity variables 
Error 

Tree Livestock Position 
Tree: 

d.f. Livestock 

Dry grass biomass 62 - 76.66* - - 

Grass green leaf biomass 58 1.96 2.07 - 5.45* 

Grass species richness 62 - 4.64* - - 

Non-grass species richness 61 6.10* - - - 

Grass leaf quality 

variables 

     

Digestibility 60 4.64* 24.15* - - 

Nitrogen (Ngrass) 58 30.23* 34.40* - 5.99* 

Phosphorus (Pgrass) 56 0.15 22.90* 4.58* 3.65* 

Ngrass:Pgrass 59 7.89* - 4.76* - 

Gross energy 63 4.21* - - - 

ADF 62 - 45.79* - - 

NDF 58 - - - 5.17* 
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3.2 April 2009 (end of wet season): Tree, Livestock and Position effect 

3.2.1 Vegetation variables 

The Position in the watershed had no effects on vegetation variables except for Pgrass 

and Ngrass:Pgrass ratio (Table 2). Pgrass was significantly affected by Position, with higher values 

in the middle (8.2 ±1.6 %) than in the lower part (6.8 ±1.5 %) of the catena. Contrastingly, the 

Ngrass:Pgrass ratio had lower values in the middle (16.1 ±2.7) than in the lower part (18.9 ±3.6) 

of the catena.   

Livestock and Tree affected a number of vegetation variables: dry grass biomass was 

affected by Livestock and was higher in fenced plots than unfenced plots (Fig. 2a). This effect 

was similar for grass species richness and ADF (Fig. 2b and 2c). However, digestibility, 

Ngrass, and Pgrass had significantly higher values in unfenced plots (Fig. 2d, 2e, 2f).  

Tree had a significant effect on non-grass species richness: the number of non-grass 

species was higher under medium acacias than on control plots (Fig. 2g). Digestibility was 

also affected by Tree with higher values under tall acacias than medium acacias (Fig. 2h). 

Ngrass was significantly higher under tall acacias and medium acacias than on control plots 

(Fig. 2e). The Ngrass:Pgrass ratio had significantly lower values for controls than medium and 

tall acacias whereas GE had lower values for medium acacias than controls and tall acacias 

(Fig. 2i and 2j). NDF was only significantly affected by TreeXLivestock interaction, with 

controls having higher NDF values than medium acacias for fenced plots (Fig. 2k). Similarly, 

grass green leaf biomass was significantly affected by TreeXLivestock interaction; it was 

higher under tall acacias than on control plots for the unfenced treatment (Fig. 2l). 
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Figure 2. Effect of main significant results of explanatory variables on vegetation variables 
in April 2009. Means and standard deviation are displayed. Letters indicate significant p 
values between treatments. F: Fenced; UF: Unfenced; C: control; Med: medium acacia; Tall: 
tall acacia. 
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Grass and non-grassy species 

Hyparrhenia hirta and Sporobolus africanus (Poir.) Robyns & Tournay were the two 

main grass species found in this grassland. They were present on 50 and 48 plots respectively 

of a total of 64 plots. They were also the most abundant species on 30 and 20 plots 

respectively (Table 3) and the second most abundant on 15 and 21 plots respectively.  

 

Table 3. Three way factorial analyses of deviance (deviance values) on the 7 most frequently-

observed grass species with Tree (Tall, Medium, Control=no acacia), Position in catena 

(Upper, Middle, Lower) and Livestock (Fenced, Unfenced). Tree was not significant and is 

thus omitted. Interactions are indicated with light grey color. NP is the number of plots where 

the species and dominant species were observed from a total of 64 plots. Absence of value (-) 

means that it has not been included into the analyses due to very low occurrence (cf NP). 

Analyses as for Table 1. 

 

 Presence/Absence 1st dominant 

Grass species NP Livestock Position NP Livestock 

Hyparrhenia hirta 50 8.4* 30 6.48* 

Sporobolus africanus 48 20.1*** ns 20 37.15*** 

Digitaria longiflora 
30 ns 16.45** 1 - 

 
9.37* 

  
Paspalum 

scrobitulatum 
25 8.27* 0 - 

Eragrostis plana 23 5.78* 5 - 

Eragrostis curvula 18 ns 9.77* 5 - 

Themeda triandra 14 6.95* ns 3 - 

 

Tree had no significant effect on grass species whereas Livestock and Position affected 

grass species significantly (Table 3). Hyparrhenia hirta was more frequently present in the 

lower part of the catena (all plots) than in the upper part (only on 54.5 % of the plots). This 

result was especially clear when livestock were present. Paspalum scrobitulatum (L.) showed 

similar results, with a higher presence in the lower part (58.3 % of the plots against 10 % in 

upper part) but only when livestock were absent. Conversely, Digitaria longiflora (Retz.) 

Pers. and Eragrostis curvula (Schrad.) Nees were more frequently present in the upper part 

than in the middle and lower parts of the catena (Table 3). The presence of Eragrostis plana 

(Nees) and Themeda triandra was affected by livestock with a higher presence in fenced 

(50 % and 34 % of the plots, respectively) than unfenced plots (21 % and 12 % of the plots, 

respectively). Sporobolus africanus showed the opposite pattern, being present in 97 % of the 

unfenced plots and 53 % in the fenced plots (Table 3). For the two most common species, we 

investigated the number of plots where the species were dominant (the most abundant among 
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all grass species present on the plot). Hyparrhenia hirta was twice as dominant in fenced 

(62 %) than unfenced plots (31 %) whereas Sporobolus africanus was the most abundant in 

62 % of the unfenced plots and was never dominant in fenced plots (Table 3).  

Unlike grass species, non-grass species were affected by Tree and by Livestock (Table 

4). The dominant invasive species Richardia braziliensis (Moq.) was present in all plots but 

its highest biomass was mainly in control plots (25 % of the plots). Sida dregei Burtt Davey 

was more common under tall acacias for 50 % of the plots and only 8.3 % of the control plots 

and 10% of the medium-sized acacia plots. S. dregei’s highest biomass was under tall acacias 

(35 % of the plots). Senecio inaequidens are only found under acacia (25 % of tall acacia plots 

and 35 % of medium acacia plots). Hibiscus pedunculatus L.f. was only present under tall 

acacias in 20 % of the plots. Centella asiatica (L.) Urban was the only species significantly 

affected by Livestock and was present in 28.1 % of fenced plots vs 6.25 % of unfenced plots 

(Table 4).  

 

Table 4. Three way factorial analyses of deviance (deviance values) on the 7 most 

frequently observed non-grassy species with Tree (Tall, Medium, Control=no acacia), 

Position in catena (Upper, Middle, Lower) and Livestock (Fenced, Unfenced). Position and all 

interactions were not significant and are thus omitted. Analyses as for Table 1. 

 

Presence/Absence Highest Biomass 

Non-grassy species 
Total biomass 

harvested 
Tree Tree Livestock 

Richardia braziliensis 179.85 ns 9.25* ns 

Sida dregei 68.35 12.74* 18.28*** ns 

Vernonia natalensis 38.34 ns ns ns 

Senecio inaequidens 35.98 13.37** 7.26* ns 

Centella asiatica 17.4 ns ns 5.74* 

Hibiscus pedunculatus 12.02 9.9* ns ns 

 

3.2.2 Soil variables  

Na+ and K+ ions were not affected by any of the factors tested in this study and are 

thus not presented in Table 5. Other soil variables were affected mainly by Tree and Position 

(Table 5). Livestock effect was only significant for BD and pH (data not shown graphically). 

Livestock increased values of BD and pH in unfenced plots (bulk density, unfenced 1.33 

±0.06 g cm-3, fenced 1.27 ±0.06 g cm-3; pH, unfenced 5.99 ±0.15, fenced 5.90 ±0.16).  

Tree had a significant effect on all variables except for SW and pH. CEC, Ca2+, Mg2+ 

followed the same pattern with lower values in controls and under medium acacias than under 

tall acacias (Fig. 3a). Csoil was affected by the interaction TreeXLivestock (Table 5). In 
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unfenced plots, Csoil was higher under tall acacias than controls and vice versa in fenced plots 

(Fig. 3b). 

The Position in the watershed had a strong effect for all soil variables, except Na+ and 

K+. The SW0-10 and SW20-30 were lower in the upper part of the watershed (Fig. 3c) compared 

to the middle and lower parts. Csoil showed similar results (Fig. 3d). Contrastingly, BD was 

higher in the upper part than in the middle part of the catena (Fig. 3e). The CEC, as well as 

Ca2+ and Mg2+, had lower values in the lower part of the catena than in the middle and upper 

parts (Fig. 3f). pH increased significantly from the lower part to the upper part of the catena 

(Fig. 3g).  

 

Table 5 Three-way ANOVA results (F values) in April 2009 for soil variables with Tree 

(Tall, Medium, no acacias), Livestock (Fenced, Unfenced) and Position in catena (Upper, 

Middle, Lower). No interactions were significant and are thus omitted. Analyses as for 

Table1.  

 

Soil variables Error d.f. Tree Livestock Position 

BD 58 3.44 15.58* 5.26* 

Soil moisture SW0-10  61 - - 24.52* 

Soil moisture SW20-30  61 - - 14.48* 

pH 58 - 5.67* 7.56* 

Ca2+ 59 7.37* - 13.38* 

Mg2+ 59 11.49* - 21.19* 

CEC 59 9.22* - 10.71* 

Total C (Csoil) 56 3.7* 4.94* 
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Figure 3. Effect of main significant results of explanatory variables on soil variables in April 

2009. Means and standard deviation are displayed. Letters indicate significant p values 

between treatments. F: Fenced; UF: Unfenced; C: control; Med: medium acacia; Tall: tall 

acacia; Low for lower part, Mid for middle part, Up for upper part refer to position in catena. 
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3.3 November 2008 (end of dry season-beginning of wet season): Tree and 

Position effect 

Tree significantly affected most variables while Position only affected soil variables 

(Table 6). Bulk density did not show any significant pattern (p= 0.58 for Position, p= 0.85 for 

Fence, p= 0.13 for Tree). Position affected SW at both depths in the same way, viz. higher 

values in middle part of the catena than in the lower and upper parts (Fig. 4A). Csoil followed 

the same pattern (Fig. 4B). 

Dry grass biomass showed higher values under medium acacias than controls and tall 

acacias (Fig. 4C). Non-grass species richness was lower in controls than under medium and 

tall acacias (Fig. 4D). SW at both depths followed this pattern as well with lower values for 

controls (Fig. 4E).  

 

Table 6. Three-way ANOVA results (F values) in November 2008 with Tree (Tall, Medium, 

no acacias), Position in catchment (Upper, Middle, Lower) and Livestock (Fenced, Unfenced). 

Livestock and all interactions were not significant and are thus omitted. Analyses as for 

Table 1.  

 

Vegetation variables Error d.f. Tree Position 

Dry grass biomass 61 3.63* - 

Non-grass species 

richness 
61 8.04* - 

Soil variables 
   

Soil Moisture SW0-10  41 12.05* 18.34* 

Soil Moisture SW20-30  41 8.53* 8.90* 

Total C (Csoil) 61 - 13.53* 
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Figure 4. Effect of main significant results of explanatory variables on variables in 

November 2008. Means and standard deviation are displayed. Letters indicate significant p 

values between treatments. F: fenced, UF: unfenced; dry: dry season, wet: wet season; C: 

control, Med: medium acacia, Tall: tall acacia. Up, Mid, Low, refer to the position in the 

landscape. 
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4. Discussion 

4.1 Do trees have an impact on grass and soil properties? 

This question can be answered from the most complete data set of April. This study 

showed that acacias did not have an important impact on soil properties in wet season. C and 

N have been reported to accumulate in the soil following woody plant invasion (Wiegand et 

al., 2005; Liao et al., 2006) and total soil N is often higher under trees than in the open 

grassland (Abule et al., 2005) especially with leguminous trees (Wiegand et al., 2005; Treydte 

et al., 2007) due to their N-fixation capacity. However we did not observe such impacts in 

April, which may be linked to the increase of Ngrass in grass leaf under acacias. Nsoil may have 

been exported into grass leaves during the grass growth period.  

Mg2+ and Ca2+ increased under acacias, as has been found elsewhere in South Africa 

(Trinogga, 2010). This can be explained by litter input into the soil and by the base-pump 

function of trees and shrubs which reallocate nutrients from lower soil layers to the surface. 

Exchangeable cations are usually associated with pH increase (Hatton and Smart, 1984), 

which was not the case in this study. Exchangeable cations and pH are linked by the capacity 

of the soil to store charges, which is recorded as CEC. In this study, CEC was found to be 

higher under acacias, as was also found by Trinogga (2010). This increase was likely due to 

litter input and decomposition which allows increases in Mg2+ and Ca2+ without a decrease in 

H3O
+ (or an increase in pH). 

Dry grass biomass in April 2009 did not differ below tall or medium acacias and 

controls, as was also found by Abule et al. (2005), Treydte et al. (2007), and Ludwig et al. 

(2004; 2008). Only a few studies in South Africa and central USA have reported negative 

effects of trees on grass productivity (Hoffman and Ashwell, 2001; Lett and Knapp, 2003) 

mainly due to competition for light and nutrients. Nsoil content, which was similar under 

acacias and control plots does not promote grass growth under acacias and is consistent with 

our dry grass biomass results.  

