

GLACIARES DEL ECUADOR: ANTISANA Y CARIHUAYRAZO

Balance de Masa, Topografía, Pluviometría, Meteorología & Hidrología

INFORME DEL AÑO 2007

Luis Maisincho, Bolívar Cáceres, Carla Manciati, Cristian Loyo, Erick Cuenca, Margarita Arias, Bernard Francou, Marcos Villacís, Schubert Rosero, Eric Cadier, Phillippe Garreta. Cristina Guamanzara, digitación y edición.

Abril del 2009

IRD – INAMHI – EMAAP-Q

1

eayabaca@emaapq.gov.ec www.emaapq.com.ec

INDICE

Inventario del equipo ubicado sobre el glaciar y sus alrededores:

www.mpl.ird.fr/hydrologie/greatice

INTRODUCCIÓN

1. 1.1.

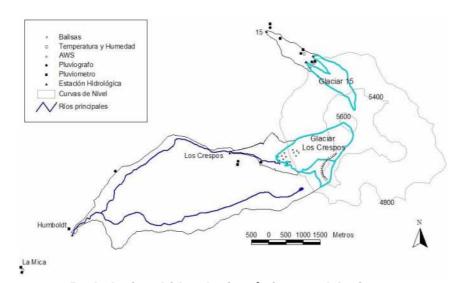
1.1. 1.2	Inventario del equip Contexto climático p	o ubicado sobre el glaciar y sus alr para el 2007:	rededores:	1 2
2. 2.1 2.1.1 2.1.2 2.1.3 2.2 2.2.1 2.2.2 2.2.3	Balance de Masa d Zona de acumulaci Zona de ablación G	laciar 15 ón glaciar 15 en su totalidad (área de a el Glaciar Los Crespos		19 19 22
3. 3.1 3.1.1 3.1.2 3.1.3 3.2 3.3	Retroceso del frente	ar 15 s de la ubicación del frente de la le e del Glaciar 15a. Período 1996 – 2 s para las lenguas α y β del Glacia ar Los Crespos	2004	29 29 29 31 - 2007) 33 42 44
4. 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.5 4.5.1 4.5.2 4.5.3	Mediciones realizado Valores brutos Correlaciones entre Correcciones Procesamiento de I Correlaciones entre	e cada pluviómetro totalizador y su e los totales diarios de diversos pluv e Interpretaciones	nedición de precipitación respectivo pluviógrafo a	47 48 50 50
5. 5.1 5.2 5.3 5.4 5.5 5.6	Estación Meteoroló Periodo con Perdid Estación Meteoroló	0		66 66 67 68 68 73 75
6.2 6.3	Estación Humboldt	audales glaciares en las estacione	s hidrológicas	95 111 115
IRD - INAMHI - Quito - Ecuado Tel. (+00.5932)	r). 2.269.276; :57 Fax 250.4020 <u>:inamhi.gov.ec;</u>	IRD- GREATICE Maison des Sciences de l'Eau Univ. Montpellier II 300, Av. Emile Jeanbrau 34095 MONTPELLIER Cedex 5 FRANCE Tél: 04 67 14 90 58	INAMHI Iñaquito 700 y Corea Quito - Ecuador Tel. 2269276 www.inamhi.gov.ec/ glaciares/index.htm	EMAAP-Q Unidad Ejecutora Ríos Orientales Av. Mariana de Jesús entre Italia y Alemania Quito - Ecuador Tel. 2.994500 Ext. 1401

cadier@ird.fr; bernard.francou@ird.fr

PRESENTACION Informe 2007: Glaciares del Ecuador

El presente informe reúne los resultados obtenidos en el año 2007 por el programa de estudio de glaciares GREATICE desarrollado por el INAMHI, EMAAP-Q y el IRD.

Se presenta el doceavo ciclo de mediciones continuas sobre el glaciar 15.


Como de costumbre, se presentan los principales resultados obtenidos en el Antisana y Carihuayrazo repartidos en seis partes:

- Inventario de los aparatos instalados
- Balance de masa del glaciar 15: alimentación y fusión
- Geometría del glaciar 15: su retroceso, el Glaciar 12 de Los Crespos y Carihuayrazo.
- Precipitaciones en el glaciar 15 y en algunas partes del flanco Oeste del Antisana
- Hidrología 1999-2006 en la cuenca Humboldt y 2003-2006 en la cuenca Los Crespos.
- Balance de energía y mediciones meteorológicas en el glaciar

Las informaciones generadas a escala mensual se comparten con la EMAAP-Q, el INAMHI y el IRD.

A pesar de índices ENSO casi normales, el año 2007 esta caracterizado por una fusión fuerte de los glaciares.

Se continua la operación de la estación "ORE" que integra una red internacional actualmente presente en Ecuador, Bolivia, Antártica y Europa. Adicionalmente se continuó con el monitoreo del glaciar ubicado al sur del Carihuayrazo.

Red glacio e hidropluviométrica en el Antisana

A partir del 2005 se empezó a almacenar toda la información obtenida dentro de una base de datos "Hydraccess" que facilita su utilización.

Esta información abastece también la base de datos del WGMS (World Glaciar Monitoring Service).

El Ecuador forma parte del Grupo de Trabajo de Nieves y Hielos Latinoamericano dentro del Programa Hidrológico Internacional (GTNH-PHI-LAC) del cual participa activamente mediante el suministro de resultados y participación en sus actividades.

CAPÍTULO 1

1. Introducción

ÍNDICE DEL CAPÍTULO

- 1.1. Inventario del equipo ubicado sobre el glaciar y sus alrededores:
- 1.2. Contexto climático para el 2007:

1.1. Inventario del equipo ubicado sobre el glaciar y sus alrededores:

Los datos mensuales o anuales medidos sobre las balizas de ablación y acumulación, los pluviómetros totalizadores y los sondeos puntuales son utilizados para calcular el balance glaciológico mensual y anual del Glaciar 15α.

Para la elaboración del balance hidrológico de la cuenca se utilizan los datos provenientes de los limnígrafos, los mismos que servirán para relacionarlos con el balance glaciológico.

El balance energético se lo calcula a partir de los datos de micrometeorología obtenidos de las dos estaciones automáticas instaladas sobre el glaciar, y de la estación meteorológica "ORE" (temperatura, viento, radiación, humedad, precipitación, altura de nieve).

Los datos provenientes del sensor de humedad, del termógrafo automático instalados sobre la morrena y de los pluviografos automáticos se los utilizan para documentar el clima del glaciar y del páramo ubicado al pie del glaciar.

Un resumen de los equipos y dispositivos de medidas puntales utilizados sobre el Glaciar 15α y sus alrededores durante el año 2007 se muestra sobre la Tabla 1.1 y la Figura 1.1

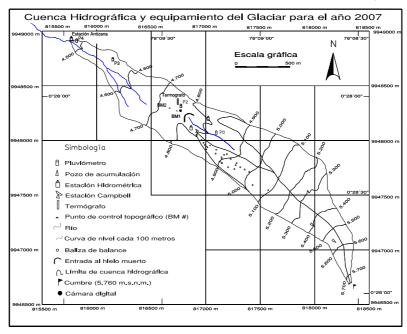


Figura 1.1. Mapa general de la cuenca del Glaciar 15 α con el equipamiento

Capítulo1: Introducción

Equipo	Dispositivo	Ubicación
	15 Balizas de balance mensual	Ubicadas sobre la zona de ablación a diferente altura
	2 Perforación (Pico)	5394-5540 m.s.n.m.
1 Estación Campbell		4882 m.s.n.m
6 Pluviómetros totalizadores		4000, 4010 ,4455 , 4555, 4785 , 4850 m.s.n.m.
3 Linnígrafos Nimbus		4010 , 4455 m.s.n.m.
1 Sensor de humedad		4785 m.s.n.m.
1 Termografo automático		4785 m.s.n.m.
5 Pluviógrafos automáticos		4455, 4010, 4000, 4785, 4850 m.s.n.m.
1 Camara automática		4785 m.s.n.m.
1 Estación climatológica automática (ORE)		4850 m.s.n.m.

Tabla 1.1. Equipamiento del Glaciar 15 y sus zonas adyacentes

1.2 Contexto climático para el 2007:

El período 1990 – 2007 se ha caracterizado por presentar una sucesión poco común de fases cálidas y frías de El ENSO, siendo las primeras dominantes en duración e intensidad. En los períodos más recientes, después de la fase cálida de los años 1997 – 1998 que produjo un fenómeno de El Niño excepcionalmente intenso, el clima en el Ecuador entró desde el mes de mayo de 1998 en una fase de La Niña (moderada a fuerte) que duró 1999 y 2000. Durante el 2001, la situación del Pacífico evolucionó poco a poco hacia una situación neutra, que finalmente llega a un fenómeno El Niño de pequeña intensidad en 2002. Durante el 2003, 2004 y parte del 2005 el MEI1 indica la permanencia de una anomalía positiva muy poco intensa (Figura 1.2). Durante los últimos meses de 2005 hasta febrero del 2006 se observa una anomalía negativa relacionada con una situación neutra, la misma se considera que avanza hasta el mes de mayo. Para la segunda mitad del 2006 se observa una anomalía positiva la cual se la puede relacionar a un Niño de moderado a débil. Esta tendencia se conserva hasta el mes de junio de 2007, a partir de julio la tendencia se invierte hasta diciembre del 2007, la misma se la puede relacionar con una Niña de moderada a fuerte.

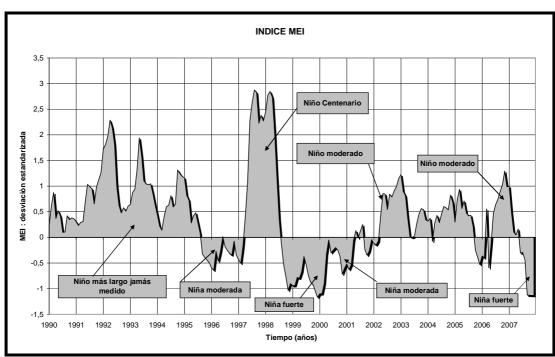


Figura 1.2. Multivariable ENSO index. Período 1990-2007

Capítulo1: Introducción

¹ **El MEI** es el resultado de la combinación de seis variables del clima sobre el Pacífico ecuatorial que son: presión al nivel del mar, componentes zonales y meridionales del viento sobre la superficie del mar, temperatura de la superficie del mar, temperatura del aire al nivel del mar, fracción de la nebulosidad total del cielo.

Se toma en consideración la primera componente del ACP (Análisis de componentes principales) Estos datos son procesados por el método de las medias móviles tomando períodos de dos meses por ejemplo dic/ene, ene/feb ..., etc. (Wolter & Timlin, 1993).

CAPÍTULO 2

2. Balance de masa

Autor Principal: Ing. Bolívar Cáceres

INDICE DEL CAPÍTULO 2.1 Balance de masa Glaciar 15 3 2.1.1 Zona de acumulación 3 2.1.2 Zona de ablación 6 2.1.3 Balance anual del glaciar 15 en su totalidad (área de acumulación + área de ablación) 11 2.1.4 Síntesis para el período 1995 – 2007 14

2.1.4 Síntesis para el período 1995 – 2007
2.2 Balance de Masa del Glaciar Los Crespos
2.2.1 Zona de acumulación
2.2.2 Zona de ablación Glaciar "Los Crespos"
2.2.3 Zona de ablación Glaciar "Los Crespos"

2.2.2 Zona de ablación Glaciar Los Crespos 22
2.2.3 Balance anual del glaciar en su totalidad (acumulación + ablación) Glaciar "Los Crespos" 26

2.1 Balance de masa Glaciar 15

2.1.1 Zona de acumulación

La medición de la acumulación se hizo el 4 de enero de 2008.

Se determinaron dos puntos puntos:

- Una perforación utilizando el Pico a 5394 m, se colocó una baliza de acumulación y se dejó una pastilla Recco.
- Una perforación utilizando el Pico a 5540 m, se colocó una baliza de acumulación.

Perforación 5394 m:

Se realizó una perforación utilizando un "Pico" con un espesor total de 170 centímetros, la densidad media calculada es de 0.60 g/cm³. El equivalente de agua calculada tiene un valor de 756 mm. El sondeo fue realizado en el punto de coordenadas 817897 este y 9947076 N (Navegador Garmin, WGMS 84). Este sitio se encuentra en las cercanías del sitio escogido para colocar una nueva baliza de acumulación para el ciclo 2008, se dejaron tres tubos de P.V.C. de 2.5 pulgadas de 1.5 metros de longitud cada uno (AA08), se midió una emergencia de 350 centímetros, se dejó una pastilla RECCO.

En la Tabla 2.1 se presentan las mediciones realizadas y los cálculos correspondientes.

Profundidad (cm)	Peso (g)	Largo (cm)	Circunferencia (cm)	Radio (cm)	Area (cm²)	Volumen (cm³)	Densidad (g/cm³)	Agua (mm)	Agua acumulada (mm)
120	116	5	25,12	4,00	50,27	251,33	0,46	23,08	50,67
150	141	5	25,12	4,00	50,27	251,33	0,56	28,05	78,72
170	137	3,5	25,12	4,00	50,27	175,93	0,78	27,26	105,98
Promedio							0,60		

Tabla 2.1. Densimetría y profundidad del sondaje

El Índice de confianza se lo considera como bueno.

Perforación 5540 m:

Se realizó una perforación utilizando un "Pico" con un espesor total de 175 centímetros, la densidad media calculada es de 0.41 g/cm³. El equivalente de agua calculada tiene un valor de 720 mm. El sondeo fue realizado en el punto de coordenadas 817970 este y 9946924 N (Navegador Garmin, WGMS 84). Este sitio se encuentra en las cercanías del sitio escogido para colocar una nueva baliza de acumulación para el ciclo 2008, se dejaron tres tubos de P.V.C. de 2.5 pulgadas de 1.5 metros de longitud cada uno (AA108), se midió una emergencia de 358 centímetros, no se dejó una pastilla RECCO.

En la Tabla 2.2 se presentan las mediciones realizadas y los cálculos correspondientes.

Profundidad	Peso	Largo	Circunferencia	Radio	Area	Volumen	Densidad	Agua	Agua acumulada
(cm)	(g)	(cm)	(cm)	(cm)	(cm²)	(cm ³)	(g/cm ³)	(mm)	(mm)
58,5	200	9	25,12	4,00	50,27	452,39	0,44	39,79	39,79
66,5	77	3,5	25,12	4,00	50,27	175,93	0,44	15,32	55,11
70	138	7	25,12	4,00	50,27	351,86	0,39	27,45	82,56
102	183	9	25,12	4,00	50,27	452,39	0,40	36,41	118,97
111	192	9	25,12	4,00	50,27	452,39	0,42	38,20	157,17
120	66	3	25,12	4,00	50,27	150,80	0,44	13,13	170,30
123	131	6	25,12	4,00	50,27	301,59	0,43	26,06	196,36
129	115	5	25,12	4,00	50,27	251,33	0,46	22,88	219,24
140	90	6	25,12	4,00	50,27	301,59	0,30	17,90	237,14
165	106	5	25,12	4,00	50,27	251,33	0,42	21,09	258,23
170	49	2,5	25,12	4,00	50,27	125,66	0,39	9,75	267,98
175	52	2,5	25,12	4,00	50,27	125,66	0,41	10,35	278,32
Promedio							0,41		

Tabla 2.2. Densimetría y profundidad del sondaje

Cálculo de la acumulación neta a más de 5250 m sobre el Glaciar 15a:

La Tabla 2.3 y la Figura 2.1 se resume los datos de acumulación por sobre la línea de neviza (ELA =línea de equilibrio) fijada a los 5150 m (observación directa). Se nota que los valores de acumulación en los rangos altitudinales ubicados entre 5200-5300 y 5300-5400 y 5600-5760 han sido interpolados a partir de las mediciones realizadas.

Rangos altitudinales	Acumulación mm de agua	Observaciones
5600-5760	916	Extrapolado
5500-5600	810	Medido
5400-5500	767	Medido
5300-5400	560	Interpolado
5200-5300	279	Interpolado
5150 -ELA	0	Observado

Tabla 2.3. Cálculos de densimetría y equivalente agua

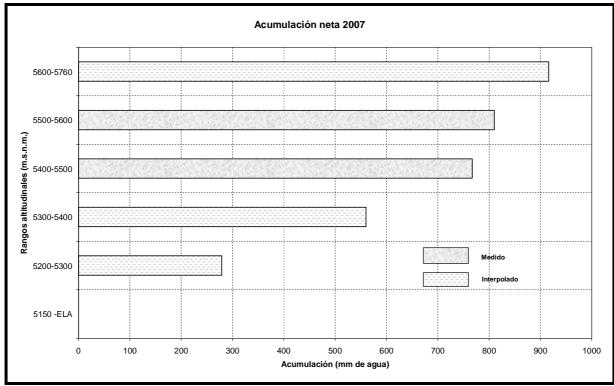


Figura 2.1. Acumulación por rangos altitudinales en el 2007

Grado de confianza de la estimación de la acumulación neta:

Varios parámetros permiten el dar a la medición de acumulación neta del glaciar un grado de "bueno".

- Buena identificación de la capa basal (superficie de ablación del fin del 2005),
- Mediciones correctas y claras en los puntos escogidos,
- Línea de neviza bien visible y extensa a lo largo de la lengua alfa en la fecha que se realizó la medición.
- Consistencia con lo observado sobre las paredes de las grietas.

Dentro de los parámetros negativos, hay que tomar en cuenta:

- Ausencia de mediciones entre 5200-5300, 5300-5400 y 5600-5760 metros de altitud, debido a las dificultades que se tuvieron durante las mediciones, especialmente la presencia de grietas y el mal tiempo reinante.
- Imposibilidad de localizar las pastillas Recco colocadas en los meses de diciembre del 2006.
- Pérdida de las balizas de acumulación colocadas en el mismo período.

2.1.2 Zona de ablación

a) Método de cálculo tomando en consideración la capa de nieve:

Como en los años precedentes se realizó la medición mensual del balance los primeros días de cada mes, estas incluyen la emergencia total de cada baliza y el espesor total de la nieve que se acumula sobre la capa de hielo. El balance del glaciar se lo calcula sobre la zona de ablación considerando el área que abarca esta.

Para el cálculo del balance se utilizaron las siguientes relaciones:

$$B = -0.9 (H_{m+1} - H_m) + 0.4 (N_m - N_{m+1})$$
 (1)

$$B = -0.9 (H_{m+1} - H_m) + 0.4 (N_m + e_{m-1} - e_{m-2})$$
 (2)

Donde:

B = balance, equivalente en mm de agua de la cantidad de hielo/nieve perdida por el glaciar en el sitio de cada baliza

H = emergencia de la baliza respecto a la superficie del hielo en cm.