Although acacias did not modify grass biomass in our study, they increased non-grass 

species richness in April, especially under medium-sized acacias. Ruthven (2001) found 

similar results. Other authors related grass species richness to pH: lower pH increased species 

richness due to its effect on the availability of certain nutrients (Fynn et al., 2005; Tisdale et 

al., 1993). In our case, soil pH cannot explain the increase of non-grass species richness 

because it was not lower under acacias. Lower temperatures and evapotranspiration often 

measured under trees (Belsky, 1994) have been shown to modify the presence/absence of 

grass species, depending on their water-use efficiency (Amundson et al., 1995). This could 

also be the case for non-grass species. The increase in non-grass species richness under 

acacias was also the sign of a difference in species composition between acacia canopy and 

open grassland. Sida dregei, Senecio inaequidens and Hibiscus pedunculatus were found 
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mainly under acacias. Senecio inaequidens, due to its toxicity (Dimande et al., 2007) for cattle 

and horses (Botha and Penrith, 2008) through the presence of pyrrolizidine alkaloids, could 

have a major negative impact on horses and cattle grazing in the grassland. S. inaequidens 

grows more frequently and gets larger under A. sieberiana (tall and medium trees) in this 

grassland and is likely to create areas that cattle avoid. The available grazing area is thus 

likely to decrease because of the presence of S. inaequidens. This was confirmed by our 

observations in the field and has been reported by local herdsmen. 

‘Islands of fertility’ is a well-known expression to describe isolated trees or tree 

clumps in grassland and savanna (Hibbard et al., 2001; Ludwig et al., 2008; Van Auken, 

2009), especially when leguminous trees are involved (Treydte et al., 2007; Wiegand et al., 

2005). It has often been found that nutrient and protein content, gross energy and digestibility 

of grass leaves are higher and fibre content lower under trees than in the open grassland 

(Ludwig et al., 2008). In our study, Ngrass as well as Ngrass:Pgrass ratio followed this tendency, 

i.e. being higher under acacias than in the open grassland. Higher availability of Nsoil may 

increase Ngrass. With values over 15 (Koerselman and Meuleman, 1996) or 12 (Ludwig et al., 

2001) for tropical grassland, Ngrass:Pgrass ratio indicates that Psoil was the limiting factor to 

grass growth (Cech et al., 2008). 

 

4.2 Is the size of trees important? 

Other grass traits did not show the same pattern, at least under medium-sized acacias. 

Medium acacias had a negative impact on grass gross energy and digestibility whereas 

controls and tall acacias did not differ in grass leaf digestibility, gross energy and NDF. All 

the benefits brought by tall acacias due to their shade (Belsky, 1994), root nodules (Belsky et 

al., 1989), hydraulic lift capacity (Ludwig et al., 2001), and litter fall (Hudak et al., 2003) are 

probably counteracted by competition for water and nutrients (Ludwig et al., 2004) and result 

in an almost neutral effect of these large acacias on grass quality. Medium-sized acacias, with 

fewer positive benefits due to their size (for the above-mentioned reasons) may compete with 

grass and resulted in a net negative effect on grass quality.  

 

4.3 Does the impact of trees on grass and soil layers change with the season? 

The interaction SeasonXTree indicated that Season had a significant effect on the 

impact of acacias on soil variables but not on plant biomass (Table 1). SW0-10 and SW20-30 

were higher below acacias when water was scarce in November, but this effect disappeared 

during the wet season. This pattern could be related to hydraulic lift as described in some 

African savannas (Ludwig et al., 2003): trees favor uplift water from deep moist soil layers 

and release some of this water in superficial dryer soil layers at night, especially when the 

difference in moisture between depth and surface is high. This pattern could also be due to the 
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shading of acacia canopy that is likely to decrease temperature and evapotranspiration (Belsky 

1994). This effect might maintain higher moisture content under acacias at the beginning and 

at the end of the wet season, thereby extending growth period of grasses. 

Season had a significant effect on Nsoil. In November 2008, we observed that tall 

acacias show higher Nsoil contents than medium acacias and controls. This effect was not 

observed in April 2009 as mentioned above. The explanation may come from two processes: 

either N produced by nodules decreases in April or Nsoil is exported to other compartments. 

The first cause may happen if the availability of Nsoil increases, which usually reduces 

nodulation (Cramer et al., 2007). The second cause may be explained by lixiviation of Nsoil by 

heavy rainfalls of wet season or linked to N cycle (Aranibar et al., 2004): even if we did not 

measure other forms of nitrogen in the soil to obtain information on N cycle, Ngrass under 

acacias in April was higher than in control plots. This indicates that the possible excess of 

mineral Nsoil available under acacias might have been taken up by grasses and stocked into 

their leaves during their growth period. This explanation relies on a quick mineralization of 

the increased total Nsoil detected in November.  

In November 2008, higher dry grass biomass was measured below medium acacias, 

but not tall acacias. This cannot be explained by higher Nsoil availability as Fynn et al. (2005) 

suggested because lower Nsoil content was measured under medium acacias. However, light is 

more accessible for grasses under medium acacias (due to their lower canopy size) and 

competition for water may be lower as well compared to taller acacias. This could result in a 

net positive effect for smaller and less competitive acacias. In April this effect is cancelled 

because water does not limit grass growth. Indeed, dry grass biomass increased during the wet 

season. As shown by soil moisture data, the main driving forces explaining differences 

between both periods is the availability of water and the seasonal cycle, which affects most 

vegetation variables.  

In November 2008, for the first sampling period at the end of the dry season-beginning 

of the wet season, most grass species had not started growing whereas non-grass species had 

already begun growth, except S. inaequidens. This species differed from the other species 

because it did not grow equally well in both years, with a biomass 10 times higher in 

November (composed mainly of dry shoots from the previous growing season S1). 

Degradation of the grass layer has been shown to be the main factor fostering invasions by S. 

inaequidens (Caño et al., 2007). However, the grass cover in the grassland in the 2007-2008 

season (S1) was not obviously more degraded than in the 2008-2009 season (S2) (pers. obs.). 

Growing season S1 had a slightly higher amount of rainfall than S2 (1010 mm in S1 and 871 

mm in S2) which could favor S. inaequidens growth. Moreover, rainfall in S2 started very late 

(at the end of November) after our sampling while it usually starts at the beginning of 

October. As S. inaequidens is a robust species (Caño et al., 2007) it may have started growing 

in S2 before the grass species. Goats and sheep are known to eat Senecio without being 

affected by its toxicity and may regulate the invasion of this species (Dollahite 1972). They 
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probably fed on S. inaequidens at the beginning of S2 (after our first sampling) and drastically 

decreased the biomass of S. inaequidens in the grassland between the two sampling periods. 

 

4.4 How does livestock affect tree-grass interactions? 

Livestock affected tree-grass interactions through several variables: Csoil which is often 

higher under trees (Abule et al., 2005; Treydte et al., 2007) followed a similar pattern in our 

study but only when livestock were present. This suggests that Csoil in our site might increase 

mainly under acacias through dung deposition by cattle (Belsky et al., 1989).  

Root biomass was higher in control plots than under tall acacias only when livestock 

were present. Grass shoot:root ratio can be modified depending on species-specific responses 

of grasses to grazing (Li et al., 2005). To avoid S. inaequidens located mainly under acacias, 

cattle may graze preferentially outside of the acacias influence. Grazing of aboveground parts 

of the grass layers, mostly in open grassland, may favor grass root growth to compensate for 

grass removed by cattle as is the case for certain grass species (Li et al., 2005).  

Beside the impact of Livestock on tree-grass interactions, Livestock also had an impact 

on grass and soil properties. Soil bulk density was higher in unfenced plots. This result has 

been reported previously and is due to soil compaction by animal trampling (Kölbl et al., 

2010). As has commonly been found (Kölbl et al., 2010; Mbatha and Ward, 2010), livestock 

presence decreased grass biomass by grazing in our study. Grass species richness also 

decreased with Livestock as pointed out by Stammel et al. (2003). Some authors (Guevara et 

al., 1996; Abule et al., 2005) did not find negative effects of grazing on grass species richness. 

Our results are probably due to selective grazing which favors the regrowth of only a few, less 

palatable species. Indeed, the poorly grazed Sporobolus africanus (Van Oudtshoorn, 2004) is 

exclusively found in unfenced plots whereas the highly palatable Themeda triandra is more 

frequent in fenced plots where it can grow without being grazed by cattle. Hyparrhenia hirta, 

the most abundant species in this grassland, had its highest biomass mainly in fenced plots. 

This species is known to be moderately appreciated by cattle (Van Oudtshoorn, 2004). 

However, our results suggest that it is significantly grazed, perhaps due to limited grass 

availability.   

Grass quality was positively affected by Livestock. Digestibility, Ngrass and Pgrass had 

higher values in unfenced plots, and ADF had lower values, as found by Mbatha and Ward 

(2010) during the same period of the year, but in a more arid area. Different levels of leaf 

nutrients between fenced and unfenced plots may be due to several mechanisms: e.g. 

herbivores maintain regrowth, which results in higher nutrient concentrations (Frank et al., 

1998; Mbatha and Ward, 2010); herbivores speed up nutrient cycling which enhances plant 

nutrition (increase of nutrient uptake by roots) and increases grass nutrient contents (Chaneton 

et al., 1996; Frank et al., 1998); in response to grazing and increased light availability, grass 
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photosynthetic rates increase, which may lead to higher protein levels (Mbatha and Ward, 

2010).  

 

4.5 Does the position of trees in the landscape modify the impact of trees on grass 

and soil properties? 

Position had very few effects on grass variables and no interaction between Position 

and other factors was found. However Position affected all soil variables. Contrary to Oztas et 

al. (2003), bulk density was higher in the upper part of the catena. Oztas et al. (2003) 

explained their results as being due to higher soil moisture in the footslope position, leading to 

stronger soil compaction. They indicated that grazing pressure was higher in the footslope 

position, inducing higher bulk density. In our study, despite higher soil moisture in the middle 

and lower parts of the catena due to topographic effects, soil compaction was not higher in 

these parts of the catena. We have no precise data on the grazing behavior of livestock but we 

know that livestock are present in the lower and middle parts and this did not affect negatively 

soil bulk density. However, the shallower soils in the upper part of the catena were less 

structured (higher bulk density, lower total carbon) than deeper soils of the middle and lower 

parts which might explain the higher bulk density of upper part soils in our study. These less 

structured soils were also shallower than soils in the middle and lower parts. Shallow soils 

associated with higher slope may have been associated with stronger sheet erosion (Descroix 

et al., 2008) which has led to decreased total carbon (Fig. 3d) in the upper part of the catena.  

The PositionXTree interaction was not significant for any of the studied variables. 

This indicates that position does not modify tree-grass interaction. Treydte et al. (2007) 

showed that trees more positively affect degraded grasslands than grasslands that function 

well.  Even if the upper part of the catena had soils in poorer condition than the middle and 

lower parts (shallower, more acid, less organic matter and total carbon, higher bulk density 

and lower moisture), they were not degraded enough to be modified by the presence of 

acacias. Other areas in the grassland are considered as badlands due to strong gully erosion 

(unpublished data). Acacias in these specific areas might have a different impact on grass and 

soil properties as compared to the less degraded grassland studied here in hillslope catena.  

 

4.6 Implications for grassland management 

The results of this study provided new insights into the adaptive grassland 

management of encroached areas. Association of acacias with toxic species has not been 

reported yet as far as we know but is very important for grassland managers. Tall acacias did 

not have negative effects on grass quality and soil properties and should be retained in the 

grassland, at least initially. The first priority should be to control the population of S. 

inaequidens which is toxic for cattle and horses. Goats and sheep have been used to control 
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Senecio and shrub invasions in the past (Oates, 1956; Dollahite, 1972). Goats and sheep could 

be used differently and be completely integrated into the management of the grassland. They 

are present in this grassland but they need to be led to the concerned areas by herdsmen or 

with the help of mobile fences and rotational grazing. If needed, a manual cutting of Senecio 

inaequidens could be applied.  

The results obtained in this study are valid for a low density of acacias (28 acacias ha-1 

or 10 % of the watershed area) and may change with acacia encroachment. While a low 

density of trees was shown to favor sub-canopy herbaceous production, high densities could 

have a more negative impact on understorey vegetation (Riginos et al., 2009) and thus on 

livestock production. Treydte et al. (2007) recommended keeping tree density lower than 200 

trees ha-1. In a second priority, A. sieberiana population would have to be controlled to ensure 

that the grassland does not become woodland and, consequently, inaccessible to cattle. 

Because acacia wood is used for fuel by the local human community and acacias are a good 

source of protein for cattle (pods, present on tall acacias mainly, are preferred by cattle), 

cutting all trees is probably not the best solution and would be an enormous task (Smit, 2004). 

We would recommend keeping tall acacias (as medium acacias had negative effects on grass 

quality) to create shade for cattle and to maintain a source of protein from pods. Spatial 

heterogeneity at the landscape scale should be considered, such as keeping flat areas free of 

trees whereas areas less accessible to cattle could be maintained with trees. As Smit (2004) 

discussed, tree effects on grass and soil properties are highly variable, depending on tree 

density, location, climate and site specificity. Grassland managers should be aware that 

actions undertaken to decrease tree density will modify the ecosystem. General advice would 

thus be to favor small-scale actions, allowing adaptation to local conditions and to the 

evolution of tree encroachment and its effect on soil properties and grass production.  
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III.  Impact des acacias sur les propriétés du sol et de la strate 

herbacée au sein de ravines d’un pâturage sud-africain 
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1. Introduction 

The impacts of trees in grasslands have been studied worldwide although inconsistent 

effects have been reported (Belsky et al. 1993, Treydte et al. 2007, Knapp et al. 2008, Van 

Auken 2009, Riginos et al. 2009, Grellier et al. submitted). Low fertility savannas tend to 

show more positive impacts of trees on the grass layer compared to high fertility savannas 

(Treydte et al. 2007). Some areas of the world are very affected by gully erosion (Valentin et 

al. 2005), including grasslands. This indicates that tree impacts could differ between eroded 

areas such as gully areas and the remainder of grasslands. Soil loss by gully erosion is a major 

problem for grasslands (Podwokewski et al. 2002, Poesen et al. 2003, Valentin et al. 2005). 

Gully areas usually consist of very poor soil and vegetation cover and can be associated with 

areas of low fertility. Aboveground vegetation is known to protect soil against erosion 

through interception of rainfall and better infiltration of water (Podwojewski et al. in press). 

Roots are also effective protection against erosion by retaining soil (Archibold et al. 2003). 

Trees may locally favor grass production and enhanced soil properties as suggested by 

Treydte et al. (2007) for areas of low fertility. In this case, the presence of trees, creating a 

new ecosystem with a grass layer, may be part of a solution to stabilise gullies.  

We conducted a study of the impact of trees on grass and soil properties in gully areas 

in a grassland of South Africa. This study focuses on acacias which may favor nitrogen input 

in the soil (Belsky et al. 1989, Wiegand et al. 2005). This input may be important for 

vegetation growth in the young soils present in gullies similarly to the effects on low soil 

fertility (Treydte et al. 2007). This study was carried out in two periods of the year to assess 

the effect of season on the tree-grass-soil system. As livestock may have a strong influence on 

this grassland ecosystem we also tested the impact of the exclusion of livestock and will 

examine the following questions:  

• Do acacias have a positive impact on grass and soil properties in gullies, 

especially grass biomass and soil nitrogen?  

• How do livestock and season affect tree-grass interactions in gullies?  

• Can livestock decrease the potential positive effect of acacias?  

 

2. Materials and methods 

2.1 Description of the study site 

The description of the study site was done in part II of this chapter.  

Regarding the four geomorphological and ecological areas described in part II, we can 

add a fifth area located at the bottom of the watershed downstream from the fourth area 

described in part II. This fifth area consists of gully channels where some acacias are 

established. It is a very heterogeneous area with almost no soil because erosion has often 

reached the bedrock and because a new soil has often not had enough time to form. 
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Vegetation is very sparse and is composed of Aloe ferox, Acacia sieberiana, and few 

herbaceous species.  

 

2.2 Data collection 

2.2.1 Experimental design  

In order to understand the impact of the seasons on the tree-grass system, we sampled 

soils and vegetation during two periods of the year: at the end of the dry season - beginning of 

the wet season (November 2008) and at the end of the wet season (April 2009). We selected 

19 acacias in gullies. Tall acacias that we selected were >3 m height (as were almost all trees 

in gullies) and located in the most degraded areas of the gullies. We selected 17 locations 

away from acacias to be used as “controls”, but located on similar substrates as the selected 

acacias. Fences were erected around three controls and three tall acacias (these numbers were 

imposed by logistic constraints) in October 2008 to exclude livestock. One extra plot was 

fenced in February 2008 and retained for this experiment, increasing to four the number of 

fenced plots for tall acacias. For each plot, one 50 X 50 cm plot was delimited for further soil 

and vegetation sampling following the same protocol as in the previous part of this chapter.  

2.2.2 Laboratory analyses 

The same protocol was used as in part II of this chapter. 

 

2.3 Statistical analyses 

Response variables were grouped in three categories, as in part II of this chapter.  

• Vegetation quantity: dry grass biomass, dry non-grassy biomass, grass green 

leaf biomass, grass species richness, non-grass species richness.  

• Grass quality: digestibility, Ngrass, Pgrass, Ngrass:Pgrass, gross energy (GE), Acid 

Detergent Fiber (ADF), Neutral Detergent Fiber (NDF). 

• Soil properties: soil moisture at 0-10 cm (SW0-10), soil moisture at 20-30 cm 

(SW20-30), bulk density (BD), total Csoil, total Nsoil, pH, exchangeable Na+, Ca2+, 

Mg2+, K+, CEC. 

 

Several statistical models were applied in this study (as explained below) using R 

software (version 2.11.1) (http://www.R-project.org).  

We used similar models to those used in part II to test for the Season effect (with 

GLIM) and the effects of Tree and Livestock for each season separately (two-way ANOVA). 

Normality of residuals and homogeneity of variance were tested for each model. The analyses 

of the grass and non-grass species were similar to those in part II, with only two factors: Tree 
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and Livestock. Because of the high number of statistical tests in this study, and to avoid 

rejecting a null hypothesis when it is actually true (type I error) we applied adjusted 

Bonferroni corrections to p values for each group of variables (vegetation quantity, grass 

quality and soil properties) for all analyses. Similarly, post hoc t-tests with Bonferroni 

corrections were always used to compare means between the significant factors.  

 

3. Results 

3.1 Complete model for both seasons 

Globally, the results obtained in gullies had very high variability compared to inter-gully 

areas (see part II of this chapter). Season had no significant effect on root biomass (as in the 

inter-gully area), BD, Csoil and Nsoil. Other variables in both seasons were significantly 

affected by Season (Table 1).  

 

Table 1. Three-way ANOVA results (F values) of the simplified mixed model for variables 

measured in both seasons with fixed factors Season (Dry, Wet), Tree (Tall, Control=no 

acacia), Livestock (Fenced, Unfenced) and with a random term for each plot. Adjusted 

Bonferroni corrections were applied to p values. * indicates significant p values after 

Bonferroni corrections. Each model was simplified so some F values are not displayed (-). 

 

Vegetation variables 

Error 

Season Tree Livestock 

Tree: Season : 

d.f. Livestock 
Tree : 

Livestock 

Dry grass biomass 31 51.89* 7.05* 7.94* 5.55 14.01* 

Non-grass biomass 33 12.5* 8.01* 5.87 - - 

Non-grass species 

richness 
33 6.35* 5.71 - - - 

Soil variables 
      

Soil moisture SW0-10 33 11.94* - - - - 

Soil moisture SW20-30 33 10.11* 5.95* - - - 

 

All significant variables had higher mean values in April than in November. Dry grass 

biomass increased from 84.54 ± 98.10 g m-2 to 236.52 ± 224.91 g m-2 (Fig. 1). Non-grass 

biomass increased from 9.75 ± 12.98 g m-2 to 24.77 ± 28.41 g m-2 (Fig. 2A). Non-grass 

species richness increased from 1.79 ± 1.88 g plot-1 to 2.43 ± 2.33 g plot-1 (Fig. 2B). Soil 

moisture SW0-10 increased from 130.55 ± 72.74 g kg-1 to 164.43 ± 64.31 g kg-1 (Fig. 2C) and 

soil moisture SW20-30 increased from 109.41 ± 44.77 g kg-1 to 138.93 ± 58.23 g kg-1 (Fig. 2D). 
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Biomass of Senecio inaequidens was higher in November 2008 (6.88 ± 18.16 g m-2 on 

average) than in April 2009 (1.55 ± 7.29 g m-2 on average) as for the inter-gully areas. Due to 

the seasonal cycles of Senecio inaequidens and a late onset of the wet season, November 2008 

samples were old, dry shoots of the previous growing season (2007-2008), while April 2009 

samples were new green shoots from the recent growing season (2008-2009).  

 

 

 

   

Figure 1. Effects of Season, Tree and Livestock on dry grass biomass. Means and standard 

deviations are displayed. Letters indicate significant p values between treatments. F: Fenced; 

UF: Unfenced; C: control; Tall: tall acacia; Nov: November. 
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Figure 2. Effects of treatments on non-grass biomass (A), non-grass species richness (B), Soil 

moisture SW0-10 (C) et SW20-30 (D) in gullies. Means and standard deviations are displayed. F: 

Fenced; UF: Unfenced; C: control; Tall: tall acacia; Nov: November. 
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3.2 April 2009 (end of wet season): Tree and Livestock  

Significant results were hardly reached due to the high heterogeneity of gullies 

inducing high variability in the results. However, Tree, Livestock and their interaction had a 

significant effect on dry grass biomass (Table 2). Tree significantly affected GE and 

Livestock affected grass species richness and non-grass biomass (Table 2). 

 

Table 2. Two-way ANOVA results (F values) in April 2009 for vegetation variables with 

Tree (Tall, Control= no acacia) and Livestock (Fenced, Unfenced). Analyses as for Table 1. 

 

Grass quantity variables 

Error 
Tree Livestock 

Tree: 

d.f. Livestock 

Dry grass biomass 31 6.05* 15.84* 9.82* 

Grass species richness 33 - 10.94* - 

Non-grass biomass 28 5.87 11.18* - 

Non-grass species richness 29 5.90 - - 

Grass leaf quality variables     

Gross energy 28 19.57* 5.83 - 

 

Dry grass biomass and GE were higher under acacias than in open areas (Fig. 1 and 

Fig. 3). Dry grass biomass increased under acacias when they were fenced (Fig. 1, significant 

interaction TreeXLivestock). Dry grass biomass (Fig. 1) and GE (Fig. 3) had higher and lower 

values in fenced plots, respectively. Grass species richness and non-grass species biomass 

were higher in fenced plots (Fig. 3 and Fig. 2A).  

 

   
Figure 3. Effects of treatments on gross energy (GE) and grass species richness in April 2009 

in gullies. Means and standard deviations are displayed. Letters indicate significant p values 

between treatments. F: Fenced; UF: Unfenced; C: control; Tall: tall acacia. 
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The main grass species present in the gully were slightly different from those found in 

the inter-gully area studied in part II (Table 3). Few significant effects were found for the four 

main species, except for Eragrostis plana which were more abundant under tall acacias. 

Otherwise, Paspalum scrobitulatum was only present under acacias and Cymbopogon 

plurinodis was only present on control plots.  

 

Table 3. Two-way factorial analyses of deviance (deviance values) on the 8 most frequently-

observed grass species with Tree (Tall, Control=no acacia) and Livestock (Fenced, Unfenced). 

The Tree X Livestock interaction was not significant and is thus omitted. NP is the number of 

plots where the species and dominant species were observed, from a total of 35 plots. 

Analyses as for Table 1. 

 

 
Presence/Absence 1st dominant 

Grass species NP Livestock Tree NP Livestock Tree 

Digitaria longiflora 27 - - 4 - - 

Sporobolus africanus 17 - - 5 - - 

Eragrostis plana 15 - 3.95 7 4.28 10.02* 

Chloris virgata 11 - - 3 - 5.03 

Hyparrhenia hirta 10 - - 7 - - 

Paspalum scrobitulatum 6 4.18 8.37* 1 - - 

Sporobolus pyramidalis 6 - - 3 - - 

Cymbopogon plurinodis 5 - 8.83* 3 4.57 5.03 
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The non grass species were little affected by Tree and Livestock. Schkuhria pinnata 

showed higher presence and the highest biomass under acacias (Table 4). 

 

Table 4. Two-way factorial analyses of deviance (deviance values) on the 6 most frequently 

observed non-grassy species with Tree (Tall, Control=no acacia) and Livestock (Fenced, 

Unfenced). Livestock and the Tree X Livestock interaction were not significant and are thus 

omitted. Analyses as for Table 1. 

 

Presence/Absence 
Highest 

Biomass 

Non-grassy species 
Total biomass 

harvested (g) 
Tree Tree 

Sida dregei 72.16 5.13 - 

Schkuhria pinnata 37.15 7.86* 10.90* 

Senecio inaequidens 13.58 - - 

Ledebouria floribunda 6.43 - - 

Helichrysum rugulosum 5.45 3.9 - 

Vernonia natalensis 1.94 - - 

 

 

After applying the adjusted Bonferroni correction, only Soil moisture SW20-30 was 

significantly affected by Tree and Livestock and their interaction (Table 5), presenting higher 

values under tall acacias and on fenced plots only when associated with tall acacias (Fig. 2).  

 

Table 5. Two-way ANOVA results (F values) in April 2009 for soil variables with Tree (Tall, 

no acacias) and Livestock (Fenced, Unfenced). Analyses as for Table 1.  

 

Soil variables Error d.f. Tree Livestock Tree : Livestock 

Soil moisture SW0-10 32 4.6 5.48 - 

Soil moisture SW20-30  31 7.28* 11.45* 11.56* 

pH 32 7.96 5.58 - 

Total N (Nsoil) 33 5.3  - 

 

 

  



 

Chapitre 5. III  206 

3.3 November 2008 (end of dry season-beginning of wet season): Tree effect 

Tree had a significant effect on dry grass biomass (Table 6). Dry grass biomass was 

higher under tall acacias than in controls with 102.84 ±98.20 g m-2 and 39.44 ±35.32 g m-2, 

respectively. Non-grass species biomass and richness were almost significant and had similar 

trends as for dry grass biomass. Livestock was not tested in November 2008 because fences 

were erected just prior to the sampling. 

 

Table 6. Two-way ANOVA results (F values) in November 2008 with Tree (Tall, no acacias), 

and Livestock (Fenced, Unfenced). Livestock and all interactions were not significant and are 

thus omitted. Analyses as for Table 1.  

 

Grass quantity variables 

Error 
Tree 

d.f. 

Dry grass biomass 32 5.61* 

Non-grass biomass 32 5.31 

Non-grass species richness 32 5.38 
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4. Discussion 

4.1 Do trees have a positive impact on grass and soil properties in gully areas? 

Acacias did not have an important impact on soil properties in the gullies. Only   

SW20-30 was higher under acacias in April. In the study of the inter-gully area (cf. part II), soil 

properties were also not very strongly affected by acacias. Only CEC, Mg2+ and Ca2+ were 

higher under acacias. This was explained by the input and decomposition of litter under 

acacias. In the gullies, due to the low vegetation cover (often completely bare soil or bedrock) 

and the high water flow, acacia leaves are probably easily washed away from under the 

canopy. The absence of effects of acacias on soil properties, especially Nsoil, even in such 

degraded areas, may be linked to the fact that acacias consume all the nitrogen produced by 

their root nodules. Conditions appear so bad in gullies in terms of nutrients and water 

availability due to very thin (or even non-existent) soil (Reubens et al. 2009) that acacias did 

not produce excess nitrogen in the soil.  