N =espesor de la capa de nieve.

e = emergencia del extremo de la baliza respecto a la superficie superior en cm.

m = mes dado

 $m \pm 1.2$ = mes anterior o posterior.

(1) ecuación para el caso de tener las medidas correctas.

(2) ecuación para el caso de tener errores sobre la medida del espesor del hielo.

b) Red de balizas instaladas:

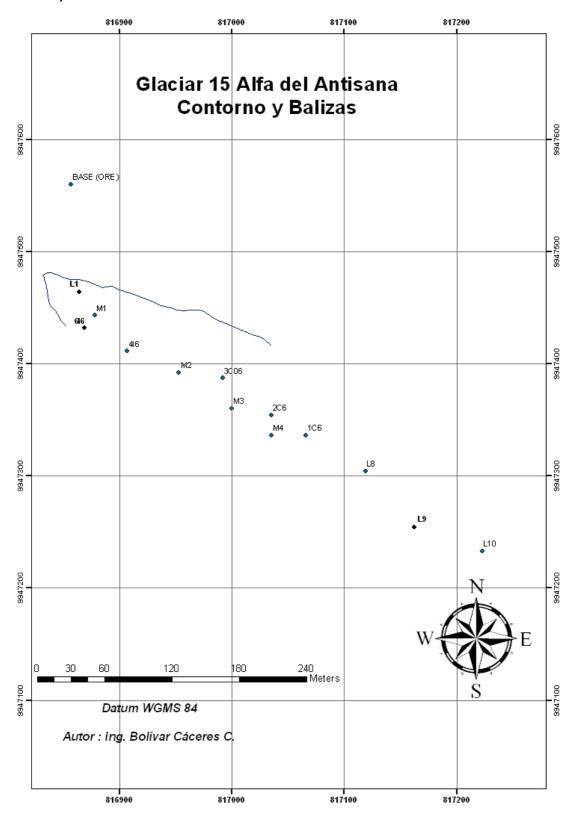


Figura 2.2. Red de balizas sobre la zona de ablación para el año 2007

c) Balance anual para cada baliza

Para conocer el balance durante el año 2007 se utilizaron los datos topográficos iniciales obtenidos en el levantamiento realizado en el 26 de diciembre del 2006, que se comparó con las lecturas realizadas el 27 de diciembre del 2007.

Para el efecto se emplearon las mediciones de quince balizas instaladas entre el 26 de diciembre 2006 y el mes de diciembre del 2005 ubicadas entre los 4845 y 5050 m. Es importante indicar que durante el año se perdieron numerosas balizas debido a las avalanchas o por encontrarse en la cercanía de grietas que en algunos casos impidió su lectura periódica. El balance obtenido para cada una de las balizas consideradas así como su ubicación altimétrica se lo puede ver en la Tabla 2.4, en esta se considera todas las balizas que han registrado lecturas.

Grupo	Altitud rango	Sup relativa				Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre Indice	Sumatoria	Promedio Sumatoria
-	5050	0.07	20250	L10	5066	-40	-30	-20	-2	-11	9	-3	3	13	-6	3	0 Si	-84	-155
	5050	0,07	20250	L8	5011	-70	-60	-50	-4	-34	17	-14	1	-7	-4	-6	6 Si	-225	-100
2	4980	0.07	20970	015	4966	-65	-69	-52	-14	-15	45	-25	4	-12	10	-29	12 Si	-211	-201
	4900	0,07	20970	1C6	4987	-60	-42	-46	-12	-36	22	-11	0	-14	8	-10	10 Si	-190	-201
				2C05	4984	-76	-48	-30	-5	-30	5	-12	12	2	43	1	8 Si	-128	
2	4935	0.07	22015	2C06	4974	-79	-61	-51	-13	-53	9	-30	8	-19	-10	-1	-2 Si	-302	-277
3	4935	0,07	22015	3C06	4954	-60	-50	-54	-33	-64	12	7	-26	-43	-9	-6	1 Si	-325	-211
				3D6	4946	-57	-69	-64	-42	-73	12	-2	-9	-35	3	-13	-4 Si	-354	
- 4	4895	0.03	9328	416	4925	-101	-38	-41	5	-103	9	-14	5	-30	11	-49	-11 Si	-354	-357
-	4033	0,03	9320	5C6	4889	-69	-78	-69	-43	-49	7	-4	1	-23	51	-66	-18 Si	-360	-337
5	4870	0,02	2957	4C06	4778	-70	-54	-41	-15	-64	-4	-10	-37	-31	-10	-53	-14 Si	-402	-402
				6C6	4907	-58	-76	-67	-31	-56	-2	-13	-21	-52	-13	-36	-5 Si	-431	
	4845	0.00	220	616	4881	-80	-44	-41	117	-223	6	-4	-3	-21	-14	-27	-16 Si	-349	-446
l 6	4845	0,00	329	7D06	4888	-100	-60	-56	-72	-90	10	-17	12	-32	-15	-60	-10 Si	-491	-446
				L1	5066	-70	-70	-60	-87	-70	-9	-24	-31	-54	-2	-27	-8 Si	-512	

Tabla 2.4. Balance de cada baliza durante el año 2007 En recuadro gris se tienen los valores que han sido interpolados

d) Balizas representativas y rangos altitudinales

Los rangos altitudinales se los estableció en función del levantamiento topográfico realizado y de la serie de datos recogidos durante el año. Los valores calculados se muestran en la Tabla 2.5.

Nº Baliza	Cotas m.s.n.m.	Balance (mm)
015	4966	-2106
1C6	4987	-1905
2C05	4984	-1276
2C06	4974	-3021
3C06	4954	-3250
3D6	4946	-3544
4C06	4778	-4024
416	4925	-3543
5C6	4889	-3604
6C6	4907	-4311
616	4881	-3488
7D06	4888	-4912
L1	5066	-5124
L10	5066	-837
L8	5011	-2253

Tabla 2.5. Balizas representativas para cada rango altitudinal en 2007

e) Balance ponderado

El balance ponderado (B_{pi}) en la zona de ablación toma en consideración el valor del balance encontrado en cada rango (b_i) , la superficie de dicho rango (s_i) y la superficie total del glaciar (S):

$$B_{pi} = b_i (s_i/S)$$
 (2.1.)

Sobre la Tabla 2.6 se muestra el balance mensual ponderado para la zona de ablación del glaciar 15 alfa del Antisana.

Rango	Sup. Relativa	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Sumatoria
5050	0,070	-39	-32	-25	-2	-16	9	-6	1	2	-3	-1	2	-108
4980	0,070	-44	-39	-34	-9	-18	24	-13	1	9	6	-14	8	-140
4935	0,070	-48	-40	-35	-16	-39	7	-6	-3	-17	5	-3	1	-194
4895	0,030	-25	-17	-16	-6	-23	2	-3	1	-8	9	-17	-4	-107
4870	0,020	-14	-11	-8	-3	-13	-1	-2	-7	-6	-2	-11	-3	-80
4845	0,001	-1	-1	-1	0	-1	0	0	0	0	0	0	0	-4
S	0,261	-170	-139	-119	-36	-109	41	-30	-7	-38	15	-46	3	-635

Tabla 2.6. Balance ponderado mensual para cada rango altitudinal en el 2007 expresado en mm equivalentes de agua

f) Evolución de la capa de nieve

Durante el año 2007, la capa de nieve promedio fue de 28 cm. Sobre la parte baja de la zona de ablación (4856-4950 m) la capa de nieve fue nula para los meses de enero, febrero y mayo; para los meses de junio, julio, agosto y diciembre se tuvo valores superiores a los 15 centímetros; para los meses restantes el valor de cobertura fue inferior a los 15 centímetros, teniéndose en algunos casos coberturas importantes en la parte alta de la zona de ablación.

Este hecho nos muestra que durante la mayor parte del año (8 meses) el glaciar no tuvo cobertura de nieve y en algunos meses fue muy escasa (entre 1 y 15 centímetros), únicamente se observó un período muy corto sobre el cual se tuvo una capa mediana de nieve que redujo la ablación de alguna manera (4 meses), siendo por lo tanto esta una de las causas para que el balance tenga un valor mas negativo en comparación con el año precedente, además se pudo constatar un mediano retroceso de la lengua (7 metros). Los resultados se los puede observar sobre Tabla 2.7 y en la Figura 2.3.

Gruno	Altitud rango	Sun relativa	Sun narrial	Raliza	Δltitud	Fnem	Febrero	Marzo	Δhril	Mayo	lunio	Julio	Agosto	Sentiemhra	Octubre	Noviem hre	Diciembre	Indice	Sumatoria	Promedio Sumatoria
Стиро	Allitud lango	cup relativa		L10	5066		I CDICIO	1VICII ZO	30	5	68	43	50		28	38		No	325	
1	5050	0,07	20250	1.0	5011			0	25	0		36	35			25		No	240	283
				L8				U		_		_								
2	4980	0.07	20970	015	4966		0	5	20		59		55			22			284	213
		-,		1C6	4987		0	0		0		48		30	24	24		No	141	
				2C05	4984		0	5	20	0		37	32	10	18	15		No	159	
2	4935	0,07	22015	2C06	4974	0		0	25	0		35		0	15	10	20	No	105	118
,	4300	0,07	22013	3C06	4954	0	0	0	5	0	77	18	19	0	8	13	17	Si	157	110
				3D6	4946	0	0	10	8	0					17	0	16	No	51	
4	4895	0,03	9328	416	4925	0	0	0	20	0	60	35	32	0		0	18	No	165	158
4	4090	0,03	9320	5C6	4889	0		13	17	0	57	29	26	0	9	0		No	151	130
5	4870	0,02	2957	4C06	4778	0	0	12	5	0	44	0	20	0	10	0		No	91	91
				6C6	4907	0		9	10	0	60	5	11	0	10	0	16	No	121	
	4845	0.00	329	616	4881	0	0	7	8	0	60	25	34	0	8	0	23	Si	165	145
۱ ٥	4845	0,00	329	7D06	4888	0	0	0	0	0	53	17	101	0				No	171	145
				L1	5066			0	5	0	60	18	10	0	12	0	20	No	125	

Tabla 2.7. Valores mensuales de la capa de nieve durante 2007

Figura 2.3. Espesor de la capa de nieve sobre la parte alta, media y baja de la zona de ablación del glaciar 15 alfa del Antisana para el año 2007. Mediciones realizadas al fin de cada mes y en algunos casos a principios del mes siguiente

g) Evolución mensual del balance en la zona de ablación:

Balance mensual por rangos altitudinales y promedio de balizas:

El balance mensual obtenido para el año de 2007 se lo puede observar en la Tabla 2.8 y la Figura 2.4.

Rango	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Sumatoria
5050	-55	-45	-35	-3	-23	13	-9	2	3	-5	-1	3	-155
4980	-62	-56	-49	-13	-26	34	-18	2	-13	9	-20	11	-201
4935	-68	-57	-50	-23	-55	10	-9	-4	-24	7	-5	1	-277
4895	-85	-58	-55	-19	-76	8	9	3	-27	31	-57	-14	-357
4870	-70	-54	-41	-15	-64	-4	-10	-37	-31	-10	-53	-14	-402
4845	-77	-63	-56	-18	-110	1	-15	-11	-40	-11	-38	-10	-446
S	-417	-332	-286	-90	-353	61	-69	-45	-131	21	-174	-23	-1838

Tabla 2.8. Balance mensual no ponderado para las balizas medidas en mm de agua.

El balance no ponderado para la zona de ablación durante el año 2007 tuvo un valor de 1838 mm de agua, para este cálculo no se considera el área total del glaciar, sino únicamente se lo hace con los datos medidos directamente cada mes.

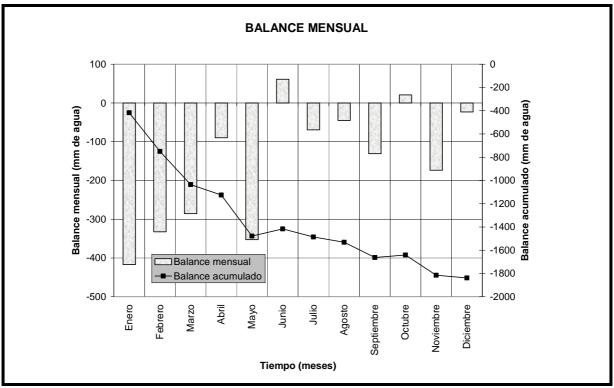


Figura 2.4. Variación del balance ponderado en la zona de ablación durante el año 2007

2.1.3 Balance anual del glaciar 15 en su totalidad (área de acumulación + área de ablación)

a) Balance neto específico:

Basándose en los datos medidos sobre el campo datos se obtuvo un balance neto para el año de 2007 con un valor de - 659mm de agua, observándose un cambio desde un balance positivo observado el año 2000 hacia un balance negativo en el año 2001 y que continua en el 2002, se acentúa en el 2003 y regresa a un valor más equilibrado durante el 2004-2005-2006.

Los rangos altitudinales utilizados para el cálculo así como los resultados obtenidos se muestran en la Tabla 2.9y en la Figura 2.5.

Rango altitudinal (m.s.n.m.)	Sup. Parcial (m ²)	Sup. Relativa Sr	Balance (mm)	Balance ponderado
5600-5760	37626	0,129	916	118
5500-5600	23516	0,081	810	66
5400-5500	28892	0,099	767	76
5300-5400	34267	0,117	560	66
5200-5300	34267	0,127	279	35
5100-5200	57178	0,200	-1545	-309
5000-5100	19441	0,068	-2005	-136
4960-5000	20098	0,070	-2773	-194
4910-4960	21442	0,075	-3573	-250
4880-4910	8591	0,030	-4024	-121
4860-4880	572	0,002	-4459	-9
Suma	285891	1		-659

Tabla 2.9. Cálculo del balance ponderado (neto específico) para el año 2007 en mm de agua en relación con la superficie total del glaciar

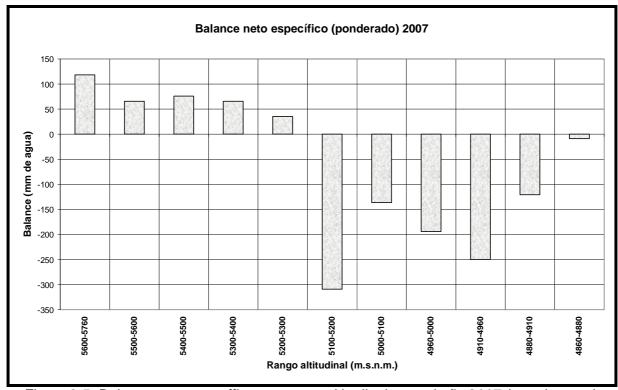


Figura 2.5. Balance neto específico por rango altitudinal para el año 2007 (mm de agua) Glaciar 15 Alfa

b) Isolíneas de balance

La línea de equilibrio (ELA) para el año de 2007 se la ubicó a 5170 m valor un poco mayor al registrado en el año 2006.

Utilizando el levantamiento topográfico realizado en el mes de diciembre del año 2007 se calculó el área promedio de acumulación (AAR) que es equivalente al 53 % del área total del glaciar. Este valor es similar al registrado en los años 2005 y 2006 durante los cuales el glaciar perdió masa de una manera moderada. Además sobre el glaciar se pudo observar una ablación moderada y una acumulación menor a la que se registró en el año 2006 y semejante a la del año 2002 lo cual nos explica en parte el balance moderado, pero negativo.

La distribución espacial del balance sobre la superficie del glaciar se la realiza mediante la utilización de las líneas de isobalance, las mismas que se trazan con ayuda de los levantamientos topográficos realizados para los diferentes años y de sus respectivos balances.

Como es evidente la distribución espacial del balance varía de un año a otro. Como consecuencia de la morfología sencilla del glaciar, arriba de los 5000 a 5100 m, estas isolíneas son paralelas a las curvas de nivel y perpendiculares al eje del glaciar.

Sobre la Figura 2.6 se muestran las isolíneas de balance para el glaciar 15 alfa para el año de 2007.

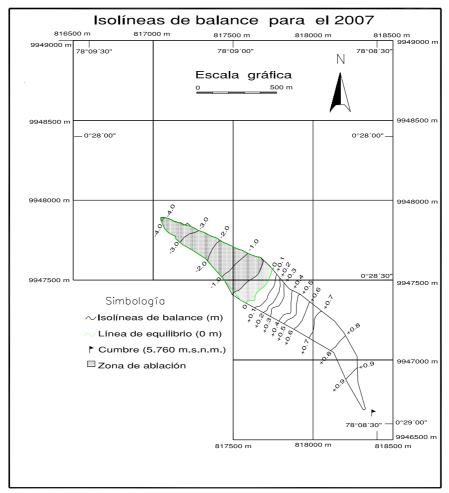


Figura 2.6. Ubicación de las líneas de isobalance en el Glaciar 15α del Antisana para el año 2007

c) Perfil altitudinal del balance

Sobre la Tabla 2.10 y la Figura 2.7 se muestra el perfil altitudinal del balance desde el frente del glaciar hasta la cumbre, los valores mostrados corresponden al balance no ponderado. Se han considerado 11 rangos altitudinales entre los 4860 y los 5760 metros.

Rango altitudinal (m.s.n.m)	Balance (mm)
5600-5760	916
5500-5600	810
5400-5500	767
5300-5400	560
5200-5300	279
5170	0
5100-5200	-1545
5000-5100	-2005
4960-5000	-2773
4910-4960	-3573
4880-4910	-4024
4860-4880	-4459

Tabla 2.10. Balance neto no ponderado y rangos altitudinales para año 2007. Glaciar 15

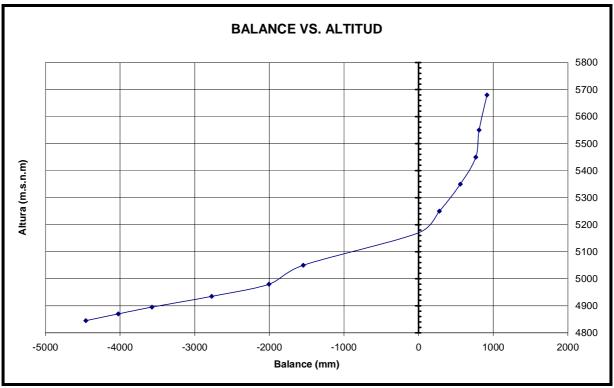


Figura 2.7. Perfil altitudinal del balance neto no ponderado para el año 2007 Glaciar 15

2.1.4 Síntesis para el período 1995 – 2007

1. Balance neto específico del glaciar:

La evolución del balance para los trece años de estudio nos muestra que los valores más deficitarios se ubican en los años de 1995, 1997, 1998, 2001, 2002, 2003, 2004 2005 y 2007 con valores que varían entre -572 y -1830 mm de agua de pérdida. Para el año de 1996 el balance fue de -428 mm de agua de perdida, que es un valor más equilibrado. Para los años de 1999 y 2000 el balance es positivo y tiene valores de 515 y 393 mm de acumulación de agua. Se puede observar una coincidencia con las fases Niño/Niña: durante El Niño se observa un derretimiento mayor y durante La Niña se tiene un menor derretimiento.