The main effect of acacias in gullies was on grass biomass, which, unlike in the inter-

gully areas, increased significantly under acacias in both seasons. In this degraded area with 

low vegetation cover and affected by strong evaporation, the acacia shade reduced soil 

temperature and evapotranspiration (Belsky, 1994), which may be important for the grass 

layer to develop. Treydte et al. (2007) did not find that grass biomass increased under acacias 

in low fertility sites. However, they found that grass quality under trees, especially nitrogen 

and phosphorus content of grass leaves was enhanced in low fertility sites. In our case, gross 

energy of grass leaves was significantly higher under acacias. 

There was a significant impact of acacias on grass species composition unlike in the 

inter-gully areas. Eragrostis plana was more often dominant under acacias. This species is 

however a poor grazing grass and is usually associated with overgrazing (Tainton et al. 1990). 

This could be linked to the fact that, in the gullies, cattle grazed more under acacias where 

grass is more abundant. Paspalum scrobitulatum was more common under acacias. It grows 

in disturbed areas but only when soils are humid enough (Tainton et al. 1990) which may 

explain their higher frequency under acacias where soil moisture was higher. Contrastingly, 

Cympopogon plurinodis was more common on controls. It is a poor grazing grass due to the 

essential oils it contains which gives a bitter taste (Tainton et al. 1990). Species such as 

Chloris virgata or Digitaria longiflora reflect the poor condition of the gully areas as they are 

known to grow in disturbed areas (Oudtshoorn 2004). 

Non-grass species were little affected by acacias. In contrast to the results presented in 

part II, there was a non-significant effect of acacias on Senecio inaequidens. This result may 

be due to the much degraded gully areas which do not promote the growth of S. inaequidens 

under acacias or in controls. 
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4.1 Does the impact of trees on grass and soil properties in gullies change with the 

season? 

The absence of significant interaction between Tree and Season indicated that the Tree 

effect on grass and soil layers was not modified between the two study periods (Table 1). For 

both periods, Tree significantly affected dry grass biomass. SW20-30 was significantly affected 

by Tree in April but not in November, which does not appear as a significant interaction in 

Table 1. Non-grass biomass was also affected by Tree when samples from both seasons were 

taken into account (Table 1) but not for each season taken separately. This suggests that the 

number of samples for each season was too low to obtain significant results (Type II error). 

Despite the higher number of samples taken under acacias and outside of acacia canopies than 

in the inter-gully area (cf. Part II.), the high heterogeneity of the gullies in terms of soils and 

vegetation induced high variability. All significant effects of Season followed the results 

obtained for inter-gully areas (cf. Part II). Soil moisture, grass and non-grass biomass and 

non-grass species increased in April following the vegetation cycle and the higher availability 

of water in the wet season in April.  

 

4.2 How does livestock affect tree-grass interactions? 

Despite the low number of replicates of the Livestock treatment, results were 

significant for some variables. Absence of livestock modified the effects of tree-grass 

interactions by increasing soil moisture at 20-30 cm and dry grass biomass under acacias in 

April. Livestock effect was thus negative on grass and soil in gullies. These results follow the 

commonly-reported result that cattle decrease grass biomass by grazing (Kölbl et al. 2010; 

Mbatha and Ward 2010). As grass biomass was higher under acacias than outside, cattle may 

have been attracted by the understorey grass when walking in gullies and thus had a greater 

effect on grass located under acacias than outside. The humidity increase under fenced acacias 

was thus probably related to the soil protection by the higher grass cover and to the acacia 

shade which also limits direct evaporation from soil surface. 

 

5. Conclusions 

Our results suggest that acacias in gullies may have an important effect on soil 

stability by increasing grass cover under their canopies. Grasses can modify the hydro-

geological processes and the mechanical structure of the soil (Comino and Druetta 2010) and 

is usually associated with less runoff and erosion (Michaelides et al. 2009, Podwojewski et al. 

in press). An et al. (2009) suggested that revegetation of eroded soils by grasses accelerates 

soil rehabilitation. Soil shear strength in gullies was reinforced by grass presence (Dabney et 

al. 2004). Acacias by itself have also been recognized to limit gully erosion (Reubens et al. 



 

Chapitre 5. III  209 

2009). Acacias, associated with protecting gullies from livestock, could help maintaining and 

even restoring some parts of the gully system and should be kept in the gullies.  
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I. Apports scientifiques de l’étude sur les mécanismes de l’invasion 

ligneuse dans les pâturages ravinés 

Ce travail a porté sur l’étude de l’invasion ligneuse dans un pâturage du piedmont du 

Nord du massif du Drakensberg de la province du KwaZulu Natal (Afrique du Sud) en lien 

notamment avec l’érosion en ravine. Quatre principales questions ont été formulées : 

 

1) Comment l’invasion ligneuse et l’érosion en ravine ont-elles évolué à l’échelle du 

bassin versant au cours des 64 dernières années ? Notamment, comment l’hydrodynamique et 

les propriétés du sol interviennent-elles sur la répartition spatiale des acacias ?  

L’analyse de photographies aériennes a permis d’étudier ce système à une large 

échelle temporelle et spatiale. La formation d’une savane à partir d’un pâturage 

originellement exclusivement composé par des espèces herbacées, a été possible en à peine 35 

ans passant de 0 % de couvert arboré à 9,45 %. A la vue des taux d’invasion et des surfaces de 

couverts arborés observés dans la région, de 31 % au Swaziland (Roques et al. 2001) jusqu’à 

parfois 66 % de couvert arboré dans le district de Hlabisa près de Hluhluwe (Wigley et al. 

2009),  le pâturage de Potshini pourrait encore subir une forte augmentation de son couvert 

arboré.  

L’érosion en ravine s’est révélée très importante avec un taux moyen de 200 Mg ha-1 

an-1 reflétant les profondes ravines de cette région du KwaZulu-Natal. Les propriétés du sol et 

du sous-sol se sont avérées jouer un rôle important dans ce pâturage semi-humide semi-

tropical. Les fortes teneurs en argile, tout particulièrement, peuvent limiter le développement 

des acacias et donc influencer leur répartition spatiale.  

 

2) Comment les principaux facteurs de contrôle de l’invasion agissent-ils sur les premiers 

stades de la population d’Acacia ? 

Cette question est primordiale pour la compréhension du système « arbre-herbe » des 

savanes. Nous avons pu mettre en évidence la prépondérance de l’influence de la strate 

herbacée sur la germination et la survie des plantules d’Acacia sieberiana. La strate herbacée, 

en compétition pour l’eau, les nutriments et la lumière avec les plantules est le principal 

facteur limitant le passage du stade plantule au stade jeune arbre dans ce système semi-

humide. Ce résultat implique que des facteurs tels que le feu ou l’herbivorie réduisant le 

couvert herbacé ont un effet indirect positif important sur la survie des plantules. Nous avons 

aussi pu montrer que l’effet global des herbivores ne se limite pas à l’herbivorie et que le 

transit des graines d’acacia et les bouses de vaches peuvent contrebalancer en partie l’effet 

positif de l’herbivorie sur la survie des plantules. Les différences de résultats entre la serre et 

le terrain pour le facteur « transit digestif » montre une fois de plus les spécificités liées au 

terrain et la nécessité de mener de telles expériences à la fois en conditions contrôlées et en 
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conditions naturelles. Cette étude a porté sur la germination et les plantules d’A. sieberiana, 

mais l’herbivorie et le feu peuvent aussi affecter les stades ultérieurs des populations 

ligneuses. Les résultats tirés de la littérature montrent des effets indirects positifs de 

l’herbivorie sur la croissance des arbres : un couvert herbacé réduit (affecté par l’herbivorie) 

permet une meilleure croissance des arbres à différents stades et notamment jusqu’au stade 

adulte (Riginos 2009). Au contraire, l’herbivorie peut limiter le développement de jeunes 

arbres par action directe de consommation des feuilles (Augustine et McNaugton 2004). Le 

feu peut également limiter la croissance de jeunes arbres ou d’arbres adultes si son intensité 

est suffisante (Bond et Keeley 2005). Le rôle des herbivores et du feu dans un tel système est 

donc ambivalent et nécessite des études plus approfondies prenant en compte les différents 

stades des populations ligneuses et les interactions existant entre ces deux facteurs de 

perturbations.  

 

3) Quel est le lien entre la population d’Acacia et les ressources en eau du sol et 

particulièrement les profondeurs de prélèvement d’eau?  

Nous avons montré que les acacias présentent des stratégies différentes de 

prélèvement de l’eau dans les différents horizons du sol en fonction de leur taille et de leur 

position dans la toposéquence. La séparation des niches selon le modèle à deux couches de 

Walter (1971) proposé dans l’équilibre du système « arbre-herbe » est une hypothèse réaliste 

dans cet écosystème notamment avec les acacias de grande taille qui pompent en profondeur.  

Le changement de profondeur de prélèvement de l’eau des jeunes acacias en fonction des 

saisons va dans le sens d’une diminution de la compétition interspécifique avec l’herbe et 

pourrait ainsi favoriser la survie et la croissance des jeunes acacias. Par conséquent, l’invasion 

par la population d’acacias pourrait être favorisée.  

 

4) Quelles sont les conséquences de l’invasion ligneuse sur l’érosion en ravine et sur les 

propriétés du couvert herbacé et du sol?  

Contrairement à ce qui est admis, les arbres ont été associés dans cette étude à une 

augmentation de l’érosion en ravine agissant probablement sur les processus de subsurface 

(comme par exemple une augmentation de l’infiltration de l’eau par écoulement le long des 

racines) en amont des ravines. Il a été parallèlement montré que ces ravines dépendent 

d’ailleurs principalement des mécanismes de subsurface et du gonflement-retrait des argiles 

provoquant la chute de blocs des flancs de ravines. En parallèle de cet effet sur l’extension des 

ravines, les arbres localisés dans les zones d’inter-ravines favorisent la présence de Senecio 

inaequidens sous leur canopée, plante toxique pour le bétail et les chevaux. C’est seulement 

dans les ravines que les arbres ont réellement montré un effet bénéfique en augmentant le 

couvert herbacé susceptible de maintenir le sol en place. 
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II.  Implications de ces résultats pour la gestion des pâturages 

Les résultats obtenus montrent l’importance de la spatialisation des acacias dans le 

pâturage et mettent en évidence les zones à considérer pour une gestion adaptée de ce type de 

pâturage. Comme il l’a été discuté dans la conclusion du chapitre 5 partie II, les premières 

mesures doivent porter sur le contrôle de la population de Senecio inaequidens. Ceci est 

possible par l’augmentation et la gestion du nombre de caprins et ovins qui pourraient aussi 

avoir un effet bénéfique sur le contrôle de la population d’acacias. En effet, les ovins et 

caprins ne sont pas sensible à la toxicité du Senecio et le consomment. Ils ont également un 

impact plus fort que le bétail sur les acacias par leur active consommation des feuilles 

d’acacias (Oates 1956, Dollahite 1972). En supposant que la population de Senecio 

inaequidens peut être contrôlée, les acacias ont globalement montré des effets positifs sur le 

couvert herbacé et sur les sols sous-canopée, tout particulièrement dans le fond des ravines. 

Cependant leur impact à grande échelle sur l’extension des ravines, lorsqu’ils sont localisés 

dans les zones de drainage des têtes de ravines n’est pas négligeable. A partir de ces 

informations, il est donc possible de prédire les zones prioritaires dans lesquelles une 

limitation de la densité d’acacias est souhaitée.  

En utilisant une carte du réseau hydrique il est possible d’identifier les zones de 

drainage des têtes de ravines susceptibles de pouvoir évoluer (têtes de ravines actives) et de 

construire une carte des zones prioritaires à traiter (Fig. 1). Il est important de conserver les 

arbres dans les ravines car ils permettent de stopper l’exportation des sédiments, de créer des 

« îles » où la végétation herbacée pourra éventuellement recoloniser le milieu améliorant 

d’autant plus la stabilité du sol.  

 
Figure 1. Carte des zones de drainage (en rouge) où les acacias sont susceptibles d’augmenter 

l’extension des têtes de ravines dans le pâturage de la communauté de Potshini. 



 

Conclusion  215 

L’impact du bétail est aussi important dans ce type d’écosystème et la protection des 

ravines contre le bétail pourrait favoriser la recolonisation des fonds de ravines par une 

végétation herbacée indispensable à la fixation du sol. Ainsi les surfaces de pâturage perdues 

en amont des ravines pourraient être en partie compensées par l’utilisation contrôlée des fonds 

de ravines.  

Les techniques d’éclaircissement de la population ligneuse et de protection contre les 

herbivores sont bien documentées dans des ouvrages tels que Veld Management in South 

Africa par Tainton (1999). Le feu est très souvent employé pour limiter le développement des 

espèces ligneuses. Son utilisation est donc indispensable mais doit être contrôlée et les 

fréquences et intensités des feux modulées en fonction des spécificités du site. Il n’est pas 

évident que le feu seul, permette de maintenir des densités faibles de ligneux. Il faut plutôt 

regarder l’association du feu et du bétail. Une étude de Tainton (1999) sur 6 ans a montré que 

la présence de bovins sans application de feux augmentait de 64 % la densité d’arbres, alors 

qu’un traitement avec des feux (2 en 6 ans) et une charge légère continue de caprins ne 

modifiait pas la densité d’arbres. En parallèle de la gestion des feux et du bétail qui est 

indispensable au maintien durable des pâturages, des actions ponctuelles locales de coupe ou 

destruction d’arbres sont possibles par des méthodes physiques ou chimiques. Il est de toutes 

façons nécessaire de planifier une gestion à long terme de l’invasion ligneuse dans les 

pâturages car c’est un processus qui évolue dans le temps et qui, même s’il est contrôlé par 

des actions ponctuelles sera toujours une menace potentielle pour les pâturages. Dans le 

contexte actuel d’augmentation du dioxyde de carbone dans l’atmosphère, la coupe des 

arbres, connus pour stocker le carbone, n’est guère dans l’air du temps. Cependant, la perte 

des écosystèmes naturels de pâturages n’est pas seulement préjudiciable à l’homme en tant 

que ressource alimentaire pour le bétail, mais aussi à toute la faune et la flore sauvage très 

spécifique que les pâturages hébergent. De plus, il n’est pas évident que la présence d’arbres 

dans ces écosystèmes permette de réellement stocker le carbone, du moins cela dépendrait du 

climat : les zones envahies plus sèches montrent effectivement un stockage de carbone 

organique dans le sol tandis que les zones plus humides présentent au contraire une perte de 

carbone organique du sol (Jackson et al. 2002). 
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III.  Perspectives 

A partir de cette étude, plusieurs questions et thématiques de recherche futures 
peuvent être dégagées : 

1) L’aspect spatial de l’invasion d’arbres n’a finalement été qu’abordé ici et la 
compréhension des processus de compétition intra-spécifique pourra être approfondie 
par des études à grande échelle temporelle et spatiale des populations de ligneux. C’est 
un des objectifs des travaux récemment entamés avec le Prof. Kerstin Wiegand. 

2) L’association de différentes disciplines telle que l’écologie et la géophysique n’en est 
qu’à ses prémices. Toujours dans cette optique de large échelle (spatiale au moins), 
cette association pourra apporter de nombreuses réponses quant à la dynamique 
spatiale des populations ligneuses en fonction des propriétés du sol qui a encore été 
peu explorée. L’obtention de carte d’humidité des sols à large échelle est envisageable 
avec la géophysique. Il sera alors possible d’étudier comment la ressource en eau du 
sol modifie la répartition spatiale des arbres. 

3) Les résultats montrant un effet positif des acacias sur l’extension des ravines amènent 
de nombreuses questions sur les mécanismes impliqués. Peut-on étendre ces résultats à 
d’autres zones ravinées et d’autres climats? Existe-t-il un lien entre le système 
racinaire des acacias et le réseau de drains internes « pipes » dans ce bassin versant? 
Quels sont les mécanismes prépondérants qui modifient l’hydrologie de surface ou 
subsurface en lien avec les arbres dans les pâturages? Cette dernière question fait 
intervenir les relations eau-sol-plantes pour lesquelles de nombreux aspects restent à 
étudier. Est-ce que d’autres acteurs jouant un rôle sur le sol, telles les termitières, 
peuvent aussi influencer les systèmes de drains de subsurface et accélérer l’érosion en 
ravine? 

4) C’est aussi en comparant les sites, les espèces invasives, les climats, en réalisant des 
synthèses à l’échelle globale que l’on pourra déterminer plus finement les interactions 
entre les mécanismes régissant l’équilibre du système « arbre-herbe ». L’expérience de 
germination réalisée dans cette étude serait intéressante à répliquer dans différentes 
zones climatiques avec une prise en compte de plus de facteurs (intensité de feu, 
différentes charges d’animaux, etc.). Modéliser le système pourraient aussi être 
envisagé afin de prendre en compte les nombreux facteurs et acteurs d’un tel système 
et d’en extraire les processus importants. Dans ce cadre, les modèles matriciels où les 
différents stades de la population ligneuse peuvent être pris en compte de façon simple 
pourraient se révéler très utiles. Il s’agit d’un projet en cours avec Sébastien Barot 
pour lequel nous possédons toutes les données. La modélisation multi-agent pourrait 
aussi permettre une approche intéressante de ces systèmes impliquant de nombreux 
paramètres et interactions. Une intégration spatiale de la population est envisageable 
dans la modélisation multi-agent ainsi qu’une dimension sociale qui s’avère 
importante dans tout agro-écosystème. Ces modèles pourraient constituer la base d’un 
outil d’aide à la décision où les effets des différents agents/acteurs/facteurs peuvent 
être simulés pour prédire des évolutions à long terme du pâturage en fonction de la 
gestion en cours. 
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Annexe 1. Résultats des analyses de trois profils de sol 

Résultats de l’analyse des principaux parameters physico-chimiques de trois profils de sol 

localisés en haut, milieu et bas de versant (Upper, Middle, Lower). 
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Abstract 

Although dung beetles are known to perform a multitude of ecosystem services, their 

effects on water infiltration, runoff, porosity, moisture and erosion of soil have never been 

thoroughly researched. Maintenance of these hydrological properties is important in agro-

ecosystem functioning where overgrazing results in negative impacts on the soil. The study 

site was located in the Potshini catchment in Kwazulu-Natal (South Africa), an area heavily 

grazed by livestock. We conducted two rainfall simulations on three 1 m2 control (no dung) 

and six dung-treated plots in December 2008, and repeated the study in June 2009 on the 

same plots. Natural populations of dung beetles were all owed to colonise the dung. Simula- 

tions were conducted for 30 min at an intensity of 30 mm h-1. Key variables calculated were 

pre-runoff amounts (Pi), infiltration ratios (Ki), and soil losses. Samples were collected for 

bulk density determination during the same time periods in order to measure differences in 

porosity and moisture in control and dung-treated plots at different depths. Using multivariate 

statistics we found significant differences between dung-treated and control plots in three of 

four simulations. After 48 h of beetle activity, Pi and Ki values were significantly increased 

and remained at elevated levels six months later. Soil losses were initially higher in dung-

treated plots than controls, but had declined to less than control values after six months. Bulk 

density in the A-horizon (0–10 cm) was significantly reduced after 48 h of beetle activity and 

remained so for six months. No difference in bulk density was observed at greater depths. Soil 

moisture initially increased significantly in the A-horizon, as well as at 20 and 30 cm depths 

after six months of activity. We conclude that dung beetles positively influence hydrological 

properties of the soil by increasing water infiltration and soil porosity, and reducing surface 

water runoff. Contrasting effects on soil losses are problematic to reconcile from this study. 

High losses initially observed may be offset in the long-term by reductions associated with the 

increased infiltration ratios, though this remains to be confirmed. 
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Abstract 

In most regions of the world overgrazing plays a major role in land degradation and 

thus creates a major threat to natural ecosystems. Several feedbacks exist between 

overgrazing, vegetation, soil infiltration by water and soil erosion that need to be better 

understood. In this study of a sub-humid overgrazed rangeland in South Africa, the main 

objective was to evaluate the impact of grass cover on soil infiltration by water and soil 

detachment. Artificial rains of 30 and 60 mm h-1
 were applied for 30 min on 1 m2 micro-plots 

showing similar sandy-loam Acrisols with different proportions of soil surface coverage by 

grass (Class A: 75–100%; B: 75–50%; C: 50–25%; D: 25–5%; E: 5–0% with an outcropping 

A horizon; F: 0% with an outcropping B horizon) to evaluate pre-runoff rainfall (Pr), steady 

state water infiltration (I), sediment concentration (SC) and soil losses (SL). Whatever the 

class of vegetal cover and the rainfall intensity, with the exception of two plots probably 

affected by biological activity, I decreased regularly to a steady rate <2 mm h-1 after 15 min 

rain. There was no significant correlation between I and Pr with vegetal cover. The average 

SC computed from the two rains increased from 0·16 g L-1
 (class A) to 48·5 g L-1 (class F) 

while SL was varied between 4 g m-2
 h-1

 for A and 1883 g m-2 h-1
 for F. SL increased 

significantly with decreasing vegetal cover with an exponential increase while the removal of 

the A horizon increased SC and SL by a factor of 4. The results support the belief that soil 

vegetation cover and overgrazing plays a major role in soil infiltration by water but also 

suggest that the interrill erosion process is self-increasing. Abandoned cultivated lands and 

animal preferred pathways are more vulnerable to erosive processes than simply overgrazed 

rangelands.
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Annexe 4. Mesure de conductivités électriques sur plusieurs 
profils de sol  
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Annexe 5. Principe de l’inversion bayésienne sur les mesures de 
l’EM38-MK2 

 

Bayesian inversion of Slingram EM38 data for topsoil and 

subsoil geoelectrical characterisation 
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Cette annexe ainsi que l’annexe 6 font parties d’un article méthodologique sur l’inversion 

bayésienne en cours de préparation.  
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1. Introduction 

Slingram methods are widely used to characterize the first soil horizons, thanks to the 

fact that the soil layer involved changes in the conductivity which is the target of this 

inductive electromagnetic method. Among the available devices, the EM38 and the new 

EM38-MK2 from Geonics involve scales that match the common first soil layer (Corwin and 

Lesch 2005). A very informative documentation on the instrument and Slingram in general is 

provided by GEONICS in their Technical Note n°6, “TN6”, that is available on line for a long 

time (Mc Neill 1980). The EM38 involves a 1-m coil spacing (1 transmitter coil and one 

receiver coil) while the EM38-MK2 has three coils (1 transmitter and two receivers) and 

involves two spacings: 1 m and 50 cm. Geonics also market apparatus with 2 m (EM31-SH), 

3.66 m (EM31), 10, 20 and 40 m (EM34). Other brands propose equivalent systems, like 

(DUAMLEM, see for instance Saey, 2009), which are also used for shallow investigations. 

Abdu et al. (2007) compares the EM38 and the DUALEM-1S. 

The Slingram method is very popular because it allows fast measurements of electrical 

conductivity EC (no galvanic contact required), and it can be used for several purposes. EC is 

a major parameter available from geophysics and depends of soil parameter that draws 

attention to soil scientists and environmentalists. It is used to assess soil salinity processes 

(Rhoades et al. 1989, McNeill 1992, Williams and Baker 1982, Sudduth et al. 2001, Lesch et 

al. 1995), for example in precision agriculture (Lund et al. 1999, Mueller et al. 2003, Sudduth 

et al. 2001, Kitchen el al. 2005), or for geomorphologic and sedimentation purposes (Saey et 

al. 2008, Kitchen et al. 1996), and is useful to characterize the water content (Hanson and 

Kaita 1997; Hezarjaribi and Sourell H. 2007; Kachanoski 1990; Khakural et al. 1998; Brevik 

et al. 2006; Sherlock and McDonnell 2003) or/and clay content (Cockx et al. 2007, Doolittle 

et al. 1994, Kitchen et al. 1999). Slingram contributes to the study of the interaction between 

plants and soils through the conductivity (Myers et al. 2007; Hossain et al. 2010). 

Depending on the user requirements, the data can be used in a qualitative mode, for 

instance to delineate specific areas (salted or clayey areas for instance) or in a quantitative 

mode, in which quantitative parameters are to be determined. This case involves the 

determination of the conductivity of a given layer (or area) to be converted into hydrological 

parameter (water content, clay amount) and also the geometrical organization of the soil, in 

terms of thicknesses of the first layers. In the first case, the survey is rapid and do not involve 

accurate conductivity determination. In the second case, a high attention must be paid to the 

field procedure and data post-processing, due to the main drawback of the slingram: the drift. 

The drift is inherent to the apparatus configuration. Precisely, the secondary field only, 

generated within the ground, is proportional to the ground conductivity, but the receiving coil 

also intercepts the flux of the primary field, much stronger than the field resulting from the 

induction in the ground. This primary field is compensated electronically, but is prone to the 

electronic drifts due to temperature dependence of the in-built semi-conductors, the battery 

voltage decrease and the device stand deformation (of thermal origin too). Robinson et al. 
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(2004) provided a study on the EM38 drift, and Sudduth et al. (2001) proposes a procedure to 

reduce its effects, in a paper devoted to precision agriculture.  

The drift is a default in compensating the primary field and is an additive effect, 

although it is not an amplitude compensation, but a delicate phase adjustment of the in-phase 

in quadrature signals separation. It is strong just after the device has been turned on, and it is 

necessary to wait a few minutes prior to acquire data, for electronic thermal stabilization. 

Then the most sensitive effect is due to the direct sun exposure, and it is much better to 

remain aligned with the sun that varying the orientation of the stand. Working during cloudy 

condition is much better.  

In our experience, the drift of the EM38 can reach tens of mS m-1 within one hour. For 

the EM38-MK2, the drift has been reduced effectively to 1 or 2 mS m-1 for the same duration, 

as far as the 1m spacing is concerned. The 50 cm spacing behaves like the 1 m spacing of the 

older device. How to manage the drift is discussed further in the paper. 

The Slingram device measurement integrates the ground conductivity below the 

instrument as described by McNeill in his reference paper (1980). Actually Slingram can be 

used for 3-D structure targeting like in mining, or to characterize the geoelectrical parameters 

of a layered medium, typically the first soil horizons. In the present paper, we only deal with 

the second kind of objective and we are only concerned by the 1-D conductivity dependence 

with depth, not deeper than the EM38 depth investigation, saying 2 meters. By eliminating the 

unlikely event that a huge conductive thin layer exists, we consider that a maximum of three 

homogeneous layers can been resolved, whatever the measurement procedure is. It is an 

inverse problem, and the precise subject of this paper. 