En la Tabla 2.11 se muestra un resumen de todos los datos relacionados con el balance y las principales características del Glaciar 15 a para el período 1995 – 2006

Año (1)	B _n (2)	ΣB _n (3)	A (4)	B _{ter} (5)	B _{sum} (6)	ELA (7)	AAR (8)	Prec. (9)	Term. (10)	ΣTerm. (11)
1995	-1830	-1830	2580	-7624	+654	5245	45	750	-28.20	-28
1996	-428	-2258	1310	-4532	+826	5115	60	882	-40.62	-69
1997	-612	-2870	1597	-6949	+870	5110	62	985	-56.25	-125
1998	-845	-3715	1985	-6048	+675	5100	65	1140	-34.38	-159
1999	+515	-3200	700	-2214	+1080	4960	84	1215	+21.43	-138
2000	+393	-2807	632	-2045	+890	4980	80	1025	+17.80	-120
2001	-598	-3405	1348	-4830	+940	5085	60	750	-11.2	-131
2002	-769	-4174	1870	-4999	+900	5145	50	1101	-19	-150
2003	-1362	-5536	2117	-6633	+810	5225	42	755	-55	-205
2004	-572	-6108	1352	-5420	+957	5145	56	780	-31	-236
2005	-789	-6897	1706	-6580	+878	5150	55	917	-28	-264
2006	-450	-7437	1366	-4030	+985	5150	54	916	-10	-274
2007	-659	-8006	1575	-4459	+916	5170	53	916	-7	-281
Prom	-616		1549	-5105	+875	5121	59	933	-22	

Tabla 2.11. Recapitulación de los datos relacionados al balance neto específico para los doce años de monitoreo del Glaciar 15lpha

- (1) Año hidrológico (enero diciembre)
- (2) Balance neto específico (mm de agua)
- (3) Balance neto acumulado (mm de agua)
- (4) Ablación específica: A = P Bn (mm de agua)
 (5) Balance en la parte más baja (4833 m en mm de agua)
- (6) Balance en la parte más alta (5750 m en mm de agua)
- (7) Altitud de la línea de equilibrio (ELA)
- (8) Porcentaje del área de acumulación (Acumulación Área Ratio (en %)
- (9) Precipitación en las cercanías del glaciar: P = [P2] (en mm de agua)
- (10) Retroceso del frente (en metros referidos a la marca precedente)
- (11) Retroceso acumulado del frente (en metros)

2. Balance en función de la altitud:

La variación observada sobre el balance del glaciar a lo largo de los trece años de monitoreo concuerda bastante bien con el modelo lineal propuesto por Lliboutry (1974). (Tabla 2.12 y Figura 2.8). Las curvas obtenidas presentan un buen paralelismo en la zona de ablación que corresponde a la parte baja del glaciar.

La parte inferior de la curva sobre la cual se ubica el frente, como promedio entre los 5050 – 5150 m.s.n.m. tiene una pendiente débil, lo que traduce un gradiente de balance en función de la altitud (dþ/dz) muy elevado, con un valor promedio de 1520 mm de agua perdida por cada 100 m. Este gradiente elevado es característico para los glaciares ubicados en las zonas tropicales.

Por sobre los 5121 m el gradiente de balance presenta un patrón bastante regular, la acumulación neta aumenta como valor promedio de 139 mm por cada 100 m para los trece años.

Los valores del balance sobre la parte terminal del glaciar (trece años) deben ser analizados con cuidado ya que para cada año la distancia de la baliza terminal con respecto al extremo inferior de la lengua varia un poco. Esto influye en el valor del balance, siendo este más negativo cuanto más cerca se encuentre esta del extremo inferior como sucede en el año 1995. Además, cada año se toma una baliza diferente debido a la caída o perdida de dicha baliza al final del año.

Año	1995	Año	1996	Año	1997	Año	1998	Año	1999	Año	2000
Balance (mm)	Altitud (msnm)	Balance (mm)	Altitud (msnm)	Balance (mm)	Altitud (msnm)	Balance (mm)	Altitud (msnm)	Balance (mm)	Altitud (msnm)	Balance (mm)	Altitud (msnm)
654	5760	1184	5760	780	5765	675	5760	1080	5760	890	5760
278	5400	468	5400	960	5400	741	5650	1280	5600	750	5300
200	5300	358	5300	564	5150	800	5550	690	5300	832	5150
0	5250	186	5150	-1281	5070	640	5400	550	5150	405	5030
-1000	5125	-380	5027	-2319	5050	500	5300	500	5030	-172	4970
-2000	5100	-1539	4936	-2410	5000	180	5200	340	4970	-717	4954
-3068	4990	-2207	4903	-2696	4990	92	5100	-212	4954	-1174	4896
-4232	4966	-2726	4882	-2772	4970	-2220	5040	-880	4896	-1563	4870
-5563	4948	-4532	4854	-3891	4940	-3735	4980	-1251	4870	-2045	4840
-6019,8	4882			-4078	4920	-4158	4911	-2214	4840		
-6237	4854			-4545	4890	-4815	4896				
-7624	4812			-4626	4890	-5562	4870				
				-5130	4870	-6048	4833				
				-6949	4840						

Año	2001	Año	2002	Año	2003	Año	2004	Año	2005	Año	2006
Balance (mm)	Altitud (msnm)	Balance (mm)	Altitud (msnm)	Balance (mm)	Altitud (msnm)	Balance (mm)	Altitud (msnm)	Balance (mm)	Altitud (msnm)	Balance (mm)	Altitud (msnm)
940	5760	1015	5740	810	5740	957	5760	878	5760	985	5760
665	5580	815	5550	810	5550	892	5550	878	5550	985	5550
540	5500	500	5450	810	5450	661	5450	878	5450	912	5450
460	5400	375	5300	675	5300	370	5324	780	5324	838	5324
380	5290	230	5244	338	5244	250	5250	520	5250	474	5250
190	5100	115	5150	-1380	5150	82	5150	0	5150	0	5150
-441	5050	-1286	5050	-2558	5050	-2004	5050	-1177	5125	-1311	5125
-3060	4980	-4410	4980	-5703	4980	-3435	4980	-2360	5050	-1836	5050
-3287	4930	-4907	4930	-6497	4930	-4147	4935	-4003	4980	-2357	4980
-3547	4890	-4999	4895	-5934	4895	-4171	4895	-4259	4935	-2597	4935
-4876	4870			-6330	4870	-4323	4870	-4670	4895	-3670	4895
-4962	4845			-6633	4845	-5420	4845	-4838	4870	-4030	4870
								-6580	4845		

Año	2007
Balance	Altitud
(mm)	(msnm)
916	5680
810	5550
767	5450
560	5350
279	5250
0	5170
-1545	5050
-2005	4980
-2773	4935
-3573	4895
-4024	4870
-4459	4845

Tabla 2.12. Variación del balance en función de la altitud. Período 1995–2007

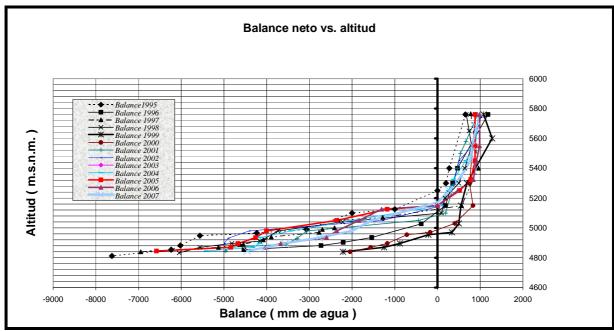


Figura 2.8. Variación del balance en función de la altitud. Período 1995-2007

3. Línea de equilibrio (ELA) versus Área Promedio de Acumulación (AAR) La línea de equilibrio ha tenido una fluctuación máxima de 265 m durante los trece años de monitoreo.

Las relaciones entre la línea de equilibrio ELA y el área promedio de acumulación AAR con el balance neto específico se la puede ver en la Figura 2.9 y la Figura 2.10

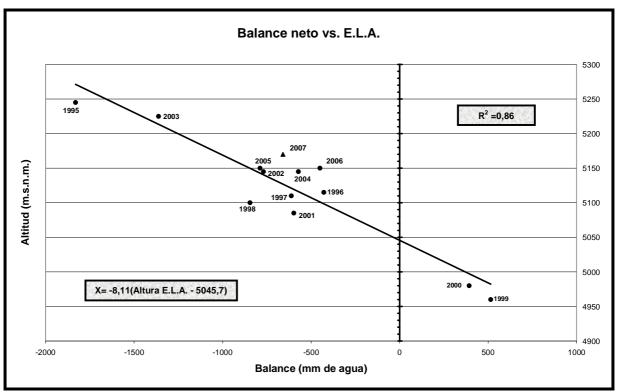


Figura 2.9. ELA versus balance neto. La ELAO se ubica en los 5045

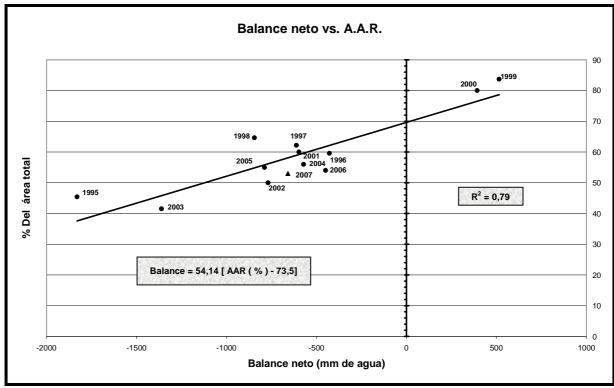


Figura 2.10. AAR versus balance neto. El AARO corresponde al 70%

Estas relaciones tienen un carácter lineal para todos los glaciares monitoreados en el mundo (World Glacier Monitoring Service, 1999). Esta tendencia no ha podido ser comprobada de manera total sobre el Glaciar 15α del Antisana, debido a los pocos datos existentes sobre el balance neto (trece años).

Sin embargo, con los pocos datos existentes se ha realizado una *aproximación* para obtener los valores de ELA₀ y AAR₀ mediante el ajuste de una recta utilizando una regresión lineal.

Para las ELA sé cálculo un coeficiente de correlación R^2 de 0.86 (R= 0.92) y se obtuvo un valor del ELA $_0$ = 5045 m (balance equilibrado).

Para las AAR se calculó un coeficiente de correlación R² de 0.79 (R= 0.89) y se obtuvo un valor del AAR₀ que corresponde al 70% de la cobertura total del glaciar.

Este coeficiente obtenido mediante la regresión lineal debe ser manejado con cuidado ya que el número de años sobre la cual se ha realizado la correlación es aun pequeño y corresponde a un período de retroceso acelerado. Probablemente el glaciar aun no se encuentra en equilibrio con el clima actual.

2.2 Balance de Masa del Glaciar Los Crespos

2.2.1 Zona de acumulación

La medición de la acumulación se la hizo el 14 de diciembre de 2007.

Perforación 5268 m:

Se realizó una perforación utilizando el PICO con una profundidad de 2.60 metros (medida directa) en el sitio de coordenadas GPS (E-trek Garmin, Navegación WGMS 84): 817637 E; 9945720 N (+/- 5 metros). Ubicado en la parte superior de la segunda loma, se calculó un

equivalente en agua de 782 mm. En este sitio se dejó la pastilla Recco (AC01), se instaló una baliza de acumulación consistente en dos tubos de PVC de 2.5 pulgadas de diámetro con una longitud total de 6 metros, con una emergencia de 3.0 metros.

En la Tabla 2.13se presentan las mediciones y cálculos realizados para obtener el equivalente en agua producto de la acumulación neta. La superficie de ablación identificada es el hielo y se presenta una buena coherencia de la acumulación con las paredes de las grietas.

Profundidad	Peso	Largo	Circunferen	Radio	Area	Volumen	Densidad	Agua	Agua acumulada
(cm)	(g)	(cm)	cia (cm)	(cm)	(cm²)	(cm ³)	(g/cm ³)	(mm)	(mm)
50	198	9	25	4,00	50,27	452,39	0,44	39	39
77	223	9	25	4,00	50,27	452,39	0,49	44	84
107	409	17	25	4,00	50,27	854,51	0,48	81	165
121	188	11,5	25	4,00	50,27	578,05	0,33	37	203
152	491	25	25	4,00	50,27	1256,64	0,39	98	300
163	254	11	25	4,00	50,27	552,92	0,46	51	351
177	314	14	25	4,00	50,27	703,72	0,45	62	413
193	330	16	25	4,00	50,27	804,25	0,41	66	479
209	379	16	25	4,00	50,27	804,25	0,47	75	554
218	121	9	25	4,00	50,27	452,39	0,27	24	578
229	272	11	25	4,00	50,27	552,92	0,49	54	632
260	752	32	25	4,00	50,27	1608,50	0,47	150	782
Promedio							0,43		

Tabla 2.13. Densimetría y equivalentes en agua. Perfil 5268m Glaciar "Los Crespos

Los resultados son los siguientes:

Espesor de la acumulación: 260 cm. de neviza

Espesor medida: 152 cm.

Densidad promedia: 0.43 g/cm³ Equivalente agua: 646 mm Índice de confianza: bueno.

Perforación 5113 m:

Se realizó una perforación utilizando el PICO con una profundidad de 2.75 metros (medida directa) en el sitio de coordenadas GPS (E-trek Garmin, Navegación WGMS 84): 817254 E; 9945614 N (+/- 5 metros). Se calculó un equivalente en agua de 226 mm. En este sitio se dejó la pastilla Recco (AC02), se instaló una baliza de acumulación consistente en un tubo de PVC de 2.5 pulgadas de diámetro con una longitud total de 6 metros, con una emergencia de 2.10 metros.

En la Tabla 2.14 se presentan las mediciones y cálculos realizados para obtener el equivalente en agua producto de la acumulación neta.

Profundidad (cm)	Peso (g)	Largo (cm)	Circunferen cia (cm)	Radio (cm)	Area (cm²)	Volumen (cm³)	Densidad (g/cm³)	Agua (mm)	Agua acumulada (mm)
101	708	34	25	4,00	50,27	1709,03	0,41	141	141
226	113	5,5	25	4,00	50,27	276,46	0,41	22	163
264	135	7	25	4,00	50,27	351,86	0,38	27	190
275	180	8	25	4,00	50,27	402,12	0,45	36	226
Promedio							0,41		

Tabla 2.14. Densimetría y equivalentes en agua. Perfil 5113 m Glaciar "Los Crespos"

Los resultados son los siguientes:

Espesor de la acumulación: 226 cm. de neviza

Espesor medida: 101 cm.

Densidad promedia: 0.41 g/cm³ Equivalente agua: 417 mm Índice de confianza: bueno

Sondajes 5041 m:

Se realizaron dos sondajes a esta altura usando una sonda de nieve (medida directa) en el sitio de coordenadas GPS (E-trek Garmin, Navegación WGMS 84): 817111 E; 9945604 N (+/- 5 metros). Se calculó un equivalente en agua de 541 mm. En este sitio se dejó la pastilla Recco, se instaló una baliza de acumulación (AC03) consistente en un tubo de PVC de 2.5 pulgadas de diámetro con una longitud total de 6 metros, con una emergencia de 2.75 metros. Se consideró una densidad promedio de 0.41 g/cm³

En la Tabla 2.15 se presentan las mediciones realizadas para obtener el equivalente en agua producto de la acumulación neta.

Nombre	Profundidad (cm)	Observaciones
A4	170	Coordenadas GPS-Francou
A5	95	Coordenadas GPS-Francou

Tabla 2.15. Sondajes 5041 m Glaciar "Los Crespos"

Cálculo de la acumulación neta a más de 5250 m sobre le Glaciar Los Crespos:

Sobre la Tabla 2.16 y en la ¡Error! No se encuentra el origen de la referencia.11se muestra un resumen de los datos de acumulación por sobre la línea de neviza (ELA =línea de equilibrio) fijada a los 5170 m (observación directa en el glaciar 15). Se nota que los valores de acumulación en los rangos altitudinales ubicados entre 5500-5760 han sido extrapolados a partir de las mediciones realizadas sobre el glaciar 15.

Rangos altitudinales	Acumulación mm de agua	Observaciones
5500-5760	863	Extrapolado
5200-5500	707	Medido*
4950-5200	465	Medido*

Tabla 2.16. Cálculos equivalente agua por rango altitudinal Glaciar "Los Crespos"

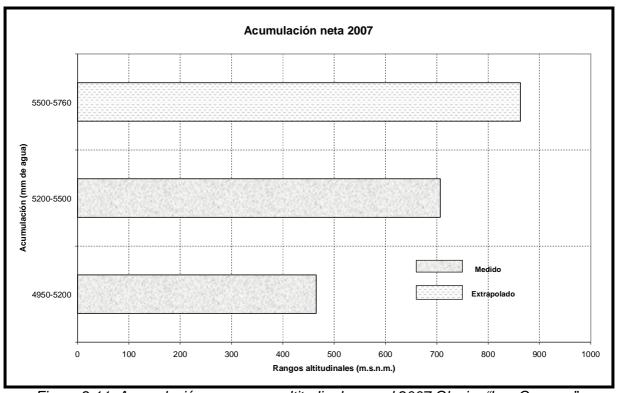


Figura 2.11. Acumulación por rangos altitudinales en el 2007 Glaciar "Los Crespos"

Grado de confianza de la estimación de la acumulación neta:

Varios parámetros permiten el dar a la medición de acumulación neta del glaciar un grado "aproximado".