 

2. The EM38: basics, field procedure, accurate drift correction 

2.1  Basics 

The Technical note written by McNeill (1980) provides the response of the apparatus 

in the presence of a layered media. In the present paper, we mainly consider a two 

horizontally (parallel to the surface) layered structure with an upper layer of conductivity 1σ  

and thickness h, and a second layer of conductivity2σ . In the VDM (Vertical Dipole Mode), 

the apparent conductivity (while the device is lying on the ground) is given by (s being the 

inter-coil spacing): 

[ ] )z(R)z(R1 V2V1
V
a σ+−σ=σ     with    

1z4

1
)z(R

2V
+

=     where   s/hz=  

The HDM (Horizontal Dipole Mode) is given by: 

[ ] )z(R)z(R1 H2H1
H
a σ+−σ=σ     with    z21z4)z(R 2

H −+=  
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Most of the time, both modes VDM and HDM are used together. This “pair” of data 

can also be substituted by using two different instruments, like in Sudduth et al. (2010) who 

use both EM38 from GEONICS and DUALEM-2S from DUALEM to characterize a clayey 

horizon.  

An alternative field procedure consists in holding the apparatus at a given height Z 

above the ground to provide an additional measurement. Then the apparent conductivity 

integrates in a different way the conductivity with depth: the weight of the shallow depths 

(topsoil) is decreased while the greater depth (subsoil) contribution is higher. Then the 

apparent conductivity is given by (this for the vertical mode, the horizontal being 

straightforward): 

Z
a 1 V V 2 V

Z h Z h Z
(T) R R R

s s s

+ +      σ = σ − + σ      
      

. 

More generally, EM induction “soundings” can be performed with Slingram by two 

methods:  

• Method 1: increase of the coil spacing; as far as GEONICS is concerned, one 

could join all or at least two of the devices EM38-MK2, EM31-SH, EM31, 

EM34, that gather the spacings: 0.5 m, 1 m, 2 m, 3.66 m, 10 m, 20 m, and 40 m 

and the use of both vertical and horizontal modes permits to collect 14 

independent values. Such a method is used for instance by Triantafilis and 

Monteiro Santos (2009), by using EM38 and EM34 systems and the same 

authors in 2010 with an EM38 and an EM31. The “pair” of data VDM and 

HDM can be substituted in the same way to reach two different investigation 

depths by using two different instruments, like in Sudduth et al. (2010) who 

use both EM38 from GEONICS and DUALEM-2S from DUALEM to 

characterize a clayey horizon.  

• Method 2: increase of the height of a single instrument above the ground, like 

in Hossain et al. (2010). The higher the instrument is, the deeper the 

investigation depth, but at the same time the S/N ratio is decaying due to the 

increasing remoteness.  

 

2.2 Calibration: note on the classical scheme 

The EM38 requires two main calibrations steps: the first devoted to the in-phase 

component (providing a signal depending on the susceptibility –not discussed here), and the 

second devoted to the compensation of the primary field phase error, which is discussed 

hereafter. The second step concerns the quadrature-phase signal, and actually consists in 

vanishing the drift value at one point. Following this, the drift may reach several mS/m in a 

few minutes or tens of minutes, and hence must definitely be taken into account and corrected 

for.  
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This usual calibration scheme is based on the following and is based first on a thin 

conductive layer response at a distance z underneath the instrument. This case leads to a 

couple of response in VDM and HDM that have the ratio: 

).z(
)1z4(z2)1z4(

z4
22/32

H

V ϕ=
+−+

=
Φ
Φ

 

 

The function )z(ϕ is plotted on Figure 1.  

 
 

Figure 1. Ratio of Φv/ΦH plotted against the distance z (m) 

 

The ratio tends to 2 while z increases with 7% accuracy when z=1.5. This is the base 

of the calibration method (vanishing the offset drift) suggested by GEONICS in the EM38 

manual: the ratio is adjusted to be 2 when the apparatus is put at 1.5 m height above the 

ground. The 7% error could appear not enough accurate, however this applies to a couple of 

measurements already relatively far from the ground. Precisely, the error is less than 1 mS/m 

in absolute if the conductivity observed at this height is less than 14 mS m-1 (7% of 14 mS m-1 

=1 mS m-1). This value would be the apparent conductivity we would observe at this height if 

the half-space had a homogeneous conductivity of 44 mS m-1. In other words, this calibration 

procedure is accurate at the level of 1/44=2%, and generally it is even better because not only 

the very superficial layers contributes to the signal but the deeper ones too and even more (by 

integration), and also because the natural heterogeneities would make a higher accuracy 

requirement unrealistic. It is a fact that this matter of accuracy after calibration is rarely 

mentioned in the literature, this could be because these devices are more often used for 

qualitative featuring than accurate inversion.   

If the EM38-MK2 is used, it involves also 50 cm coil spacing and we must consider 

that we have two instruments in one (even if the transmitter is common) and do the calibration 

separately for both spacings. The equivalent required height to calibrate is 1.5 m/2=75 cm, but 

of course the 1.5 m is even better and can be used at the same time than for the 1 m spacing.  
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2.3 Field procedure and accurate drift corrections  

With the modern EM38, the data can be recorded by using an “auto”, walking mode, 

in which the measures are collected with a time rate of several readings per second. However, 

this introduces disturbances and fluctuations in the data (for instance because the height of the 

device above the ground is not strictly constant) and should be avoided if inversion of the data 

is planned. Then a regular grid or any kind of profile can be undertaken, by using any 

positioning system. In the following, we use in this study a regular grid obtained by gathering 

lines spaced by 5 meters. Also equally-spaced data in each line (called stations, as usual in 

geophysics) are collected with the same spatial sampling rate. The x-axis of the map matches 

the line number while the y-axis is relative to the stations. Profiles are parallel to the lines (y-

axis) and are 50 m long.  

The main difficulty to manage when accuracy better than 1 or 2 mS m-1 is required is 

relative to the drift. Although it has been strongly reduced in the 1-m spacing of the recent 

EM38-MK2, it is significant in the previous generation but also in the EM38-MK2 as far as 

the 0.5 m inter coil distance is concerned. This drift is purely instrumental, and can be due to 

some dilatation of the “chassis”, or to electronic drifts, and is mainly due to temperature 

effect, as previously mentioned.  

In his already cited paper, Robinson et al. (2004) provided a study of the cause of the 

drift, and some means to reduce its effect. He reported the drift in terms of % of the 

measurement, but we prefer consider that it is an offset instead of a factor and hence we 

consider the drift as an additive effect (a shift). Although the drift is not very critical when 

observing high conductivities and when the need is semi-quantitative (for instance when used 

to map relative salinity), it becomes prohibitive when it is reaches the same order of 

magnitude than the expected signal, and this is frequent when the conductivity is low, saying 

less than 10 mS/m, and prevent any possibility of accurate inversion.  

Several strategies can be used to reduce the effects of the drift; 

- Posterior filtering basics on expected statistic to which the signal is forced (for 

instance, assuming that all the means of the different profiles should be equals). This 

procedure can by satisfying but misses the absolute values; 

- Repeating calibration as soon as possible (for instance for each profile). However this 

is only efficient a short time after the calibration operation; 

- Using cross-over profiles, and reduce the drift by analysing the cross-over 

discrepancy, from the beginning;  

- Measuring it regularly, establish a curve by interpolation, and correct for this drift. 

This is the same method than the one used in gravity of magnetic (for instrumental of 

natural time variations). 

 

According to us, the later is the most accurate method, and we describe below a 

detailed method which can be used in practice, based on the theory of the instrument. 
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Managing the drift with efficiency: 

In any case, it is relevant to calibrate the instrument at the very beginning of the 

survey. Then, to estimate the drift, a first method consists in performing regular 

measurements in time, at the same location, and this permits to collect a set of data to be 

interpolated in time. This first method has a disadvantage. It is time consuming because it 

requires coming back regularly in time at the same location (typically each 15 min).  

A second method we tested is much more efficient. It consists in calculating the drift 

at any location by using the factor 2 principles at 1.5 m height. The method begins with the 

computation of the drift suggested by GEONICS in the EM38 to calibrate the instrument, but 

goes further in the use of this calculation. First consider that the instrument is drifted (actually 

shifted!), and then we have: 

2
)5.1(

)5.1(
a
H

a
V ≠

σ
σ

 at 1.5 m height (in the following we drop the reference to this height). 

The offset C to be applied to the readings to get a factor 2 exactly is obtained by solving the 

equation: 2
C

C
a
H

a
V =

+σ
+σ

 from which we can derive C as a
H

a
V 2C σ−σ= . Applying C to the 

readings corrects from the drift, and then the drift is simply: 

 a
V

a
H2CD σ−σ=−= . 

 

It follows this practical method to correct from the drift: 

- First make an initial calibration ; 

- 1st drift measurement: instrument 1.5 m above the ground, “where you are” 

- Making a set of measurement (5 to 20) 

- 2nd drift measurement, “where you are” 

- Making a set of measurement 

- 3rd drift measurement, “where you are” 

- ... 

- ... 

- Last drift measurement, “where you are” 

No re-calibration has to be done (no adjustment of potentiometers), and the data are 

post-corrected from the drift by interpolation of the drift measurement at measured times. 

In this paper, we reached an accuracy lying between 1 and 2 mS m-1, by measuring the 

drift each 22 points. It would have been a little bit better to repeat each 5 or 10 points. 
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3. Inversion of the data 

3.1 Short review on non-Bayesian methods 

Several situations may arise: 

1) No inversion is done, and only raw conductivity maps are proposed;  

2) No inversion based on physical law is done, but some correlation between the 

apparent conductivity and the targeted parameter are established to convert the data 

into soil parameters. Domsch and Giebel (2004) use this method and for instance 

directly convert the apparent conductivity in texture features of the soil by using 

established correlations. Those methods are surely robust, but could miss the role of 

some “law of equivalence” and correlation between parameters;  

3) Inversion is done, with the number of data less than the number of parameter of the 

model; it is the so-called “undetermined case” (Menke, 1989). In that case, some a 

priori  information is necessary to perform the inversion. Within the EM38 

community, this a priori is often taken as a Thikonov regularization which consists in 

including a certain level of smoothness of the model. In term of a priori covariance 

matrix, it is equivalent to a diagonal dominant. It is the way suggested by Deidda et al. 

(2003) and Hendrickx et al. (2002); 

4) Inversion with the number of data being the same than the number of parameters (for 

instance two conductivities and one thickness to be retrieved from 3 apparent 

conductivities). It is named the “even-determined case”. Hence an analytical inversion 

should be possible. However it can be shown that it is feasible only under some 

conditions, and we discuss further this possibility in brief;  

5) Proper inversion where the number of data is higher than the number of parameter to 

be recovered: the “over determined case”. Then least-square (with or without 

damping) is the most common way to manage that case. 

 

Notice that a very general frame theory to encapsulate all the inversion methods is 

provided by the Bayesian approach, as shown by Tarantola and Valette (1982a and 1982b).  

We discuss below point 4) and 5) since the other points have been widely developed in 

the literature, and we will only deal with the simple two homogeneous layer model (because it 

followed the example case we choose): 

 

Model type 1: topsoil of conductivity 1σ  and thickness h, subsoil of conductivity 2σ

down to the limit if the investigation depth of the EM38 (saying about 2 m in practice). Three 

parameters are unknown: 1σ , 2σ  and h. 
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3.1.1 Analytical inversion with the classical EM38 (1 spacing s=1m) 

To retrieve three parameters{ }h,, 21 σσ , three measurements are required. With a 

classical EM38, it could be the two modes on the ground (VDM and HDM) plus a third 

measurement, for instance a measurement in the VDM with the instrument hold at a given 

height above the surface, for instance Z (=50 cm in our case), to gather an additional 

measurement with a larger depth investigation. The set of data leads to consider a system of 

three equations with three unknowns (with V
aσ and H

aσ are the data in VDM and HDM 

respectively (the apparatus on the ground) and Z
aσ the apparent conductivity when the device 

is hold vertically at a height Z over the surface.  

[ ] [ ]
[ ] [ ]
[ ] [ ]








σ+−σ=+σ++−σ=σ

σ+−σ=σ+−σ=σ

σ+−σ=σ+−σ=σ

h
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h
V
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1V2VV1
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H2H1H2H1
H
a

V2V1V2V1
V
a

VV
RRR)hZ(R)hZ(R)Z(R

RR1)h(R)h(R1

RR1)h(R)h(R1

 

The third term of each line is just a simplification for the notation.  

3.1.2 Analytical inversion with the EM38-MK2 (2 spacings s=1 m and s=50 cm) 

For the EM38-MK2, it is natural to consider both modes with the 1 m spacing but then 

we suggest keeping only the vertical mode for the 50 cm spacing. The horizontal mode has a 

very superficial response. As it is difficult to really lay down the apparatus horizontally at the 

surface especially in the presence of grass, this is the noisiest measurements that can be done. 

We can thus ignore it to keep three values only to be analytically inverted. Notice that the 

direct calculation can be improved by including a thin air layer that would take into account 

the effective height of the coil centre (even different depending on the vertical or horizontal 

mode).   

In that case, the system is: (the ~ hold for the 50 cm spacing).  