- Buena identificación de la capa basal (superficie de ablación del fin del 2006),
- Mediciones correctas y claras en los puntos escogidos,
- Línea de neviza bien visible y extensa a lo largo de la lengua 15 en la fecha que se realizó la medición.
- Consistencia con lo observado sobre las paredes de las grietas.
- Dentro de los parámetros negativos, hay que tomar en cuenta:
- Ausencia de mediciones arriba de los 5500 metros de altitud, debido a las dificultades que se tuvieron durante las mediciones, especialmente la presencia de grietas y el mal tiempo reinante.
- La no observación de la altitud de la línea de neviza sobre la lengua.

2.2.2 Zona de ablación Glaciar "Los Crespos"

a) Método de cálculo tomando en consideración la capa de nieve:

La metodología de cálculo es semejante a la descrita anteriormente para el Glaciar 15.

b) Red de balizas instaladas:

La ubicación de las balizas de balance se muestra sobre la Figura 2.12

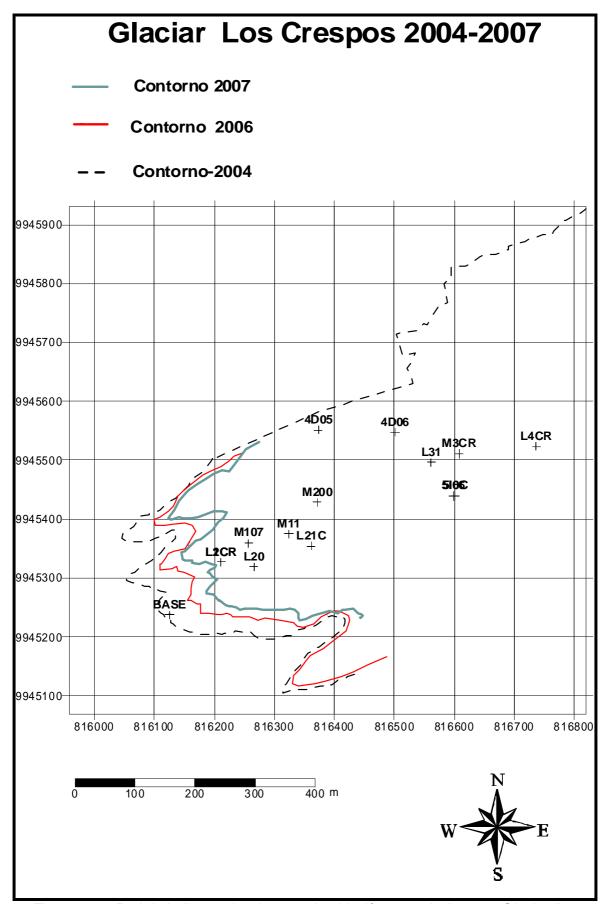


Figura 2.12. Red de balizas sobre la zona de ablación para el año 2007 Glaciar "Los Crespos"

Balance anual para cada baliza

Para conocer el balance durante el año 2007 se utilizaron los datos topográficos iniciales obtenidos en el levantamiento realizado en el mes de diciembre del 2006.

Para el efecto se emplearon las mediciones de diez balizas instaladas el mes de diciembre de las 2005 y en el mes de diciembre del 2006 ubicadas entre los 4759 y 4898 m. Es importante indicar que durante el año se perdieron numerosas balizas debido a las avalanchas o por encontrarse en la cercanía de grietas que en algunos casos impidió su lectura periódica. El balance obtenido para cada una de las balizas consideradas así como su ubicación altimétrica se lo puede ver en la Tabla 2.17 se consideran todas las balizas que han registrado lecturas.

Grupo	Altitud rango	Sup relativa	Sup parcial	Baliza	Altitud	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Indice	Sumatoria	Promedio Sumatoria
1	4735	0,0128	23216	L1C	4762	-70	-95	-82	-40	-82	36	-17	-10	-61	-36	-78	-41	No	-577	-577
2	4775	0.0500	90600	L21C	4789	-130	-102	-71	-43	-66	39	-16	-5	-49	-31	-51	-38	No	-562	-577
	4//5	0,0500	90600	L2C	4762	-65	-83	-78	-49	-93	29	-25	-24	-55	-58	-56	-36	No	-593	-5//
2	4825	0.0316	56078	L31C	4879	10	-82	-68	119	-168	260	-203	-14	19	-28	-6	-30	No	-189	-321
3	4023	0,0316	36076	L3C	4822	-150	-72	-71	36	-119	42	-14	-1	-38	-27	-26	-13	No	-453	-321
				4C06C	4778	-65	-94	-89	31	-190	104	-19	-10	-3	-13	-27	-29	No	-405	
	4875	0.0421	74723	4D06C	4867	-49	-82	-244	45	-176	118	-40	-18	-4	-35	-52	-28	No	-565	-314
4	40/3	0,0421	14123	5105C	4880	-75	-65	-70	80	-238	57	-3	-18	-19	-56	-6	160	No	-252	-314
				5106C	4886	-114	-68	-67	129	-92	72	-16	-15	32	-55	-4	165	No	-32	
5	4925	0,0442	78430	L4C	4935	-80	-65	-65	74	-160	135	-10	-10	41	20	-30	-3	No	-153	-153

Tabla 2.17. Balance de cada baliza durante el 2007 Glaciar "Los Crespos" Los recuadros en gris corresponden a los datos interpolados

c) Balizas representativas y rangos altitudinales:

Los rangos altitudinales se los estableció en función del levantamiento topográfico realizado y de la serie de datos recogidos durante el año. Estos rangos se muestran en la Tabla 2.18.

Nº Baliza	Cotas m.s.n.m.	Balance (mm)
4C06C	4778	-4047
4D06C	4867	-5647
5105C	4880	-2525
5106C	4886	-323
L1C	4762	-5768
L21C	4789	-5620
L2C	4762	-5925
L31C	4879	-1887
L3C	4822	-4533
L4C	4935	-1535

Tabla 2.18. Balizas representativas para cada rango altitudinal en 2007. Glaciar Los Crespos

d) Balance ponderado

El balance ponderado (B_{pi}) en la zona de ablación toma en consideración el valor del balance encontrado en cada rango (b_i), la superficie de dicho rango (s_i) y la superficie total del glaciar (S):

$$B_{pi} = b_i (s_i/S)$$
 (2.1.)

Sobre la Tabla 2.19 se muestra el balance mensual ponderado para la zona de ablación del glaciar Los Crespos.

Rango	Sup. Relativa	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Sumatoria
4735	0,01	-9	-12	-10	-5	-11	5	-2	-1	-8	-5	-10	-5	-74
4775	0,05	-49	-46	-37	-23	-40	17	-10	-7	-26	-22	-27	-19	-289
4825	0,03	-22	-24	-22	24	-45	48	-34	-2	-3	-9	-5	-7	-101
4875	0,04	-32	-32	-50	30	-73	37	-8	-6	1	-17	-9	28	-132
4925	0,04	-35	-29	-29	33	-71	60	-4	-4	18	9	-13	-1	-68
S	0,18	-147	-144	-148	59	-240	166	-59	-22	-18	-43	-64	-4	-664

Tabla 2.19. Balance ponderado mensual para cada rango altitudinal en el 2007 expresado en mm de agua para la superficie total del Glaciar "Los Crespos"

e) Evolución de la capa de nieve del glaciar "Los Crespos" en la zona de ablación

Durante el año 2007, la capa de nieve promedio fue de 15 cm. Sobre la parte baja de la zona de ablación (4735-4925 m) la capa de nieve fue nula para los meses de enero, febrero; para los meses de marzo, junio y julio se tuvo valores entre los 5-15 centímetros; para los meses restantes el valor de cobertura fue superior a los 15 centímetros, teniéndose en algunos casos coberturas importantes en la parte alta de la zona de ablación.

Los resultados se los puede observar sobre la Tabla 2.20 y la Figura 2.13.

Grupo	Altitud rango	Sup relativa	Sup parcial	Baliza	Altitud	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre Indi	e Sumatoria	Promedio Sumatoria
1	4735	C	23216	L1C	4762		0	0	19	22	10	14	30	0	0	7	0 No	101	101
-	4775		90600	L21C	4789	0	0	0	19	26		15		7	0	11	0 No	77	93
	4775	U		L2C	4762	0	0	0	16	24		15	44	0	0	10	0 No	109	93
	4825		56078	L31C	4879	0	0	8	15	23	10	14	45	38	75	27	32 Si	287	193
3	4023	·	30076	L3C	4822	0	0	10		16	10	13	39	0	0	11	0 No	99	193
				4C06C	4778	0	0	13			10	14	40	55	32	9	No	173	
	4875	,	74723	4D06C	4867	0	0	10			10	16	38	50	40	9	0 No	173	159
4	40/3		14123	5105C	4880	0	0	13			10	12	35	8			No	78	109
				5106C	4886	0	0	10		19	10	14	37	9	75	22	18 No	214	
5	4925	C	78430	L4C	4935	0	0	11			10	12	41	16		46	32 No	167	167

Tabla 2.20. Valores mensuales de la capa de nieve durante 2007

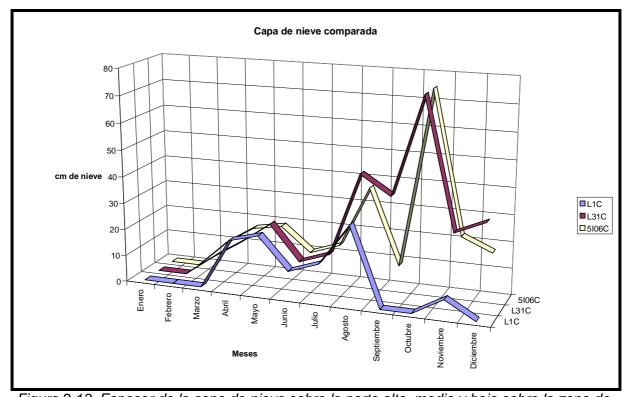


Figura 2.13. Espesor de la capa de nieve sobre la parte alta, media y baja sobre la zona de ablación del glaciar los Crespos del Antisana para el año 2007.

Mediciones realizadas mensualmente.

f) Evolución mensual del balance en la zona de ablación:

Balance mensual por rangos altitudinales y promedio de balizas:
 El balance mensual obtenido para el año de 2007 se lo puede observar en la Tabla 2.21 y la Figura 2.14.

Rango	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Sumatoria
4735	-70	-95	-82	-40	-82	36	-17	-10	-61	-36	-78	-41	-577
4775	-98	-92	-75	-46	-79	34	-20	-14	-52	-44	-54	-37	-577
4825	-70	-77	-69	77	-144	151	-108	-7	-10	-27	-16	-21	-321
4875	-76	-77	-118	71	-174	88	-19	-15	1	-40	-22	67	-314
4925	-80	-65	-65	74	-160	135	-10	-10	41	20	-30	-3	-153
S	-393	-406	-408	136	-639	444	-175	-57	-80	-127	-200	-35	-1942

Tabla 2.21. Balance mensual no ponderado para las balizas seleccionadas en mm de agua. Glaciar "Los Crespos"

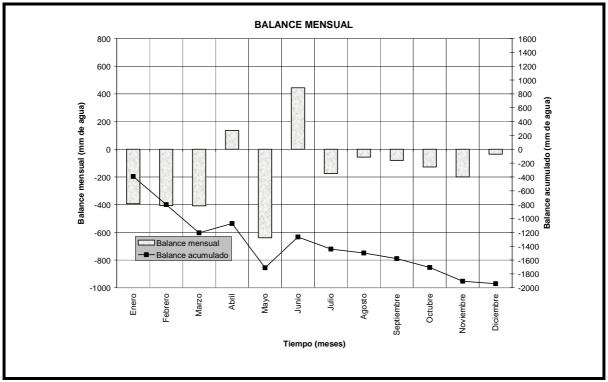


Figura 2.14. Variación del balance ponderado en la zona de ablación durante el año 2007 Glaciar "Los Crespos"

2.2.3 Balance anual del glaciar en su totalidad (acumulación + ablación) Glaciar "Los Crespos"

a) Balance neto específico:

Basándose en los datos medidos sobre el campo se obtuvo un balance neto para el año de 2007 con un valor de -147 mm de agua. Los rangos altitudinales utilizados para el cálculo así como los resultados obtenidos se muestran en la Tabla 2.22 y la Figura 2.15. Para el cálculo se siguió la misma metodología empleada en el glaciar 15 alfa.

Rango altitudinal (m.s.n.m.)	Sup. Parcial (m²)	Sup. Relativa Sr	Balance (mm)	Balance ponderado Sr*B = (mm)
5500-5750	414495	0,243	863	210
5200-5500	552660	0,324	707	229
4950-5200	414495	0,243	465	113
4900-49500	78430	0,046	-1535	-71
4850-4900	74723	0,044	-3136	-137
4800-4850	56078	0,033	-3210	-106
4750-4800	90600	0,053	-5773	-307
4720-4750	23216	0,014	-5768	-79
Suma	1704697	1		-147

Tabla 2.22. Cálculo del balance neto específico (ponderado) para el año 2007 en mm de agua Glaciar "Los Crespos"

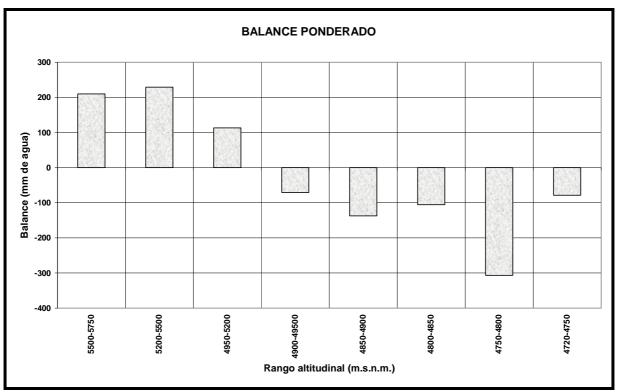


Figura 2.15. Balance neto específico (ponderado) por rango altitudinal para el año 2007 (mm de agua) Glaciar "Los Crespos"

b) Perfil altitudinal del balance Glaciar "Los Crespos"

Sobre la Tabla 2.23 y la Figura 2.16 se muestra el perfil altitudinal del balance desde el frente del glaciar hasta la cumbre, los valores mostrados corresponden al balance no ponderado. Se han considerado 8 rangos altitudinales entre los 4735 y los 5760 metros.

Rango altitudinal (m.s.n.m)	Balance (mm)
5625	838
5350	838
5075	634
4925	-1535
4875	-3136
4825	-3210
4775	-5773
4735	-5768

Tabla 2.23. Balance neto no ponderado y rangos altitudinales para el año 2007

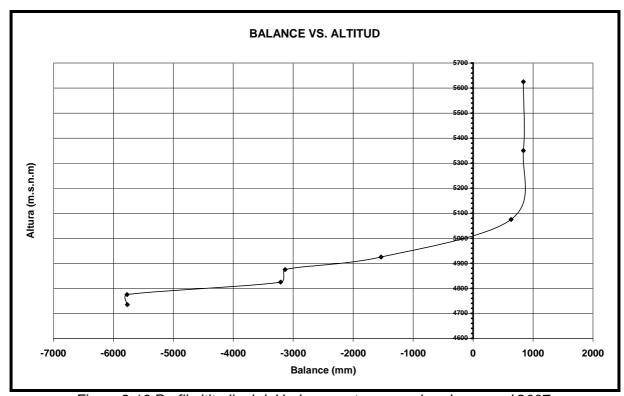


Figura 2.16.Perfil altitudinal del balance neto no ponderado para el 2007

CAPÍTULO 3

3. Geometría del glaciar

Autor Principal: Ing. Bolívar Cáceres

ÍNDICE DEL CAPÍTULO

3.1	Evolución del Glaciar 15	29
3.1.1	Mediciones directas de la ubicación del frente de la lengua del Glaciar 15 α	29
3.1.2	Retroceso del frente del Glaciar 15a. Período 1996 – 2004	31
3.1.3	Longitudes y áreas para las lenguas α y β del Glaciar 15 del Antisana (1956 – 2007)	33
3.1.4	Velocidad superficial de las balizas	41
3.2	Evolución del Glaciar Los Crespos	42
3.3	Evolución del Glaciar del Caribuayrazo	44

3.1 Evolución del Glaciar 15

3.1.1 Mediciones directas de la ubicación del frente de la lengua del Glaciar 15α

Para el año de 2007 se pudo observar un retroceso del glaciar de siete metros al igual que el año precedente el cual tiene que ser relacionado con el balance neto negativo, y particularmente con el elevado valor de la ablación registrada a nivel del frente del glaciar. Esto contrasta con los años anteriores 1999 y 2001 en los cuales se registraron valores menores de ablación respectivamente y valores positivos para el balance neto lo cual nos indica que en este período se produjo un avance del glaciar que contrasta con lo ocurrido en el año 2001, 2002 y 2003.

Sobre la Figura 3.1 y las Tabla 3.1 y Tabla 3.2. Son presentados los resultados obtenidos y los desplazamientos sufridos por el frente del glaciar 15 de 1994 al 2007.

Fecha	Norte	Este
Junio-94	9948202	816820
Febrero-95	9948122	816863
Oct-95	9948078	816914
Agosto-96	9948097	816867
Octubre-97	9948063	816905
Febrero-98	9948022	816931
Diciembre-98	9947987	816940
Enero/26/2000	9948033	816934
Enero/15/2001	9948028	816934
Diciembre/26/2001	9948027	816941
Diciembre/26/2002	9948017	816948
Dic-28-2003/Enero3-2004	9947962	816959
Diciembre/27/2004	9947954	816973
Diciembre/1/2005	9947943	816991
Diciembre/26/2006	9947940	816995
Diciembre/26/2007	9947935	817000

Tabla 3.1. Ubicación de las marcas de referencia del frente del Glaciar 15α Período junio de 1994 – diciembre del 2007. (Sistema WGS84)

Las marcas de referencia son bloques que se ubican en la parte Terminal de la lengua hacia el lado derecho, estas pueden sufrir un desplazamiento considerable en corto tiempo y como su nombre lo indica solo son *referenciales*.

Año	Fecha de medición	Retroceso (m)
1994-1995	febrero/95	-41
1995-1996	agosto/96	-28
1996-1997	octubre/97	-41
1997-1998	febrero/98	-56
1998-1999	diciembre/98	-34
1999-2000	enero/2000	21
2000-2001	enero/2001	18
2001-2002	diciembre/2001	-18
2002-2003	diciembre2002	-19
2003-2004	diciembre2003	-31
2004-2005	diciembre/2004	-31
2005-2006	diciembre/2005	-28
2006-2007	diciembre/2006	-10
2007-2008	diciembre/2007	-7
·	Sumatoria	-305

Tabla 3.2. Fecha de medición de las marcas de referencia y retroceso del frente del Glaciar 15 a. Período junio de 1994 – diciembre del 2007

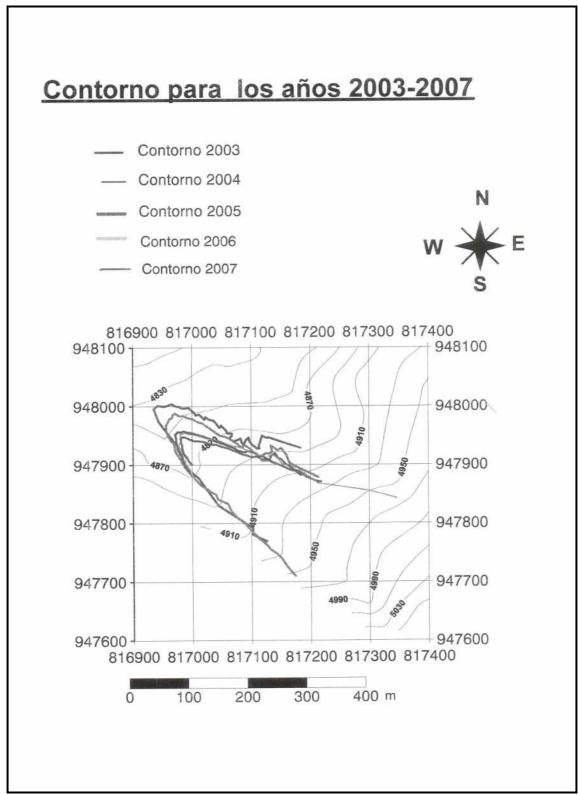


Figura 3.1 Topografía del Glaciar 15 - Años con mediciones topográficas

3.1.2 Retroceso del frente del Glaciar 15a, Período 1996 – 2004

Si se comparan los resultados obtenidos por medición directa en el campo y los resultados obtenidos sobre los mapas elaborados sobre la base de aerofotogrametría se puede ver que no existe una gran discrepancia entre las dos metodologías, la diferencia entre los dos

métodos de medición es de 29.94 m sobre la longitud total del glaciar (2235 m) que equivale a un porcentaje de error promedio del 1.2% sobre la longitud total del glaciar.

Considerando como valores confiables a los levantamientos topográficos realizados desde el año de 1996 hasta la actualidad (2007) el retroceso del glaciar es de – 238 metros. Los resultados se los puede ver en las Tabla 3.3 y Tabla 3.4.

Levantamiento	Fecha	Escala
Foto 56	15 de febrero	1:60000
Foto 65	7 de febrero	1:60000
Foto 93	2 de agosto	1:60000
Foto 97	enero	1:60000
Topografía 96	enero	
Topografía 97	febrero	
Topografía 98	16 de diciembre	
Topografía 99	26 de enero del 2000	
Topografía 2000	15 de enero del 2001	
Topografía 2001	26 de diciembre del 2001	
Topografía 2002	26 de diciembre del 2002	
Topografía 2003	Dic-28-2003/Enero3-2004	
Topografía 2004	Diciembre-27-2004	
Topografía 2005	Diciembre-1-2005	
Topografía 2006	Diciembre-27-2006	
Topografía 2007	Diciembre-27-2007	

Tabla 3.3. Fecha de toma de fotografías y mediciones topográficas realizadas sobre el Glaciar 15α. Período 1996-2007

Año	Meses	Topografía (m)	Fotogrametría (m)
1995-1996	15	-41	-54
1996-1997	5	-56	-60
1997-1998	11	-34	-26
1998-1999	12	+21	+16
1999-2000	12	+17	+26
2000-2001	12	-18	-27
2001-2002	12	-19	-15
2002-2003	12	-31	-54
2003-2004	12	-31	-26
2004-2005	12	-28	-27
2005-2006	12	-9	-10
2006-2007	12	-10	-12
Sumatoria	139	-238	-268

Tabla 3.4. Retroceso del Glaciar 15α medido basándose en topografía y aerofotogrametría para él período 1996 – 2007

Para las mediciones aerofotogramétricas se considera que el contorno del glaciar a partir de los 5000 m no ha cambiado desde el año de 1997, año de toma de la última fotografía disponible, bajo esta altitud se han colocado los levantamientos topográficos realizados y se ha procedido a realizar las mediciones utilizando el Software Autocad.

3.1.3 Longitudes y áreas para las lenguas α y β del Glaciar 15 del Antisana (1956 – 2007)

a) Longitudes del glaciar

Para la evaluación de las longitudes del glaciar, se empleó como herramienta de trabajo software de Autodesk denominado Sumagraf[®] (tablero digitalizador), el cual puede ser utilizado en combinación con la plataforma de diseño gráfico Autocad 2006[®] de la misma procedencia.

Lengua α :

Para esta lengua, se ha establecido una pérdida de 396 m, lo que equivale al 18 % de la longitud para el periodo febrero de 1956 - diciembre del 2007. Los resultados obtenidos se muestran en la Tabla 3.5 y en la Figura 3.2.

Año	Longitud	Long. Perdida/Ganada	Pérdida (%)
	(m)	(m)	` ′
1956	2235	0	0
1956-1965	2193	-42	2
1965-1993	2103	-90	6
1993-1996	2049	-54	8
1996-1997	1989	-60	11
1997-1998	1963	-26	12
1998-1999	1979	16	11
1999-2000	2006	27	10
2000-2001	1979	-27	11
2001-2002	1964	-15	12
2002-2003	1910	-54	15
2003-2004	1883	-26	16
2004-2005	1856	-27	17
2005-2006	1846	-10	17
2006-2007	1840	-7	18

Tabla 3.5. Evolución de la longitud del Glaciar 15α de 1956 al 2007 Longitudes en metros

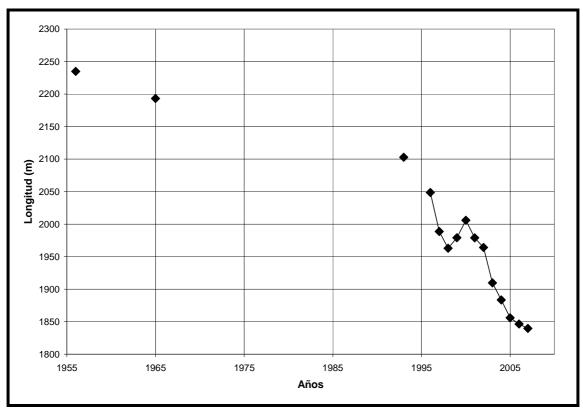


Figura 3.2. Evolución de la longitud del Glaciar 15α período 1956-2007

<u>Lengua</u> β

Se ha calculado una pérdida de 510 m, lo que equivale al 21% de la longitud total para el periodo febrero de 1956 - diciembre del 2006. Los resultados se muestran sobre la Tabla 3.6 y la Figura 3.3.

Año	Longitud (m)	Long. Perdida/Ganada (m)	Pérdida (%)
1956	2380	0	0
1956-1965	2359	-21	1
1965-1993	2216	-143	7
1993-1996	2158	-58	9
1996-1997	2104	-54	12
1997-1998	2054	-50	14
1998-1999	2064	10	13
1999-2000	2060	-4	13
2000-2001	2052	-8	14
2001-2002	2008	-44	16
2002-2003	1932	-76	19
2003-2004	1913	-19	20
2004-2005	1900	-13	20
2005-2006	1881	-19	21
2006-2007	1870	-11	21

Tabla 3.6. Evolución de la longitud del Glaciar 15β de 1956 al 2007 Longitudes en metros

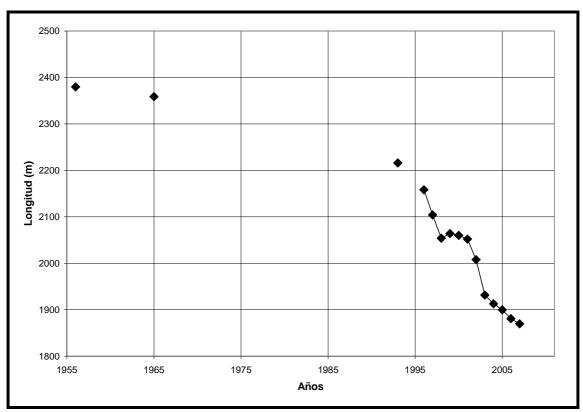


Figura 3.3. Evolución de la longitud del Glaciar 15β período 1956-2007

b) Retroceso y de las lenguas α y b Período 1996 – 2007 *Lengua \alpha:*

Durante este período de 132 meses, se ha medido por topografía directa un retroceso de 209 m, que equivale al 10 % de su longitud total, lo que nos arroja una tasa de 1.6 m de pérdida de longitud por mes. Los resultados se muestran en la Tabla 3.7.

Año	Longitud (m)	Long. Perdida/Ganada (m)	Pérdida acumulada (%)	Fecha de medición
1996	2049	0	0	Enero-97
1997	1989	-60	3	Febrero-97
1998	1963	-26	4	Diciembre-98
1999	1979	16	3	Enero/26/2000
2000	2006	27	2	Enero/15/2001
2001	1979	-27	3	Diciembre/26/2001
2002	1964	-15	4	Diciembre/26/2002
2003	1910	-54	7	Dic-28-2003/Enero3-2004
2004	1883	-26	8	Dic/27/2004
2005	1856	-27	9	Dic/1/2005
2006	1846	-10	10	Dic/27/2006
2007	1840	-7	10	Dic/26/2007

Tabla 3.7. Evolución de la longitud del Glaciar 15α: periodo 1996-2007 (132 meses) Longitudes en metros

Lengua β:

La reducción medida es de 289 m, lo que equivale al 13 % de la longitud total. Esto nos arroja una tasa de 2.2 m de pérdida de longitud por mes. Los resultados se muestran en la Tabla 3.8.

Año	Longitud (m)	Long. Perdida/Ganada (m)	Pérdida acumulada (%)	Fecha de medición
1996	2158	0	0	Enero-97
1997	2104	-54	3	Febrero-98
1998	2054	-50	5	Diciembre-98
1999	2064	10	4	Enero/26/2000
2000	2060	-4	5	Enero/15/2001
2001	2052	-8	5	Diciembre/26/2001
2002	2008	-44	7	Diciembre/26/2002
2003	1932	-76	11	Dic-28-Enero3-2004
2004	1913	-19	11	Dic/27/2004
2005	1900	-13	12	Dic/1/2005
2006	1881	-19	13	Dic/27/2006
2007	1870	-11	13	Dic/26/2007

Tabla 3.8. Evolución de la longitud del Glaciar 15β: periodo 1996-2007 (132 meses) Longitudes en metros

Del análisis de los datos mostrados en la Tabla 3.5, la Tabla 3.6, la Tabla 3.7 y la Tabla 3.8 desde el año de 1956 hasta el año de 2004, se puede ver claramente que el retroceso del glaciar se ha incrementado de manera significativa en los últimos años. Así, para el período 1956-1996, la tasa de velocidad de retroceso de las lenguas a y b es de 0.38 y 0.45 m / mes respectivamente, mientras que para el período 1996-2007, esta fue de 1.59 y 2.19 m / mes respectivamente.

Pero, para el año 2007, se observa un nuevo retroceso moderado. Parece claro que este nuevo retroceso se relaciona directamente con el balance de la zona de ablación. Esto pone en evidencia la sensibilidad de este tipo de glaciar a la variabilidad climática a una escala de tiempo corta.

Un resumen de estos cálculos se lo puede ver en la Tabla 3.9.

Período	Velocidad (m/mes)		Longitud perdida (m)		Tiempo (meses)
renodo	Alfa	Beta	Alfa	Beta	Hempo (meses)
1956-1996	0,38	0,45	-186,18	-221,29	492
1996-2007	-1,59	-2,19	-209	-289	132

Tabla 3.9. Velocidad de retroceso de las lengua a y b para el Glaciar 15

c) Áreas del glaciar

Lengua α:

Se considera un período de estudio de 52 años. Durante este lapso, se ha producido una pérdida del 42 % del área total del glaciar. Se ha considerado como punto de partida el área definida por el contorno que corresponde a la fotografía del año 1956.

Los resultados obtenidos se detallan en la Figura 3.4 y en la Tabla 3.10.

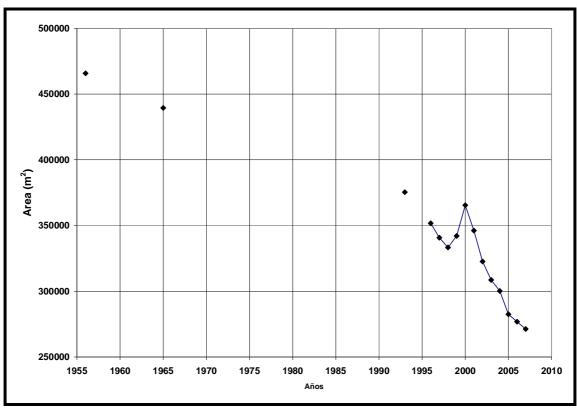


Figura 3.4. Evolución de la superficie del Glaciar 15α Período 1956 - 2007Áreas en metros cuadrados

Año	Area (m²)	%	Pérdida acumulada (%)
1956	465802	100	0
1956-1965	439519	94	6
1965-1993	375412	81	19
1993-1996	351710	76	24
1996-1997	340749	73	27
1997-1998	333356	72	28
1998-1999	342117	73	27
1999-2000	365464	78	22
2000-2001	346139	74	26
2001-2002	322613	69	31
2002-2003	308616	66	34
2003-2004	300207	64	36
2004-2005	282511	61	39
2005-2006	276860	59	41
2006-2007	271322	58	42

Tabla 3.10. Evolución de la superficie del Glaciar 15α Período 1956 - 2007

Lengua β:

Utilizando la misma metodología que para el otro glaciar, se establece un porcentaje de pérdida del 35 %, los resultados se muestran en la Figura 3.5 y en la Tabla 3.11.

37

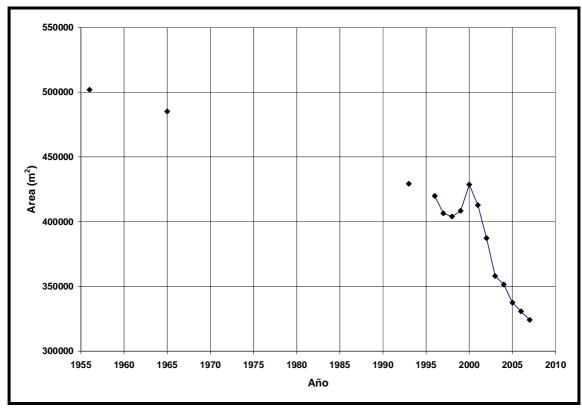


Figura 3.5. Evolución de la superficie del Glaciar 15 b Período 1956 – 2007

Año	Area (m²)	%	Pérdida acumulada (%)
1956	501835	100	0
1956-1965	485076	97	3
1965-1993	429262	86	14
1993-1996	419926	84	16
1996-1997	406431	81	19
1997-1998	403950	80	20
1998-1999	408331	81	19
1999-2000	428634	85	15
2000-2001	412772	82	18
2001-2002	387266	77	23
2002-2003	358023	71	29
2003-2004	351494	70	30
2004-2005	337490	67	33
2005-2006	330740	66	34
2006-2007	324125	65	35

Tabla 3.11. Evolución de la superficie del Glaciar 15β período 1956-2007

d) Evolución de la superficie total del glaciar 15

Los datos obtenidos para la superficie total del glaciar para los períodos 1956-2004 y 1993-2007 medidos en metros cuadrados se muestran en la Tabla 3.12.

Año	Area α	Area β	Area Total	%	% de Reducción 1956-2007	% de Reducción 1993-2007
1956	465802	501835	967638	100,0	0,0	
1965	439519	485076	924595	95,6	4,4	
1993	375412	429262	804673	83,2	16,8	0,0
1996	351710	419926	771636	79,7	20,3	4,1
1997	340749	406431	747180	77,2	22,8	7,1
1998	333356	403950	737305	76,2	23,8	8,4
1999	342117	408331	750448	77,6	22,4	6,7
2000	365464	428634	794098	82,1	17,9	1,3
2001	346139	412772	758911	78,4	21,6	5,7
2002	322614	387266	709879	73,4	26,6	11,8
2003	308616	358023	666639	68,9	31,1	17,2
2004	300207	351494	651701	67,3	32,7	19,0
2005	282511	337490	620001	64,1	35,9	22,9
2006	276860	330740	607600	62,8	37,2	24,5
2007	271322	324125	595447	61,5	38,5	26,0

Tabla 3.12. Evolución de la superficie del Glaciar 15. Período 1956-2007

Del análisis de esta información, se puede establecer que el glaciar 15 sufre un proceso de desglaciación acelerado. Así se puede ver claramente que sobre el período de 37 años (1956-1993), se ha perdido el 16.8% del área total del glaciar, mientras que sobre los últimos quince años (1993-2007), la pérdida alcanza el 26.0 % del área del glaciar tomando como punto de partida el año 1993. Esto nos muestra que en el lapso de estudio (52 años), el proceso de desglaciación de estos quince últimos años puede ser considerado como muy rápido, esto se hace más evidente aún si se considera que para el período de 37 años (1956 – 1993) el porcentaje de retroceso promedio anual es de 0.5%, mientras que para el período más reciente de 15 años (1993 – 2007) el porcentaje de retroceso promedio anual es de 1.73 %.

El porcentaje de pérdida total tomando como punto de partida la interpretación aerofotogramétrica del año 1956 es del 38.5 %.

e) Determinación de la cuenca hidrográfica para la estación limnimétrica Antisanaubicada a 4555 m

Las características de la parte alta de la cuenca se determinaron utilizando la interpretación aerofotogramétrica para el año de 1997 y el levantamiento topográfico realizado en el mes de diciembre del año 2001. Para la determinación de la parte baja de la cuenca ubicada sobre el páramo se realizó un levantamiento sobre el campo en el mes de enero de 1999 para lo cual se utilizó un GPS 38 TM Garmin (Sistema WGS 84).

Las características de la cuenca se muestran en la Tabla 3.13.

Sector	Area (m ²)	%
Lengua α	271322	19,7
Lengua β	324125	23,6
Páramo	780221	56,7
Sumatoria	1375668	100,0

Tabla 3.13. Superficies cubiertas por glaciar, morrenas y páramo en la cuenca de la estación linnimétrica Antisana para el año 2007

El área de aporte de la cuenca definida de esta manera es de 137.6 hectáreas (1,37 Km²), de las cuales el 43.3 % esta cubierta por glaciares (lenguas alfa y beta) y el 56.7 % por páramo, morrenas y rocas.