[ ]
[ ]

V
a 1 V 2 V

H
a 1 H 2 H

V
a 1 2V V V 2

1 R R

1 R R .

1
1 R R where R

h 1


σ = σ − + σ
σ = σ − + σ

σ = σ − + σ =  
 +

%

% % %

 

 

Mathematically speaking theses systems can be solved as far as the correspondence 

between the observations and the parameters is exact. When solving it by linearly eliminating 

first 1σ and 2σ leads to single equation f(h)=0 which can be solved numerically (or even 

analytically). The situation described above is ideal, but in practice, it is frequent that the 

existence of a solution is not assured. The data are marred by errors and the system we try to 

solve (like the two given above for the two kinds of EM38) may have no solution at all. It is 
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due to the fact that the image space of the application { } { }V H V
1 2 a a a, , h , ,σ σ σ σ σ %

a  is just a little 

part of 3ℜ and often the effective noisy measured triplets do not correspond to any original 

models in the parameter space. The case is identical to the one we meet when considering an 

electrical sounding in the two-layer case, for which it is not possible to draw a sounding curve 

crossing exactly the observed data, if these data are marred by some noise. This difficulty 

occurs because the sounding is supposed to be a very smooth and noisy data cannot be fitted. 

To better understand this limitation, imagine you know exactly two of the data, saying for 

instance V
aσ and V

aσ%

. We asked the following question: “knowing this data, what is the 

possible interval for H
aσ ?” Actually it often occurs that the measured value is not in the 

interval of the possible values, due to error, and then there is no solution to the system.  

 

3.1.3  The case of two measurements to retrieve the three parameters of Model 

1, when a third parameter is given by some other sources 

Analytical resolution works in some special cases and if we only consider two 

equations with two unknowns, assuming the third parameter is known. It is the case if, for 

instance, an operator measures DV and DH modes with the instrumental lying on the ground. 

The situation is better than in the previous case because the latitude of solution is less 

restricted. Moreover, in these cases, some simple conditions of the existence or the solution 

can be derived and easily checked. If a high contrast applies to the current structure 

conductivities (saying >10), the sensitivity of the method to the layer having the lower 

conductivity one is weak and then it is often better to set this conductivity to a given value, or 

even to zero.  

 

3.2 The least-square (LSQ) method and other relative methods  

It is not our aim here to investigate the numerous variants of the least-square inversion 

scheme which can be used to manage the EM38 data inversion. As far as the least square 

method itself is concerned (whatever it is applied to), the paper by Tarantola and Valette 

(1982a) synthesizes and unifies several classical methods. When applying all methods to the 

inversion of EM38 data it is absolutely necessary to introduce a positivity constraint on both 

conductivities and thicknesses of the layered model, otherwise most of the algorithms may be 

unstable. The best way is to use the logarithm of the parameters instead of the parameters 

themselves, and this also takes into account that all the parameters are Jeffrey’s parameter 

(see Tarantola, 2005 and 2006). Less conventional methods have not been studied enough in 

the literature, but probably will work well, like the Particle Swarm Optimization (PSO), see 

for instance Trelea (2003), or the Simulated Annealing method (Kirkpatrick et al. 1983). and 
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surely the homotopy method as described by Jegen et al (2001) which is also used by 

Ghorbani et al. (2009) to invert Induced Polarization data.  

In the frame of the Bayesian approach we are going to develop below, the least-square 

method appears as the research of the minimum of the Euclidian distance between the 

observed and calculated model, and hence is equivalent to the search for the maximum of 

multidimensional probability law the Bayesian method fully explores in the parameter space.  

 

4. Bayesian methods 

4.1 Principle of the method 

The Bayesian approach consists in working with the probability density functions 

(pdf), or just “probability measures” when the probability laws cannot be normalized. 

Through the Bayesian theorem, the Bayesian method joins, gathers and crosses the knowledge 

we have before making any measurements (the a priori knowledge) and the new emergent 

knowledge provided by the measurement campaigns. The a priori includes not only some 

insight we have on the parameters but also the choice of the model itself, that is the two layers 

model we use here is a part of the a priori knowledge. 

The Bayesian method has been widely discussed since the synthesis developed in 

Tarantola (2005). We use here an implementation similar to the one used by Ghorbani et al. 

(2007), where all the required concepts are detailed and then we drop here some necessary 

consideration which can be found in the cited paper. We just recall the basics.  

Let d
r

 be the data and D the data space, m
r

 the model and )m(Gd
rr

=  the physical law 

linking these quantities. In the case of over determined inversion we have 

M dim(m) dim(d) D= < =
rr

. 

Let be )m(
rµ  the “homogeneous probability measure” (see Tarantola 2005). Notice 

that if )m,...m,m(m )Mdim(21=r
 are all Jeffrey’s parameters, then we have  

1 2 M

1 1 1
(m) ....

m m m
µ =r

 (It is the case since conductivities and thicknesses are Jeffrey’s 

parameters).  

Notice that since we generally apply logarithm transformations to all Jeffrey’s 

parameters, then it can be shown that ( )klog(m ) 1, kµ = ∀ , and this simplifies the computation 

by dropping this term.   

In our model, all parameters are of Jeffrey type. The “homogeneous probability 

measures” (-previously called the “null information” (see Tarantola 2005)) are: 

h

C
)h(;

C
)(;

C
)( 3

3
2

2
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1

1
11 =µ

σ
=σµ





σ
=σµ   ;  
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One chocking features of these probability measures is that they cannot be normalized. 

In practice, they are always involved in more complex expression of pdf that are normalizable 

and comes from the Shannon modern definition of informational entropy (see Tarantola and 

Valette, 1982a). 

Then we systematically use the logarithms (see Ghorbani et al. (2007) to benefit from 

a more detailed discussion), so we made the following changes: 
log log log
1 1 2 2log( ); log( ); h log(h)σ = σ σ = σ = . It is suitable and just more convenient to 

take the logarithm in base 10.  

Now let note (m)φ
r

 the a priori pdf for parameters. This pdf is logically speaking not 

the full a priori knowledge, but only the quantitative part of it. The density φ  could be 

Gaussian, or anything we want. In our case, we use the combination (product) of a Gaussian 

pdf, with the indicator function of the interval we are exploring to find the parameters.  

Let be for instance, the following a priori information: “ log
1σ  could be close to 

0.5 0.3± ” (we must translate into: log
1σ follows a Gaussian distribution of mean 0.5 and 

standard deviation 0.3, that is 1σ is supposed to be close to 3.13 with a 30% error), and we 

only pursue the value between 0 and 1. Then, then a priori pdf is given by: 
2log

1 0.51
2 0.3log

1( ) C I(0,1) e

 σ −−   
 φ σ = ⋅ ⋅ , where C is a constant of normalisation and I (0, 1) the 

index function valued 1 in the interval [0 , 1] and 0 outside. 

The same applies to the other parameters and the full 3-variables a priori is just the 

product of the three.  

As we show later on, the inclusion of a Gaussian to the bounded exploratory a priori 

domain permits to restrain the negative effects of the equivalence laws having hands in the 

determination of the parameters of the layered medium. 

We also suppose that the data are Gaussian, having a covariance matrix ddC  
Then, the pdf of the parameters, which is also the solution of the inverse problem, is 

given by: 
T 1

dd
1

d G(m) C d G(m)
2(m)e

pdf (m)
(m)

−   − − −   φ=
µ

r rr r
r

r
r  

 

It is the quantity we compute and plot in Bayesian inversion. In our case, thanks to the 

logarithm change of variable, we can drop the homogeneous probability measure (because it 

becomes constant), and also for the same reason, this pdf can be computed directly by a 

systematic exploration over a regular grid (3 dimensional) sweeping the parameters inside 

pre-defined intervals. So we can here fully explicit the computation with the following steps: 

1) Define exploratory intervals and grids for log
1σ , log

2σ and logh , for instance 
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Grid for log
1σ : from log

1minσ  to log
1maxσ  in 

1
Nσ  regularly spaced points 

Idem for the other parameters, leading to the index function: 

( )log log log log log log
1min 1min 2min 2min min minI , ; , ; h , h     σ σ σ σ      . Practically it implies that we shall only 

explore the parameter space within this 3-D box over 
1 2 hN N Nσ σ× × points.  

 

2) Define (or not) an a priori Gaussian (or another) law for the parameters. For instance, 

the following supposes only Gaussian a priori for log
1σ and logh  but no additional law 

for log
2σ , (that is: the law is uniform in the relative interval) but Gaussian a priori for 

log
1σ  and logh : 

2 2log log log log
log log 1 1
1 2 log log

1

1 h h
A( , ,h) exp

2 h

     σ − σ −
  σ σ = − +    δσ δ     

, where Xδ names 

the standard error on the parameter X and where X is for the most probable value or 

mean.  We drop here and often the normalization constant in factor of the pdf, because 

the normalization can be performed at the end of the process. This achieves the 

definition of our choice of a priori pdf, which is: I Aφ = ⋅ . 

 

3) The data supposed Gaussian distributed, the law relative to the experiment results is: 
 

2 2 2V th Vobs H th H obs Z th Zobs
log log a a a a a a
1 2 Vobs H obs Zobs

a a a

1
D( , ,h) exp

2 err( ) err( ) err( )

       σ − σ σ − σ σ − σ
  σ σ = − + +      σ σ σ        

 

in the case where an additional measurement has been added, for instance by holding 

the apparatus at a height Z, or: 

 
log log
1 2

2 22 2V th Vobs H th Vobs V th Vobs H th Vobs
a a a a a a a a

Vobs H obs Vobs H obs
a a a a

D( , ,h)

1
exp

2 err( ) err( ) err( ) err( )

σ σ =

        σ − σ σ − σ σ − σ σ − σ  − + + +       σ σ σ σ          

% % % %

% %

 

when both 1 m and 50 cm (noted with ~) has been measured with the EM38-MK2 for 

instance. 

 

 

Finally the function to estimate is the 3-D pdf: 
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log log log log log log log log
1 2 1 2 1 2 1 2P( , ,h) I( , ,h) A( , ,h) D( , ,h)σ σ = σ σ ⋅ σ σ ⋅ σ σ , and even the 

homogeneous probability measure is taken into account because log log
1 2P( , ,h)σ σ  is 

computed over a grid logarithmically defined by regular sampling of the log of the 

variables. Once it is computed one can normalize to get a true pdf just by: 

 
log log

log log 1 2
1 2 log log log log

1 2 1 2

P( , ,h)
p( , ,h)

P( , ,h)d d dh

σ σσ σ =
σ σ σ σ∫∫∫

  

 

All the integrals above and below involve functions which are known on grids, 

then simple Riemann’s sums can be performed to estimate them.  

This function is the solution of the inverse problem: it allows calculating the 

probability for a set of parameter belonging to a given interval. It is: 

 

1 2

h1 2

log log log log log log
1 2 h 1 2 1 2prob( , ,h ) P( , ,h)d d dh

σ σ

σ σ
Γ Γ Γ

σ ∈ Γ σ ∈ Γ ∈ Γ = σ σ σ σ∫ ∫ ∫  

By the way, CPU/memory questioning aspect is necessary. The obtained 

function is 3-D. A grid saying of 6100 100 100 10× × =  points is to be managed by the 

computer. Although it is still moderate, it would rapidly impossible to perform the 

calculation for bigger grids.  Then two questions arise: first, is the exploratory domain 

large enough (will it contain the solution?) and second, is the grid thin enough to 

provide a good representation of the sampled pdf? There is a risk of aliasing or even 

missing the main features of the law if the grid is too coarse with respect to the 

sampled function. In the case when higher dimension problem must be tackled, it is 

useful to use special integration algorithms like the so-called “metropolitan” scheme 

(see Mosegaard and Tarantola, 1995).  

 

4) How to utilize the solution and what representation for it? 

The obtained pdf log log
1 2P( , ,h)σ σ is a function of three variables and can be 

represented by using 3-D plot. This kind of plot is useful for pure visual interpretation 

(see for instance Ghorbani 2007) but hardly usable to provide quantitative results. 

Moreover, the geophysicist is generally asked to provide some single value for each 

parameter, with the corresponding errors. 

Hence it is relevant to plot the 2-D marginal laws, and, by cascading, the 1-D 

marginal laws, and finally the means and the relative deviation.  

 

Here, the first step of marginal probability yields 3 laws of two parameters. 

Precisely: 
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

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

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∫

∫

∫

 

Then the law of one or the other parameter is given by an integral of the form: 

p ( ) p ( , )dα αβα = α β αβ∫  for any of the above pair. 

 

Finally, one can compute the mean and centred variance from the law, with: 
2p ( )d ; var( ) ( ) p ( )dα αα = α α α α = α − α α α∫ ∫   

At this stage, it is easy to plot map of the inverted parameters if we have maps 

of apparent conductivity, and this mean is expected to be close to the least-square 

solution.  

However, it is different from the least-square solution. Just consider the 

elementary LSQ solution, without any a priori or neither damping nor regularization 

parameter. It corresponds to the parameter set where the maximum of the function D 

given above is reached (the minimum of the exponent). The fundamental difference is 

that a parameter retrieved from this LSQ solution does not involve any integration 

over the other parameters. In the case of Gaussian laws, and more generally speaking 

symmetric PDF, it makes no difference, because those integrals are centred on the 

mean (even if the physical law involved is non linear). In any other cases, the 

Bayesian solution is preferable to the LSQ solution. 

Moreover, the Bayesian solution preserves an interpretation in terms of 

information, and provides probabilities to characterize the parameters. Furthermore it 

facilitates the analysis of the equivalence laws by plotting the trade-off between the 

parameters. 