Para esta cuenca, río arriba de la estación limnigráfica, el porcentaje de las superficies cubiertas por glaciares se ha reducido por sobre los 4550 m en un 27 % durante los 52 años estudiados, lo que probablemente afectara de manera significativa el régimen hidrológico del río.

Es de suponer que esta reducción debió afectar de manera poco diferente a las cuencas vecinas, ya que la cuenca del glaciar 15 parece ser representativa de las cuencas ubicadas al norte y oeste del Antisana.

Los resultados obtenidos se los puede ver sobre la Tabla 3.14 y en la Figura 3.6.

Años	% de las superficies cubiertas por glaciares
1956	70,3
1965	67,2
1993	58,5
1998	53,6
1999	54,5
2000	57,7
2001	55,2
2002	51,6
2003	48,4
2004	47,4
2005	45,0
2006	44,1
2007	43,3

Tabla 3.14. Evolución de las superficies cubiertas por glaciares en la cuenca del Glaciar 15, arriba de los 4555 m (Estación limnimétrica Antisana)

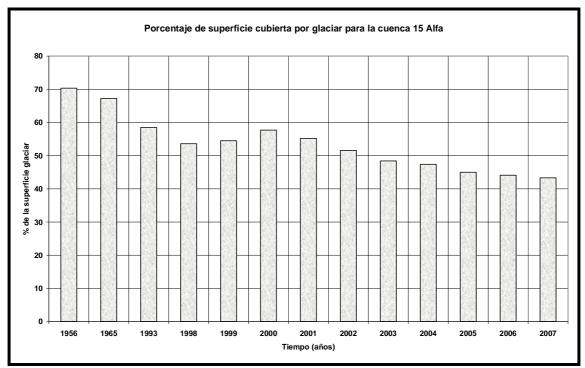


Figura 3.6. Evolución de las superficies cubiertas por glaciares en la cuenca del Glaciar 15, arriba de los 4555 m (Estación linnimétrica Antisana)

Por lo tanto, el conocimiento de la hidrología del páramo adquiere una importancia creciente en las cuencas de alta montaña.

3.1.4 Velocidad superficial de las balizas

La determinación de la velocidad de las balizas es de gran utilidad para el conocimiento de la dinámica del glaciar. La metodología de trabajo y de cálculo es la misma que se describe en los informes anteriores

El período de cálculo es de 12 meses (360 días) iniciándose con el levantamiento realizado el 26 de diciembre del 2006 y concluyendo con el levantamiento realizado el 26 de diciembre del 2007. Los resultados se los puede observar sobre Tabla 3.15

Balizas	Desplazamiento (m)	Velo	cidad
Dalizas	Despiazamiento (m)	m/mes	m/año
416	25,2	2,1	25,2
015	27,3	2,3	27,3
2C05	23,8	2,0	23,8
2C6	20,0	1,7	20,0

Tabla 3.15. Posición de las balizas para enero del 2007

Balizas	Dic-06	Ene-08	Cambio de altura
416	4937	4924,6	12
015	4977	4965,8	11
2C05	4996	4983,9	12
2C6	4987	4974,4	13

Tabla 3.16. Perdida de altura de las balizas sobre la zona de ablación (dh en metros)

Rango	2007 m/año
4960-5000	23,7
4910-4960	25,2

Tabla 3.17. Evolución de las velocidades superficiales en la zona de ablación

3.2 Evolución del Glaciar Los Crespos

A continuación sobre la Tabla 3.18 y la Figura 3.7 se presenta la evolución del Glaciar de Los Crespos entre el año 2004 y 2007.

Año	Area (m2)	Modo	% de reducción
2004	1714689	Fotogrametría+levanatmiento directo	0
2006	1704679	Fotogrametría+levanatmiento directo	0,6
2007	1696156	Fotogrametría+levanatmiento directo	0,5

Tabla 3.18. Evolución del área del glaciar Los Crespos

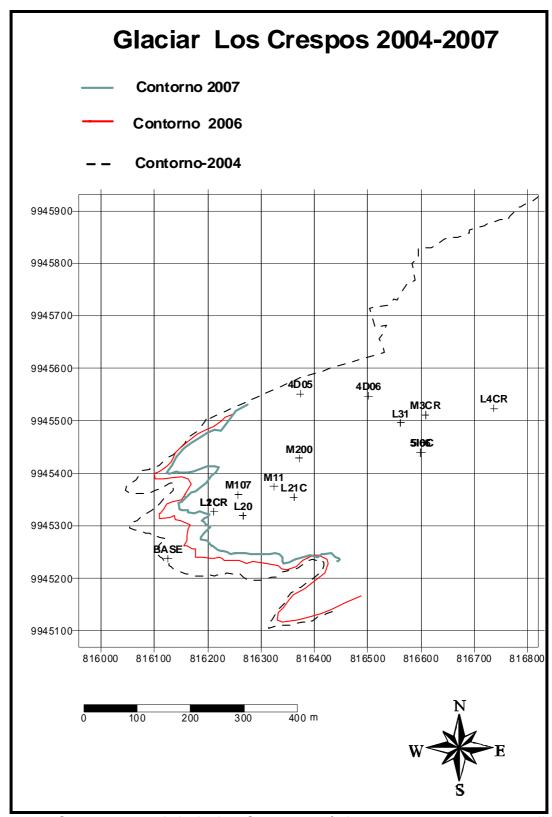


Figura 3.7. Contorno para el glaciar Los Crespos, período 2004-2007, retrocesos medidos en diferentes puntos. Sistema WGS 84

3.3 Evolución del Glaciar del Carihuayrazo

Se presenta sobre la Figura 3.8 una recopilación de los datos tomados sobre el Glaciar del Carihuayrazo, las mediciones sobre este glaciar han sido muy espaciadas y esporádicas, se espera que en un futuro las mediciones sean más continuas.

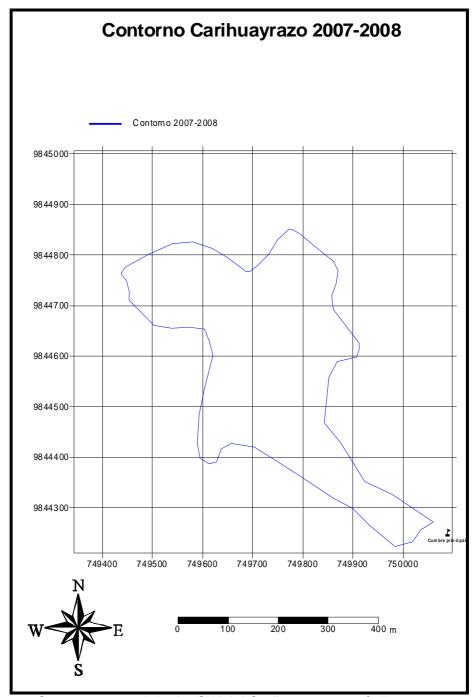


Figura 3.8. Contorno para el glaciar SW del Carihuayrazo, período 1956-2007, retroceso medido en diferentes puntos-. Sistema WGS 84

Sobre la Tabla 3.19 se muestra la evolución del área del glaciar, se ha tenido una reducción del 52.6 % desde el año de 1956, esta evaluación fue realizada utilizando fotogrametría digital y levantamientos directos sobre el campo.

Año	Area metros cuadrados	Modo	% de reducción
1956	333422	Fotogrametría	0
2003	234249	Levantamiento directo *	29,7
2004	215019	Levantamiento directo *	35,5
2005	180729	Levantamiento directo *	45,8
2006	168841	Levantamiento directo *	49,4
2007	163438	Levantamiento directo *	52,6

Tabla 3.19. Evolución aereal para el glaciar SW del Carihuayrazo, período 1956-2007

CAPÍTULO 4

PRECIPITACIONES ENTRE 4000 Y 4900 MSNM

Autor Principal: Ing. Carla Manciati

ÍNDICE DEL CAPÍTULO:

4.1	Mediciones rea	lizadas en p	luviómetros	(Totaliza	dores) y p	luviógrafos	(HOBO)
-----	----------------	--------------	-------------	-----------	------------	-------------	--------

47 4.2 Valores brutos 48

4.3 Correlaciones entre estaciones y entre artefactos de medición de precipitación

4.4 Correcciones

4.5 Valores definitivos e Interpretaciones

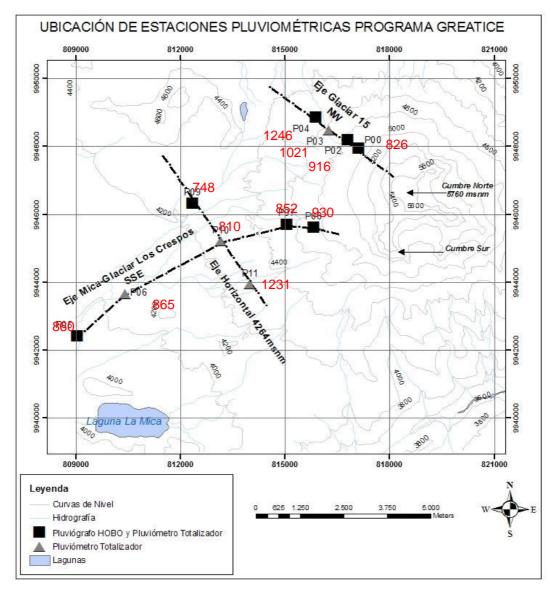


Figura 4.1. Ubicación de los pluviómetros totalizadores y pluviógrafos en el año 2007. (Fuente: EMAAP - Q, 2007. Modificado por: Guillaume Mattersdorf, Daniela Vallejos, Cristian Loyo)

47

50

58

4.1 Mediciones realizadas en pluviómetros (Totalizadores) y pluviógrafos (HOBO)

Para el año 2007 el programa guardó la red de pluviómetros totalizadores y pluviógrafos del último año (figura 4.1).

La red de estaciones es la misma que se especifica en el informe del año 2006, en la tabla 4.1, está un resumen de ellas.

ESTACIÓN	ARTEFACTOS	COORDENA	DAS WGS84	ALTURA	EJE
LSTACION	ARTEFACTOS	ESTE	NORTE	ALTOKA	LJL
P00 - Glaciar	Pluviómetro y Pluviógrafo	817123	9947944	4850	
P02 - Morrena	Pluviómetro y Pluviógrafo	816805	9948201	4785	GLACIAR 15
P03 - Totalizador	Pluviómetro	816271	9948470	4555	GLACIAR 15
P04 - Antisana	Pluviómetro y Pluviógrafo	815888	9948851	4455	
P05 - Mica	Pluviómetro y Pluviógrafo	809054	9942411	3930	
P06 - Humboldt	Pluviómetro	810430	9943645	4059	MICA - GLACIAR
P07 - Crespos	Pluviómetro y Pluviógrafo	815067	9945705	4450	LOS CRESPOS
P08 - Crespos	Pluviómetro y Pluviógrafo	815834	9945610	4730	LOS CINESI OS
Morrena	Pluviometro y Pluviografo	010004	9943010	4730	
P09 - Páramo	Pluviómetro y Pluviógrafo	812350	9946318	4269	
P10 - Camino	Pluviómetro	813175	9945200	4264	HORIZONTAL
Crepos	i idvioinietio	013173	99 4 3200	4204	4264 msnm
P11 -	Pluviómetro	814000	9943932	4264	7204 [[[5]][[]
Desaguadero	i idvioinietio	017000	3373332	7204	

Tabla 4.1. Resumen de las estaciones operadas por el programa para el año 2007. (Fuente: Trabajo de Campo: Guillaume Mattersdorf, Cristian Loyo, Erick Cuenca)

No se presentó problemas importantes de medición este año en los pluviómetros totalizadores, sin embargo, existieron algunos errores de medición que debieron ser corregidos y en algunos casos se perdieron datos de sifonajes o de lecturas del mes, por lo que fue necesario rellenar esa información.

Al hacer estas comparaciones se apreció que existen diferencias entre pluviómetros totalizadores y pluviógrafos especialmente en la estación Mica 05 y Crespos 07. En estas dos estaciones se encontró que el pluviógrafo HOBO no estaba funcionando correctamente, en la estación la Mica 05, se lo retiró en el mes de octubre, y en la estación Crespos 07, el HOBO fue remplazado en el mes de agosto.

4.2 Valores brutos

Los valores recogidos de los pluviómetros totalizadores y los pluviógrafos en este año son los que se presentan en la tabla 4.2.

Los valores corregidos y rellenados, tanto de los totalizadores como del HOBO, se hallan marcados en el cuadro. Las ecuaciones utilizadas para cada artefacto se especifican en el informe del año 2006.

Pluviómetro	Enero	Febr.	Marzo	Abril	Mayo	Junio	Julio	Agos.	Sept.	Oct.	Nov.	Dic.	AÑO 2007*
P00 - Glaciar	10	DI	35	100	2	140	50		DI	95	45	40	517
P02 - Morrena	-	DI	67	138	77	238	10	90	10	93	73	90	885
P03 - Totalizador	50	30	75	135	90	250	40	80	10	85	-	DI	845
P04 - Antisana	DI	50	113	142	115	200	50	100	30	95	100	100	1095
P05 - Mica	35	45	45	115	40	195	35	75	65	80	75	55	860
P06 - Humboldt	20	35	45	90	55	187	43	95	54	101	75	65	865
P07 - Crepos	25	20	40	135	55	195	15	DI	40	75	90	61	751
P08 - Crepos Morrena	25	20	55	125	-	DI	1140	85	30	75	115	80	1750
P09 - Páramo	25	20	35	105	53	60	40	60	15	95	65	65	638
P10 - Camino Crepos	25	15	34	126	50	170	30	70	40	100	80	70	810
P11 - Desaguadero	DI	DI	110	140	75	305	40	130	80	DI	100	80	1060
PROMEDIO	28	36	60	122	62	201	35	88	35	89	76	69	831

Pluviógrafo	Enero	Febr.	Marzo	Abril	Mayo	Junio	Julio	Agos.	Sept.	Oct.	Nov.	Dic.	AÑO 2007*
P00 - Glaciar	32	38	83	128	96	276	47	84	-	41	37	21	883
P02 - Morrena	28	26	69	113	17	239	6	64	20	85	75	79	822
P04 - Antisana	42	45	92	92	43	286	39	74	30	84	83	-	910
P05 - Mica	32	55	55	101	47	174	11	26	26	1	-	-	528
P07 - Crepos	15	13	36	104	49	135	29	3	30	60	92	70	636
P08 - Crepos Morrena	20	14	55	117	67	174	27	55	18	83	95	74	800
P09 - Páramo	22	19	47	111	62	129	31	67	28	98	72	64	750
PROMEDIO	27	30	63	109	55	202	27	53	22	64	65	44	761

Tabla 4.2. Datos brutos de precipitación mensual en las cercanías del Glaciar 15 y los Crespos. Pluviómetros totalizadores y Pluviógrafos. Año 2007. (Valores en "itálico" y "negrilla" son corregidos o rellenados).

OJO: los datos definitivos se presentan en la tabla 4.5.

* Los totales anuales son valores incompletos, pues en este cuadro no se han homogenizado los datos aún.

4.3 Correlaciones entre estaciones y entre artefactos de medición de precipitación

Los datos brutos de pluviómetros totalizadores presentan correlaciones muy bajas entre algunas estaciones (Tabla 4.3), las estaciones que se encuentran en la parte del páramo del Antisana tienen una correlación baja con las estaciones que están en la parte nor – occidental del volcán, en algunos casos se eliminó valores que estaban fuera de rango, deducidos a partir de la comparación entre los totalizadores y adicionalmente con los HOBO, en otros casos, es debido a la poca información que se tiene de las estaciones, pues fueron instaladas en el 2006.

	P0	P2	Р3	P4	P5	P6	P7	P8	Р9	P10	P11
P0		0.56	0.56	0.49	0.01	0.19	0.00	0.09	0.28	0.04	0.03
P2	0.56		0.56	0.27	0.04	0.23	0.00	0.03	0.21	0.26	0.33
Р3	0.56	0.56		0.31	0.07	0.31	0.00	0.18	0.50	0.37	0.45
P4	0.49	0.27	0.31		0.13	0.29	0.03	0.18	0.27	0.10	0.54
P5	0.01	0.04	0.07	0.13		0.37	0.02	0.27	0.17	0.46	0.50
P6	0.19	0.23	0.31	0.29	0.37		0.06	0.29	0.71	0.56	0.57
P7	0.00	0.00	0.00	0.03	0.02	0.06		0.00	0.00	0.01	0.59
P8	0.09	0.03	0.18	0.18	0.27	0.29	0.00		0.33	0.79	0.00
P9	0.28	0.21	0.50	0.27	0.17	0.71	0.00	0.33		0.24	0.15
P10	0.04	0.26	0.37	0.10	0.46	0.56	0.01	0.79	0.24		0.26
P11	0.03	0.33	0.45	0.54	0.50	0.57	0.59	0.00	0.15	0.26	

Tabla 4.3. Correlación entre pluviómetros totalizadores. Datos Brutos Completos de Totalizadores desde el inicio de funcionamiento de cada estación hasta 2007.

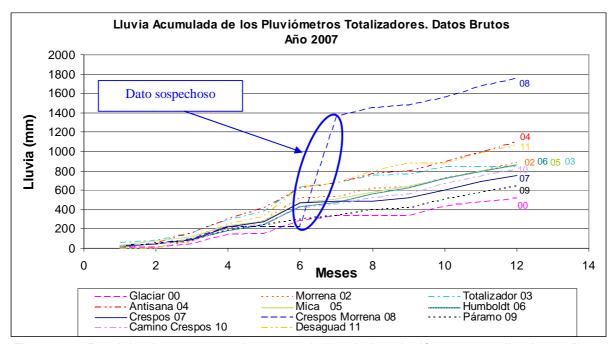


Figura 4.2. Precipitaciones mensuales acumuladas de los pluviómetros totalizadores. Datos brutos. Año 2007. (Ver el resultado de los datos corregidos en la Figura 4.7).

El valor muy elevado que se resalta en el figura 4.2 corresponde al mes de julio del pluviómetro totalizador P8 es un dato sospechoso que después tuvo que ser corregido.

En los pluviógrafos se trabajó con los datos a nivel diario, por lo que se puede tener un inventario de la información, que se muestra en la figura 4.3 que muestra los períodos donde existe datos faltantes que posteriormente serán rellenados o corregidos, por lo general todas las estaciones tienen datos muy completos.

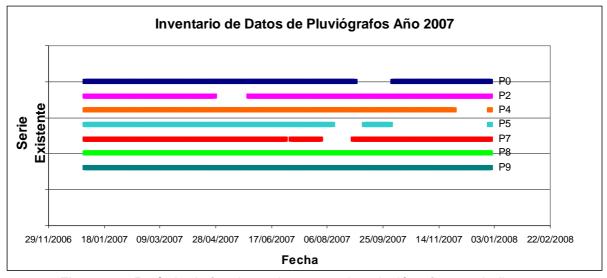


Figura 4.3. Período de funcionamiento para los pluviógrafos en el año 2007.

La serie de datos de los pluviógrafos presentan vacíos en los siguientes períodos (según la figura 4.3):

- Estación P0: del 01/09 al 03/10 2007
- Estación P2: del 28/04 al 27/05 2007
- Estación P4: del 29/11 al 29/12 2007

- Estación P5: del 12/08 al 08/09; y del 03/10 al 29/12 2007
- Estación P7: del 01/07 al 04/07 ; y del 01/08 al 29/08 2007

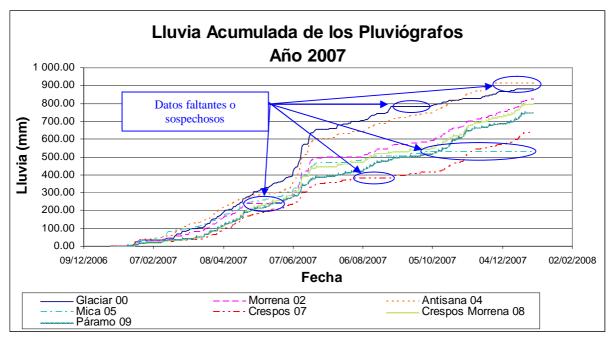


Figura 4.4. Precipitaciones diarias acumuladas de los pluviógrafos. Datos brutos. Año 2007. (Ver el resultado de los datos corregidos en la Figura 4.8)

Conforme a los datos anteriores, incluyendo los datos faltantes e incorrectos, la información acumulada mensual de los pluviógrafos genera un gráfico como el que se muestra en la figura 4.4, donde se observa claramente los períodos en los que los datos no están completos o los que están incoherentes.

4.4 Correcciones

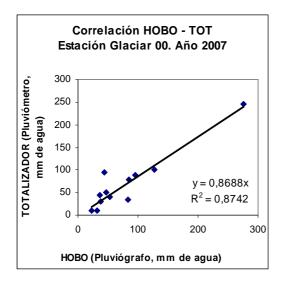
4.4.1 Procesamiento de los datos

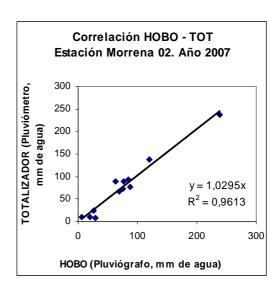
Los datos que llegan del campo, pueden presentar errores al compararlos con las estaciones cercanas o con otros aparatos de medición de precipitación.

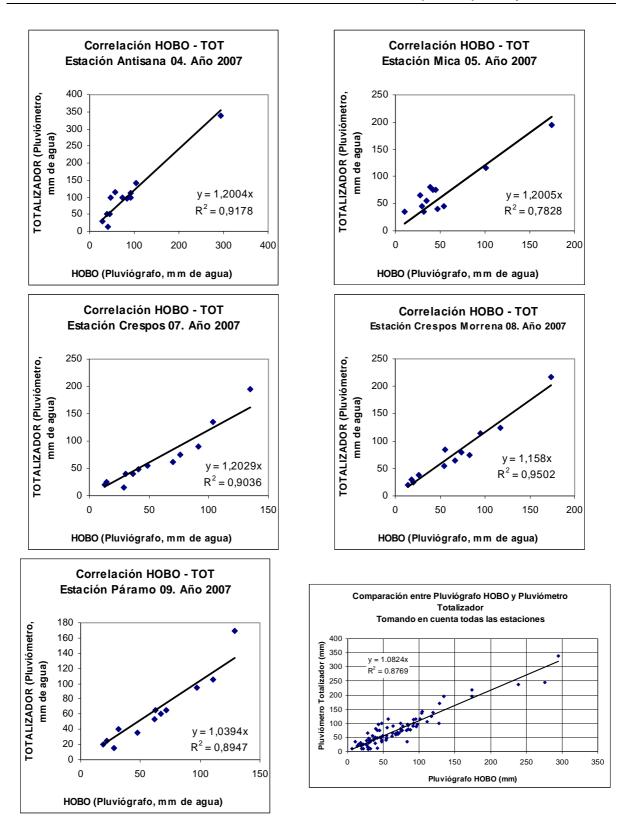
Por lo que se los homogeniza para tratar de que la información sea más coherente. El proceso es muy sencillo, simplemente se compara los pluviómetros totalizadores (P0, P2, P3, P4, P5, P6, P7, P8, P9, P10 y P11) entre ellos, y a través de una herramienta estadística como es el Método de Correlaciones Múltiples, se plantea una ecuación de una recta a la que se ajusten los datos. Con las ecuaciones que tienen mejor coeficiente de correlación, se procede a rellenar los datos faltantes, o bien, se corrige los datos visiblemente erróneos que previamente se los encuentra cuando se compara entre estaciones.

Las relaciones planteadas y las ecuaciones utilizadas para la homogenización de los datos, son las mismas utilizadas en el informe del 2006, pues las relaciones entre estaciones se mantienen, excepto para las estaciones Crespos Morrena P8, Camino Los Crespos P10 y Desaguadero P11, pues al aumentar un año más la información las relaciones entre estaciones se están estabilizando y ya se puede ver cierta tendencia, sin embargo es aconsejable que cada año se verifique los resultados de estas ecuaciones.

4.4.2 Correlaciones entre cada pluviómetro totalizador y su respectivo pluviógrafo a nivel mensual.

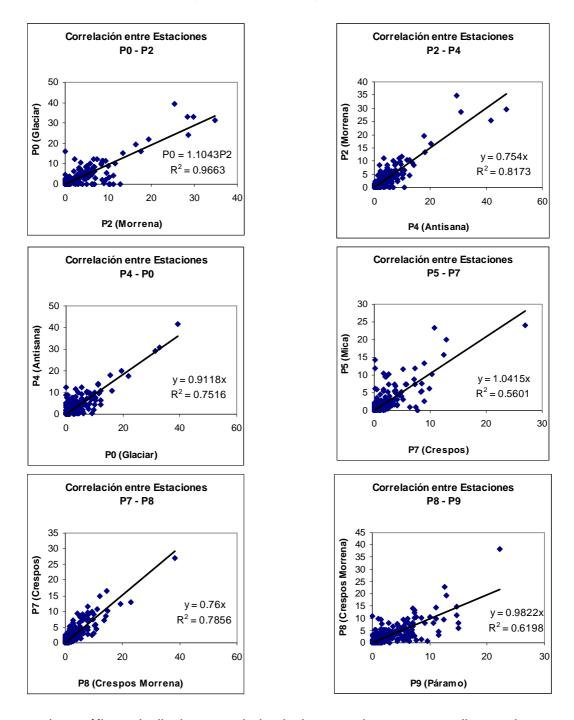

Se establece que los datos, tanto de pluviógrafos como de pluviómetros totalizadores, presentan relaciones entre ellos, los valores de los coeficientes de determinación entre estaciones, usando pluviómetros totalizadores, se muestran en la tabla 4.7. Se puede verificar que las relaciones son en general muy buenas (Tabla 4.4) y representativas para las estaciones, como se muestra en la figura 4.5


Estación	R ²
P0	0.87
P2	0.96
P4	0.85
P5	0.84
P7	0.84
P8	0.95
P9	0.91


Tabla 4.4. Coeficientes de determinación entre pluviógrafo HOBO y pluviómetro totalizador después de la corrección (valores homogenizados). Año 2007

Además se verificó la relación r² general entre todas las estaciones que poseen un pluviógrafo HOBO con su respectivo pluviómetro totalizador, y los resultados fueron alentadores, pues, se ve que se mantiene cierta tendencia entre los dos artefactos de medición con respecto a lo que cada uno capta de precipitación.

Figura 4.5. Correlación mensual entre los pluviógrafos y los pluviómetros totalizadores. Datos corregidos (después de la corrección) de todas las estaciones. Año 2007.



4.4.3 Correlaciones entre los totales diarios de diversos pluviógrafos.

Con conocimiento de las zonas climáticas pluviométricas, planteadas por Lhuissier (2005), se ha planteado la relación entre pluviómetros totalizadores con el fin de homogenizar los datos, se utilizó el mismo método que se explico anteriormente.

Las relaciones entre los distintos pluviógrafos se observa en la figura 4.6 que se muestran a continuación. En dichos diagramas se puede observar las correlaciones existentes entre las estaciones y las ecuaciones encontradas para el relleno y corrección de datos.

Figura 4.6. Correlación diaria entre pluviógrafos para el año 2007. Datos antes de la corrección pero sin datos sospechosos o erróneos.

Al crear los gráficos de lluvia acumulada de las estaciones en estudio se observan los resultados de la homogenización, la misma se realizó con los datos mensuales de los pluviómetros totalizadores del tabla 4.5 y con los datos diarios de los pluviógrafos de la tabla 4.6 que se muestran a continuación.

Pluviómetro	Enero	Febr.	Marzo	Abril	Mayo	Junio	Julio	Agos.	Sept.	Oct.	Nov.	Dic.	AÑO 2007
P00 - Glaciar	10	29	35	100	88	245	50	78	10	95	45	40	826
P02 - Morrena	8	23	67	138	77	238	10	90	10	93	73	90	916
P03 - Totalizador	50	30	75	135	90	250	40	80	10	85	79	98	1021
P04 - Antisana	12	50	113	142	115	339	50	100	30	95	100	100	1246
P05 - Mica	35	45	45	115	40	195	35	75	65	80	75	55	860
P06 - Humboldt	20	35	45	90	55	187	43	95	54	101	75	65	865
P07 - Crepos	25	20	40	135	55	195	15	101	40	75	90	61	852
P08 - Crepos Morrena	25	20	55	125	64	218	38	85	30	75	115	80	930
P09 - Páramo	25	20	35	105	53	170	40	60	15	95	65	65	748
P10 - Camino Crepos	25	15	34	126	50	170	30	70	40	100	80	70	810
P11 - Desaguadero	37	48	110	140	75	305	40	130	80	85	100	80	1231
PROMEDIO	23	35	63	120	78	242	38	86	30	91	74	75	941
Índice Pglaciar	20	33	73	129	93	268	38	87	15	92	74	82	1003
Índice Ppáramo	28	40	45	103	48	191	39	85	60	91	75	60	863

Pluviógrafo	Enero	Febr.	Marzo	Abril	Mayo	Junio	Julio	Agos.	Sept.	Oct.	Nov.	Dic.	AÑO 2007
P00 - Glaciar	32	38	83	128	96	276	47	84	22	43	37	21	907
P02 - Morrena	28	26	69	120	87	239	6	64	20	85	75	79	898
P04 - Antisana	42	45	92	104	56	294	39	74	30	84	93	18	971
P05 - Mica	32	55	55	101	47	174	11	41	28	39	45	35	663
P07 - Crepos	15	13	36	104	49	135	29	41	30	76	92	70	691
P08 - Crepos Morrena	20	14	55	117	67	174	27	55	18	83	95	74	800
P09 - Páramo	22	19	47	111	62	129	31	67	28	98	72	64	750
PROMEDIO	27	30	63	112	66	203	27	61	25	73	73	51	812

Tabla 4.5. Datos homogenizados de precipitación mensual en la parte occidental del Antisana, año 2007, (los datos corregidos o rellenados se encuentran marcados con "itálico y negrilla").

En los siguientes cuadros se debe tomar en cuenta que el valor mostrado es un acumulado de 24 horas y que el aparato al registrar la hora en la que se produce el evento de lluvia mide siempre desde las 0h00 hasta la misma hora del día siguiente. A continuación se observan los datos homogenizados (aquellos datos que han sido corregidos o rellenados se encuentran marcados con "itálico y negrilla").

Tabla 4.6. Precipitación diaria registrada por los pluviógrafos para el año 2007 (en "itálico y negrilla" se encuentran los datos rellenados o corregidos).

DATOS DIARIOS	ESTACIO	JN GLAC	JAK (PUU)
Medición en mm	sobre 24	horas a	las 00H00

DÍA	E	F	М	Α	М	J	J	Α	S	0	N	D
1	0.2	0.0	0.0	0.0	0.6	5.8	2.4	0.0	1.2	1.9	0.2	2.8
2	0.0	0.0	0.0	2.4	1.9	1.9	0.0	0.0	0.2	0.7	0.0	1.7
3	0.0	0.0	2.6	10.1	5.4	2.8	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	11.3	1.1	15.2	1.7	0.0	2.6	0.0	3.6	0.0	0.0
5	0.0	0.0	1.3	3.2	1.5	0.2	0.0	2.8	0.9	0.2	0.4	0.0
6	0.0	0.0	0.0	7.3	0.2	3.2	0.2	0.0	0.2	2.4	0.0	0.2
7	0.0	0.0	0.4	5.8	0.4	33.0	0.0	0.2	0.7	2.6	0.0	0.0
8	0.0	0.0	0.6	6.6	1.3	8.6	1.7	3.4	0.2	1.5	0.0	0.0
9	0.0	0.6	0.0	6.2	4.5	7.3	0.0	0.9	0.2	2.1	0.4	1.9
10	0.0	0.9	8.6	4.9	9.0	0.2	0.2	0.0	0.2	0.0	0.2	0.0
11	0.0	0.2	1.3	0.0	0.2	5.4	0.0	7.3	0.7	1.5	0.0	0.6
12	0.0	0.0	0.0	0.2	0.4	19.5	0.0	8.3	0.0	0.4	0.0	2.6
13	0.0	0.0	0.2	4.5	4.3	22.0	0.0	1.9	0.5	3.6	0.0	0.9
14	0.0	2.4	3.2	1.3	0.0	39.4	2.4	4.7	0.0	4.3	0.0	0.2
15	0.0	0.2	0.0	1.1	2.4	31.2	16.3	0.4	1.7	0.2	0.0	2.6
16	0.0	4.1	0.0	5.8	2.4	10.5	1.1	2.1	6.6	1.1	4.3	4.3
17	0.4	0.2	2.6	5.4	0.2	2.1	0.4	3.9	0.0	1.7	7.3	1.3
18	2.4	1.3	0.2	0.9	3.9	0.0	0.0	4.5	0.0	1.1	0.2	0.0
19	0.0	0.0	0.2	6.4	3.2	0.4	0.4	0.2	0.0	5.6	1.5	0.0
20	0.2	4.3	2.8	5.1	6.0	3.4	4.5	0.2	1.2	0.2	0.0	0.0
21	0.2	0.0	0.0	5.6	4.1	32.8	2.1	0.6	0.0	0.2	2.1	0.0
22	15.4	0.0	1.7	0.2	6.0	24.0	1.7	0.6	0.0	0.9	0.9	1.3
23	3.9	0.0	2.8	9.8	0.2	1.7	0.0	0.0	0.2	0.0	2.1	0.0
24	1.7	0.0	12.2	0.2	0.0	0.6	0.0	0.4	1.2	0.2	0.0	0.0
25	3.6	6.2	2.4	16.1	5.8	10.3	1.3	0.0	5.4	0.0	4.5	0.2
26	1.3	7.9	1.3	3.9	0.2	4.9	0.0	3.9	0.2	0.0	2.1	0.0
27	0.2	8.8	1.1	4.3	0.2	2.8	12.2	0.0	0.0	1.1	0.0	0.0
28	2.6	1.3	11.3	2.1	1.3	0.2	0.0	11.6	0.0	1.5	0.0	0.0
29	0.0	0.0	10.1	1.5	0.9	0.0	0.0	12.2	0.0	0.9	3.4	0.0
30	0.0	-	5.4	5.8	5.8	0.0	0.0	7.9	0.2	2.1	7.3	0.0
31	0.0	-	0.0	-	8.8	-	0.0	3.6	-	1.7	-	0.0
TOTAL	32.1	38.3	83.5	127.5	96.1	276.0	46.9	84.3	22.0	43.3	37.0	20.5
MENSUAL	7.0	.5.1	0.0	.5.7	21.0	0	.5.0	20				
TOTAL AN	TOTAL ANUAL 907.4											

DATOS DIARIOS ESTACIÓN MORRENA (P02) Medición en mm sobre 24 horas a las 00H00

DÍA	E	F	М	Α	М	J	J	Α	S	0	N	D
1	0.0	0.0	0.4	0.2	0.6	6.2	0.4	0.0	1.1	1.7	0.2	7.1
2	0.0	0.0	0.0	1.9	1.7	2.8	1.1	0.0	0.2	0.6	11.1	1.1
3	0.0	0.0	0.4	11.6	4.7	2.1	0.2	0.0	0.0	0.0	10.5	0.0
4	0.0	0.0	8.6	0.9	13.4	1.9	0.0	0.0	0.0	5.1	6.4	0.0
5	0.0	0.0	1.3	3.4	1.3	0.2	2.4	0.2	0.9	0.2	1.1	0.2
6	0.0	0.0	0.0	5.1	0.2	2.8	0.0	0.0	0.2	2.4	0.6	2.8
7	0.0	0.0	0.4	6.2	0.4	28.5	0.0	0.0	0.6	4.5	0.2	0.0
8	0.0	0.0	0.4	6.0	1.1	6.8	0.0	10.3	0.2	2.6	0.0	0.2
9	0.0	0.6	0.0	4.7	4.0	6.2	0.0	2.8	0.2	8.6	1.9	9.4
10	0.0	0.6	6.6	3.9	7.9	0.0	0.0	0.0	0.2	0.4	3.6	0.2
11	0.0	0.0	1.3	0.0	0.2	4.5	0.0	3.2	0.6	1.1	4.9	1.3
12	0.0	0.0	0.0	0.0	0.4	16.5	0.0	4.7	0.0	1.9	0.2	1.9
13	0.0	0.0	0.6	3.4	3.8	19.5	0.0	0.9	0.4	3.0	0.0	0.9
14	0.0	2.4	3.0	0.9	0.0	25.5	0.0	3.4	0.0	11.1	0.0	1.3
15	0.0	0.0	0.0	0.9	2.1	34.9	0.0	0.9	1.5	0.2	0.0	4.7
16	0.0	4.1	0.0	5.1	2.1	3.6	0.0	3.0	6.0	2.8	4.9	2.8
17	0.4	0.4	1.9	5.1	0.2	0.9	0.0	4.9	0.0	2.4	3.6	1.1
18	1.7	1.3	0.0	0.6	3.4	0.2	0.0	6.2	0.0	1.7	0.2	0.6
19	0.0	0.2	0.0	6.8	2.8	0.2	0.0	0.4	0.0	9.6	0.4	12.8
20	0.2	4.5	2.4	5.8	5.3	2.1	0.0	0.0	1.1	9.0	0.0	10.3
21	0.0	0.0	0.0	5.4	3.6	29.7	0.0	0.0	0.0	1.9	2.6	6.2
22	13.5	0.0	1.9	0.0	5.3	28.7	0.0	0.0	0.0	1.9	3.2	0.6
23	2.6	0.0	4.5	8.3	0.2	1.5	0.0	0.2	0.2	3.0	2.8	4.1
24	1.9	0.0	7.5	0.2	0.0	0.6	0.0	0.2	1.1	0.4	0.0	0.0
25	3.9	1.9	2.6	17.5	5.1	5.8	0.0	0.2	4.9	0.4	2.8	0.4
26	1.3	5.1	2.1	2.8	0.2	3.2	0.0	2.6	0.2	0.0	1.7	6.8
27	0.0	4.9	1.3	4.5	0.2	2.4	2.1	0.0	0.0	1.5	0.0	0.2
28	2.8	0.2	9.4	1.9	0.0	0.0	0.0	8.8	0.0	1.9	0.0	0.9
29	0.0	0.0	8.3	1.3	1.5	1.3	0.0	6.6	0.0	1.3	5.4	0.6
30	0.0	-	4.3	5.1	5.8	0.4	0.0	3.2	0.2	2.4	6.2	0.2
31	0.2	-	0.0	-	10.1	-	0.0	1.1	-	1.3	-	0.0
TOTAL MENSUAL	28.5	26.3	69.3	119.6	87.3	239.0	6.2	63.8	19.9	85.0	74.7	78.8
TOTAL AN	ILIAI	90	8.3	\vdash								
TOTAL AI	NUAL	09	0.3	ı								