The Bayesian approach also provides a powerful tool to analyse the 

equivalence problem that arises in some geophysical problems. Consider for instance 

the following problem: let assume a conductive topsoil of few decimetres thick and 

very resistive subsoil. Then we may write the following equivalence law: 

( ) ( )1 V 1 V1 R (h) 1 R (h ') const.′σ − ≡ σ − =  

That is, the doublet { }1,hσ  will lead to the same apparent conductivities than 

{ }1,h′ ′σ  specially while 1σ →∞  and h 0→  respecting the condition 

( )1 V1 R (h) const.σ − =  
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In a 2-D diagram with this parameter as coordinates, the equivalence law is 

clearly revealed. This Bayesian solution also leads to additional knowledge about the 

possible behavior of inversion scheme itself, and on the importance to set suitable a 

priori  information to be included in. First notice that a classical least-square scheme 

solution can be at any location in the “valley” representing the valuable solution, 

depending on the initial point. A Tikhonov-like inversion will stabilize the solution 

around an a priori given set, if for instance a term like 2 2
1 1(h h) ( )− + σ −σ  is added to 

the current sum of squared errors, and surely is a improvement if the simple LS 

method, but may miss some other possibilities. (h  and 1σ  play the role of attractors 

for the solution).  

While considering the mean of the pdf, the effect of the boundary of the 

exploration window will affect this mean dramatically, because –and it is 

mathematically true- it takes into account the possibility of peculiar values when 

1σ →∞ and simultaneously h 0→ . Those must be eliminated by applying physical 

and geological knowledge, that is, mathematically, by including a well-shaped a priori 

law into the inversion process.  
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Annexe 6. Application de l’inversion Bayésienne à Potshini 

1. Raw data from EM38-MK2 in June 2010 

A map of 100 mX150 m has been acquired with an EM38-MK2, with a grid mesh of 5 

m by 5m in each direction. The data, corrected from drifts are shown on Figure 1.  

 
Figure 1. Raw EM38-MK2 data in June 2010 in both VDM and HDM (vertical and 

horizontal dipole modes) with spacings 50 cm and 1m. Coordinates are in UTM. 

 

Before starting the inversion, it is useful to choose a model to be used, as a part of the 

a priori information that is available. First, the main feature of the soil can be inferred from 

just comparing the two VDM maps: the 1 m spacing data is much more conductive than the 

50 cm one. Associated with field observation, this means that within the first meter, it is likely 

that we have a resistive layer over a conductive one. 

The gully section provides an opportunity to make measurements and samplings on its 

wall, but limiting the depth due to security reasons. The amount of clay has been derived from 

samples taken each 5 cm on a vertical log (the size definition of clays is used here: particles 

less than 2 micrometers). The resistivity is measured by using a little pole-pole array (AM=3 

cm), also on the face of the gully. Moreover, a Vertical Electrical Sounding (VES) has been 
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made just apart from the ravine. The corresponding data are gathered on Figure 2. They all 

confirm the 2-layer simple horizontal structure of the ground and shows that it is valid to 

perform further inversion by assuming such a simple model involving a non-conductive layer 

covering a more clayey conductive layer. This soil at Potshini has been classified as a luvisol 

by soil scientists. The thickness of the topsoil in the gully section lies around 40 cm, but 

variability over the area does exist, and the general range is between 30 cm and 80 cm.  

 

 
Figure 2. Correspondence between electrical sounding, resistivity values and clay amount on 

a gully bank wall in the studied grassland. 

  

2. Bayesian inversion 

From the information of Appendix 5, the a priori information can be set. It combines 

an exploration window and a light attractor to prevent for the mean to be found too high due 

to the equivalence problem.  

Precisely, this a priori information is chosen here as: 

( ) 20.5h
1 2prior I 1 10) I(5 50 I(0.3 h 1) e−= ≤ σ ≤ ⋅ ≤ σ ≤ ⋅ ≤ ≤ ⋅  

where I are the index function (=0 or =1 depending if the value is within the given interval or 

not). 

 

The a priori standard deviations of 

( )V V H H
a a a a(s 1m); (s 50cm); (s 1m); (s 50cm)σ = σ = σ = σ = are: (2 , 2 , 3 , 5). The error is 

supposed higher for the 50 cm spacing due to a higher drift, and also because it is more 

difficult to plate the instrument on the ground for this scale. An example of inversion results is 

given on Figure 3. 



 

Annexe 6  253 

 
 

Figure 3. Results of the Bayesian inversion in June 2010. Points A, B, C and D are relative to 

the position of validation pit logs.  

 

3. Validation of the inversion 

Four shallow pits were available on the area (A, B, C, D), that permits comparison 

with the “field reality”.  

3.1 Resistivity logs 

In these pits, we did resistivity logs by using a pole-pole along the wall of the pit. 

The resistivity diagraphies are given on Figure 4.  

 
Figure 4. Conductivity log in four soil profiles in June 2010. 
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3.2 Methylene blue test method

In order to validate the depth of the interface determined from EC measured by the 

EM38-MK2 in the inversion process of the data, the methylene blue spot method is an easy 

and quick solution (Yukselen and Kaya 2008). This method gives information on clay 

properties (Hang and Brindley 1970) and can allow calculating for example cation e

capacity (Kahr and Madsen 1995) or specific surface area (Santamarina et al. 2002, Yukselen 

and Kaya 2006) which should directly influence EC. By using this method, we will be able to 

estimate clay properties of soils at different depth and 

that was calculated by the inversion procedure.

Methylene blue (MB) molecule is a cationic dye, C

negatively charged clay surfaces (Y

3.25 Å and the surface area covered by one molecule is approximately 130 Å

al. 2002). By determining the quantity of methylene blue molecules that can be fixed onto 

clay surface of a specific soil, we can then determine clay properties of this soil. This easy 

applicable method is often used in geotechnical and construction

resistance of clay to water (swelling of clay).

The method used in this study was as follow: 

4 mm. We mixed 30 g of soil fraction 0

suspension was continually mixed by magnetic stirrer during the experiment. Methylene blue 

solution was prepared by mixing 5

concentration of this solution was 10 g l

suspension with 5 ml increment. A small drop was removed from the suspension one minute 

after each 5 ml addition of MB

paper with a dark blue center composed by soil aggregates. If the unabsorbed MB forms a 

blue halo around the soil aggregate spot, then confirmation test is needed: drops are removed 

from the suspension every minutes during 5 minutes (without addition of MB); If the blue 

halo becomes permanent (after 5 drops), it means that MB has replaced cations in the double 

layer and coated the entire surface. If the blue halo disappeared during the confirma

then we carry on adding MB solution to the suspension.  

 

Methylene blue test method 

the depth of the interface determined from EC measured by the 

MK2 in the inversion process of the data, the methylene blue spot method is an easy 

and quick solution (Yukselen and Kaya 2008). This method gives information on clay 

dley 1970) and can allow calculating for example cation e

n 1995) or specific surface area (Santamarina et al. 2002, Yukselen 

and Kaya 2006) which should directly influence EC. By using this method, we will be able to 

mate clay properties of soils at different depth and we should observe a similar transition 

that was calculated by the inversion procedure. 

Methylene blue (MB) molecule is a cationic dye, C16H18N3S
+ which can adsorb onto 

negatively charged clay surfaces (Yuskelen and Kaya 2008). Its dimension is 17 Å * 7.6 Å * 

3.25 Å and the surface area covered by one molecule is approximately 130 Å

al. 2002). By determining the quantity of methylene blue molecules that can be fixed onto 

specific soil, we can then determine clay properties of this soil. This easy 

applicable method is often used in geotechnical and construction work to estimate the 

resistance of clay to water (swelling of clay). 

The method used in this study was as follow: soil samples were air dried and sieved at 

30 g of soil fraction 0-4 mm with 200 ml of dionized water. This soil 

suspension was continually mixed by magnetic stirrer during the experiment. Methylene blue 

solution was prepared by mixing 5 g of dry power of MB with 500 ml of dionized water. The 

concentration of this solution was 10 g l-1. Then MB solution was added into the soil 

with 5 ml increment. A small drop was removed from the suspension one minute 

after each 5 ml addition of MB and placed onto filter paper. A circle appears onto the filter 

paper with a dark blue center composed by soil aggregates. If the unabsorbed MB forms a 

blue halo around the soil aggregate spot, then confirmation test is needed: drops are removed 

uspension every minutes during 5 minutes (without addition of MB); If the blue 

halo becomes permanent (after 5 drops), it means that MB has replaced cations in the double 

layer and coated the entire surface. If the blue halo disappeared during the confirma

then we carry on adding MB solution to the suspension.   

 

 

 

 

Figure 5. Methylene blue spot test on one soil sample 

and example of permanent blue halo after five 

confirmation tests. 
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The volume of MB necessary to replace all cations on clay surface globally increased 

with depths for the six studied profiles (Fig. 2). The increase of MB volume below the depth 

40 cm for most of the profiles indicates that specific surface area of clay and CEC increased 

below 40 cm.  

 

Figure 6. Methylene blue spot test results on soil samples of four soil profiles.  

 

We observe that the conductivity and the clay content as revealed by the MB method 

are fully coherent, and this is not surprising since we consider that the clays are at the origin 

of the high conductivity values on this field. For example, the inflexion transition between the 

topsoil (A horizon in terms of soil science) and the subsoil (Bt layer) lies around 50 cm for the 

MB results and the conductivity log. However, close to this location, the inverted interface 

depth is given at 0.76 cm (Fig. 3). To better understand why this results seems to differ, let us 

consider the two-by-two marginal pdf. On Figure 7a is given a zoom of the ( )2 ,hσ pdf. It 

illustrates very clearly the equivalence (or trade-off) between these two variables. The lower 

admissible value for ( )2 ,hσ is ( )1.4 0.610 25,10 0.6−
� � . If we remember that the Slingram 

tends to fetch the conductor, this can be considered as satisfying. Before debating deeper on 

the meaning of such a bias, we show on Figure 7b and 7c the pdf of the two other couples 

( )1 ,hσ and ( )1 2,σ σ  respectively. 
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Figure 7a. Marginal pdf of ( )2 ,hσ  

 

Figure 7b. Marginal pdf of ( )1 ,hσ  
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Figure 7c. Marginal pdf of ( )1 2,σ σ  

 

On figure 7c we observe the peculiar shape of the upper right end of the pdf. It is the 

consequence of the a priori window (justified a priori knowledge) we embedded in the 

inversion, and particularly the set boundaries that correspond on the window limits as seen on 

Figure 7b.  

 

3.3 Inversion bias 

Tarantola and Valette in 1982 clearly state that the pdf “is THE solution of the inverse 

problem”. They want to emphasize that, in the process of propagating the field experimental 

data through the physical law (including by the way the a priori information (or inversely), 

the Bayesian solution consists in the whole information that can be retrieved from the whole 

gathering of information. Actually, for practical purpose it is useful to provide only ONE 

value for the final parameter, and to do that the mathematical path consists in calculating the 

mean value of the parameter by computing the ultimate one-variable marginal probability 

density.  

This bias is definitely inherent to the inverse problem. The LSQ method, assuming an 

attractor (that is: damping method or Marquardt-Levenberg algorithm) or special algorithms 

all includes at least the bias of the algorithm in own, but the bias itself is generally not easy to 

discuss within the information theory frame.  
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Annexe 7. Résultats isotopiques de six profils de sol supplémentaires 

 

 

 

                             

                     

               
 

δ
18O (‰) and soil moisture (%) values for extra soil profiles sampled under acacias canopy 

and outside canopy at the three zones in the catena (Upper, middle and lower part) in 

September 2009 (dotted lines) and in February 2010 (solid lines).
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Annexe 8  260 

Annexe 8. Genres et espèces de la strate herbacée observés à Potshini 

Genres et espèces de certaines plantes observées sur le pâturage de Potshini en 2009.  

Asclepias gibba 

Becium oboratum 

Berkheya setifera 

Centella asiatica 

Centella coriacea 

Chamaecrista sp. 

Conyza sp. 

Corchorus confusus 

Corchorus junodii 

Cyanotis speciosa 

Cyperus sphaerocephalus 

Diclis reptans sp. 

Eriosema salignum 

Gerbera sp. 

Helichrysum rugulosum 

Helicrysum sp. 

Hermannia sp. 

Hibiscus pedunculatus 

Hirpicium sp. 

Hypochaeris sp. 

Hypoxis sp. 

Ipomoea sp. 

Lactuca sp. 

Lantana rugosa 

Ledebouria floribounda 

Leonotis dysophylla 

Leonotis leonurus 

Leonotis microphylla 

Leonotis nepetifolia 

Momordica balsamina 

Monopsis decipiens 

Oxalis obliquifolia 

Pelargonium luridum 

Pentanisia angustifolia 

Polygala sp. 

Ranunculus multifidus 

Richardia brasiliensis 

Scabiosa columbaria 

Schkuhria pinnata 

Sebaea grandis 

Senecio inaequidens 

Senecio scaposus 

Sida dregei 

Solanum retroflexum 

Thesium costatum 

Thunbergia sp. 

Verbenaceae sp. 

Vernonia natalensis 

Vigna sp. 

Wahlenbergia sp. 

Zornia linearis 

Zornia capensis 

 

Genres et espèces de la famille des Poacées (Graminées) observées sur le pâturage de Potshini 

en 2009.  

Aristida junciformis 

Aristida canescens 

Aristida diffusa 

Brachiaria eruciformis 

Brachiaria serrata 

Chloris virgata 

Cymbopogon plurinodis 

Cymbopogon excavatus 

Cynodon dactylon 

Digitaria longiflora 

Eleusine coracana 

Eragrostis curvula 

Eragrostis plana 

Eragrostis racemosa 

Harpochloa falx 

Heteropogon contortus 

Hyparrhenia hirta 

Panicum maximum 

Paspalum notatum 

Paspalum scrobitulatum 

Setaria sphacelata 

Sporobolus africanus 

Sporobolus pyramidalis 

Stiburus alopecuroides 

Themeda triandra 

Tristachya leucothrix 

Urochloa panicoides 

 

 