DATOS DIARIOS ESTACIÓN ANTISANA (P04) Medición en mm sobre 24 horas a las 00H00

DATOS DIARIOS ESTACIÓN MICA (P05) Medición en mm sobre 24 horas a las 00H00

DÍA	E	F	М	Α	М	J	J	Α	S	0	N	D
1	0.2	0.0	0.4	0.4	9.0	6.0	0.2	0.4	0.4	1.3	1.9	2.5
2	0.2	0.0	0.2	3.2	2.6	1.5	0.0	0.0	0.4	0.0	8.8	1.5
3	0.0	0.0	4.9	9.8	1.3	1.5	0.2	0.0	0.0	0.0	12.4	0.0
4	0.0	0.0	14.1	2.1	13.6	1.9	0.0	0.4	0.2	1.7	5.1	0.0
5	0.0	0.0	2.4	5.8	0.9	0.6	0.2	0.0	2.4	0.4	0.0	0.0
6	0.0	0.0	0.0	10.3	0.6	8.1	0.2	0.2	0.2	3.0	0.4	0.2
7	0.0	0.0	1.3	2.1	0.6	30.8	0.0	0.4	0.4	6.6	0.0	0.0
8	0.0	0.0	1.9	4.7	0.9	9.4	1.9	11.6	0.2	1.5	2.1	0.0
9	0.2	0.6	1.7	5.8	0.4	7.1	0.0	3.9	0.6	7.5	2.6	1.7
10	0.0	1.7	7.7	2.8	0.4	0.0	0.2	0.2	0.6	0.9	2.1	0.0
11	0.2	0.2	1.7	0.2	0.6	12.4	0.0	3.6	1.9	0.9	3.9	0.6
12	0.0	0.0	0.2	0.0	0.4	20.1	0.2	4.9	0.4	1.5	0.2	2.3
13	0.2	0.0	0.0	4.7	0.4	17.8	0.2	0.6	0.4	6.0	0.0	0.8
14	0.2	3.6	2.8	1.1	0.4	41.7	6.8	5.4	0.0	3.4	0.2	0.2
15	0.0	0.4	0.0	0.6	0.4	29.3	10.7	0.4	2.4	1.9	0.9	2.3
16	0.2	4.9	0.2	5.1	0.4	7.7	2.1	3.4	7.5	2.1	10.1	3.8
17	0.6	1.5	2.6	5.1	0.4	1.3	0.4	3.2	0.0	4.5	10.1	1.1
18	2.4	0.0	0.4	1.7	0.4	0.0	0.0	4.3	0.0	6.2	1.5	0.0
19	0.2	0.0	1.5	4.5	0.4	0.4	0.0	0.4	0.2	9.2	1.7	0.0
20	0.2	3.2	2.6	3.6	0.2	8.1	5.6	0.0	1.5	7.7	0.2	0.0
21	0.4	0.0	0.9	2.4	0.4	47.1	1.1	0.0	0.2	1.3	4.9	0.0
22	18.0	0.2	1.5	3.4	0.4	21.4	0.6	0.2	0.4	1.5	1.9	1.1
23	3.6	0.2	7.5	1.9	0.2	1.1	0.0	0.2	0.2	3.2	4.3	0.0
24	3.0	0.2	4.5	1.9	4.7	4.3	0.0	0.9	0.9	0.4	0.2	0.0
25	4.3	6.0	2.1	14.3	0.6	6.4	1.1	0.2	6.2	0.2	4.7	0.2
26	1.1	9.8	2.4	1.7	0.4	5.6	0.2	2.4	0.4	0.0	2.8	0.0
27	0.4	8.6	1.5	1.3	0.2	2.1	6.2	0.0	0.0	1.3	0.0	0.0
28	5.4	3.9	13.5	1.3	0.2	0.2	0.0	9.6	0.9	4.7	0.0	0.0
29	0.2	0.0	4.5	1.3	1.1	0.4	0.2	10.7	0.4	0.0	3.1	0.0
30	0.0	-	7.1	1.1	6.6	0.0	0.0	2.6	0.0	2.8	6.5	0.0
31	0.4	-	0.2	-	6.8	-	0.0	3.6	-	2.4	-	0.0
TOTAL	41.7	45.2	92.2	104.4	56.4	294.5	38.5	73.8	29.5	84.1	92.6	18.3
MENSUAL					- 5. 1	2. 1.0	23.0	. 5.0			0	. 5.0
TOTAL A	NUAL	97	1.3	ı								

DÍA	E	F	М	Α	М	J	J	Α	S	0	N	D
1	0.0	0.0	0.0	0.0	0.9	7.3	1.9	0.0	1.3	0.0	3.7	1.0
2	0.0	0.0	0.0	2.6	3.2	0.4	0.0	0.0	0.0	0.6	6.7	0.9
3	0.0	0.0	0.9	6.2	1.1	2.1	0.0	1.3	0.0	0.2	2.8	0.0
4	0.0	0.0	3.6	4.5	3.2	1.5	0.0	3.0	0.0	0.8	2.5	0.0
5	0.4	0.0	0.4	2.4	0.2	0.0	0.6	3.6	0.5	0.5	5.1	1.1
6	0.0	1.7	0.2	7.3	0.2	1.1	0.0	0.2	0.1	0.8	1.4	0.4
7	0.0	0.0	0.2	1.1	0.0	12.0	0.0	3.0	0.0	1.3	0.0	0.1
8	0.0	0.0	0.4	4.7	0.4	9.4	1.3	3.2	0.0	1.5	0.4	0.7
9	0.0	0.0	0.4	1.7	0.2	1.3	0.0	2.1	0.4	4.8	2.0	2.4
10	0.0	0.0	0.2	3.2	2.1	0.6	0.2	1.9	0.2	0.8	2.6	0.0
11	0.0	0.2	0.2	3.4	0.0	1.5	0.0	6.8	1.3	0.7	2.4	0.6
12	0.0	0.0	0.0	0.0	2.4	7.3	0.0	4.9	0.2	0.3	0.0	0.9
13	0.2	12.0	6.2	3.4	0.4	13.3	0.0	0.4	1.5	0.7	0.0	0.3
14	1.1	1.5	0.6	0.4	0.0	24.0	0.0	1.3	0.0	4.6	0.0	2.4
15	0.0	3.6	1.1	0.2	1.7	15.6	1.5	0.0	5.1	1.5	0.0	3.7
16	0.0	5.6	6.0	7.7	0.9	9.6	0.0	3.3	4.5	1.8	2.1	2.6
17	0.4	1.5	2.8	4.3	0.2	2.1	0.0	2.2	0.0	0.5	1.5	0.2
18	2.4	1.1	0.0	0.4	4.9	0.0	0.0	0.4	0.0	1.3	0.1	0.6
19	0.2	14.3	0.2	4.1	0.6	2.4	0.0	0.0	0.2	2.1	0.1	5.7
20	0.0	4.1	1.1	1.7	7.3	11.8	0.0	0.0	0.0	3.8	0.1	3.7
21	0.0	0.0	0.0	2.6	2.1	19.9	0.0	0.0	0.0	1.5	1.6	3.6
22	5.1	0.0	2.1	0.4	0.2	5.6	0.0	0.3	0.0	2.2	3.0	0.2
23	0.2	0.0	7.3	23.3	0.0	3.9	0.0	0.0	0.0	1.6	1.8	1.5
24	0.4	0.4	2.6	1.3	0.0	3.0	0.0	0.0	0.2	0.4	0.0	0.2
25	10.3	5.6	0.9	10.3	1.3	5.8	0.6	0.2	8.8	0.0	0.6	0.1
26	10.3	3.0	1.9	0.9	0.0	6.0	0.2	0.7	0.2	0.4	0.0	1.3
27	0.2	0.6	10.5	1.1	0.2	5.4	2.6	0.0	0.0	0.3	0.0	0.3
28	0.2	0.2	1.1	0.2	0.2	0.4	0.0	1.1	0.4	1.4	0.0	0.0
29	0.0	0.0	2.1	0.2	1.1	0.6	0.0	0.4	2.4	0.2	1.7	0.0
30	0.0	-	1.5	1.9	6.8	0.4	0.0	0.7	0.4	1.2	2.4	0.0
31	0.4	-	0.0	-	5.4	-	1.7	0.2	-	1.2	-	0.0
TOTAL	31.9	55.4	54.6	101.4	47.3	174.2	10.7	41.4	27.8	39.1	44.7	34.6
MENSUAL		.										
TOTAL ANUAL 663.2												

DATOS DIARIOS ESTACIÓN CRESPOS (P07) Medición en mm sobre 24 horas a las 00H00

DATOS DIARIOS ESTACIÓN CRESPOS MORRENA (P08) Medición en mm sobre 24 horas a las 00H00

DÍA	E	F	М	Α	М	J	J	Α	S	0	N	D
1	0.0	0.0	0.4	0.0	1.1	7.3	0.0	0.0	7.1	0.4	9.6	1.9
2	0.2	0.0	0.0	1.5	3.6	0.9	0.0	0.0	1.3	0.2	16.5	0.6
3	0.0	0.0	0.0	9.8	1.7	2.4	0.0	0.0	0.2	0.2	9.2	0.2
4	0.0	0.0	2.1	1.1	4.1	3.2	0.0	0.0	0.6	1.2	8.6	0.0
5	0.0	0.0	1.3	2.4	0.4	0.0	0.6	0.0	0.9	0.8	4.5	1.1
6	0.0	0.0	0.0	3.6	0.4	2.8	0.2	0.0	0.2	1.2	2.1	0.0
7	0.0	0.0	0.0	1.5	0.0	7.3	0.2	0.0	0.2	2.0	0.2	0.2
8	0.0	0.0	0.9	4.5	0.9	1.9	0.9	7.1	0.6	2.3	0.6	4.3
9	0.0	0.0	0.2	3.6	1.9	1.7	0.2	2.3	0.2	7.4	9.4	2.4
10	0.2	0.0	0.2	5.1	2.8	0.2	0.0	0.0	0.0	1.2	4.7	0.2
11	0.0	0.0	0.2	2.1	0.0	1.1	0.2	5.7	0.0	1.5	1.7	0.9
12	0.2	0.0	0.0	1.1	1.5	5.6	0.2	7.5	0.4	0.4	0.4	1.5
13	0.0	0.2	0.2	2.8	1.7	9.0	0.0	0.6	1.9	5.1	0.0	0.4
14	0.0	2.6	1.3	1.5	0.2	27.0	0.2	2.0	0.0	3.0	0.0	8.3
15	0.0	0.4	0.9	0.2	3.0	12.4	4.1	0.0	2.4	5.1	0.2	6.8
16	0.2	3.6	0.4	8.6	1.7	2.1	1.1	5.1	4.1	1.1	2.8	1.3
17	0.4	0.9	1.3	4.5	0.2	0.2	0.4	3.4	0.2	1.3	3.2	0.2
18	0.9	0.0	0.0	2.4	3.9	0.0	0.0	0.6	0.0	6.4	0.0	2.8
19	0.2	0.2	0.9	4.9	1.5	0.9	0.0	0.0	0.0	1.9	0.6	14.8
20	0.2	2.8	1.7	4.1	2.6	5.1	7.7	0.0	0.0	7.5	0.0	11.6
21	0.2	0.0	0.0	2.8	3.2	12.8	1.7	0.0	0.2	3.0	3.0	2.8
22	4.9	0.0	0.0	1.9	0.6	8.6	0.9	0.5	0.2	6.4	3.0	1.1
23	0.2	0.0	5.8	10.7	0.0	1.9	0.0	0.0	0.0	3.4	2.1	3.9
24	1.1	0.2	2.6	0.2	0.0	3.6	0.0	0.0	0.2	0.6	0.0	0.4
25	2.6	1.7	1.5	10.3	2.8	3.9	1.1	0.3	7.1	0.0	0.9	0.2
26	2.6	0.6	0.2	6.4	0.0	1.7	0.0	1.1	0.2	1.5	0.2	1.5
27	0.0	0.0	1.7	2.4	0.9	8.3	9.0	0.0	0.2	1.3	0.0	0.9
28	0.0	0.0	7.5	1.1	0.6	0.2	0.0	1.7	0.6	5.1	0.0	0.0
29	0.2	0.0	2.1	0.4	0.0	2.6	0.0	0.6	0.9	0.0	3.6	0.0
30	0.0	-	3.0	2.4	3.9	0.2	0.0	0.2	0.4	3.9	4.3	0.0
31	0.4	-	0.0	-	3.9	-	0.2	2.8	-	0.6	-	0.0
TOTAL	14.8	13.3	36.4	103.8	49.0	134.8	28.9	41.4	30.4	76.2	91.6	70.2
MENSUAL		(0										
TOTAL A	NUAL	69	0.7	1								

DÍA	E	F	М	Α	М	J	J	Α	S	0	N	D
1	0.0	0.0	1.5	0.0	0.9	8.6	0.0	0.0	2.8	0.4	7.9	2.1
2	0.0	0.0	0.0	1.7	4.3	0.4	0.0	0.0	0.0	0.0	14.3	1.9
3	0.0	0.0	0.0	9.4	1.9	3.2	0.0	0.0	0.0	0.4	6.0	0.0
4	0.0	0.0	4.3	2.1	7.9	1.5	0.0	0.0	0.0	1.7	5.4	0.0
5	0.0	0.0	1.5	0.6	0.9	1.3	0.6	0.0	1.1	1.1	10.9	2.4
6	0.0	0.0	0.0	5.6	0.6	1.7	0.2	0.0	0.2	1.7	3.0	0.9
7	0.0	0.0	0.2	0.4	0.0	13.5	0.0	0.0	0.0	2.8	0.0	0.2
8	0.0	0.0	1.3	7.1	1.9	3.9	1.5	9.8	0.0	3.2	0.9	1.5
9	0.0	0.0	0.4	3.2	1.9	3.9	0.2	3.2	0.2	10.3	4.3	5.1
10	0.0	0.0	0.2	5.1	4.1	0.0	0.0	0.0	0.0	1.7	5.6	0.0
11	0.0	0.0	0.2	2.6	0.0	0.9	0.0	7.9	0.2	1.5	5.1	1.3
12	0.0	0.0	0.0	0.6	0.4	10.3	0.0	10.5	0.0	0.6	0.0	1.9
13	0.0	0.0	0.4	4.3	1.1	9.8	0.0	0.9	0.0	1.5	0.0	0.6
14	0.0	3.2	1.9	2.6	0.0	38.3	0.0	2.8	0.0	9.8	0.0	5.1
15	0.0	0.2	3.0	0.0	2.4	19.3	4.3	0.0	1.9	3.2	0.0	7.9
16	0.0	4.5	0.2	6.6	1.1	3.0	1.9	7.1	5.4	3.9	4.5	5.6
17	0.6	1.5	1.7	4.5	0.4	0.6	0.4	4.7	0.0	1.1	3.2	0.4
18	1.1	0.0	0.0	2.1	5.4	0.0	0.0	0.9	0.0	2.8	0.2	1.3
19	0.0	0.2	1.5	3.0	3.0	0.0	0.0	0.0	0.0	4.5	0.2	12.2
20	0.4	4.1	1.1	4.3	5.4	2.1	6.6	0.0	0.0	8.1	0.2	7.9
21	0.0	0.0	0.2	3.0	5.1	22.9	0.6	0.0	0.0	3.2	3.4	7.7
22	7.7	0.2	0.0	1.5	1.3	14.1	0.6	0.6	0.0	4.7	6.4	0.4
23	0.6	0.0	10.5	11.1	0.0	3.9	0.0	0.0	0.0	3.4	3.9	3.2
24	1.7	0.0	4.1	2.1	0.0	1.3	0.0	0.0	0.4	0.9	0.0	0.4
25	4.5	0.0	1.3	14.8	4.1	1.5	0.4	0.4	6.0	0.0	1.3	0.2
26	2.4	0.0	0.2	2.8	0.0	1.3	0.2	1.5	0.2	0.9	0.0	2.8
27	0.2	0.0	1.1	9.4	0.9	6.8	8.1	0.0	0.0	0.6	0.0	0.6
28	0.0	0.0	9.6	1.3	0.9	0.2	0.4	2.4	0.0	3.0	0.0	0.0
29	0.0	0.0	4.5	1.3	0.6	0.0	0.0	0.9	0.0	0.4	3.6	0.0
30	0.0	-	3.9	4.3	5.6	0.0	0.0	1.5	0.0	2.6	5.1	0.0
31	0.6	-	0.0	-	5.1	-	0.4	0.4	-	2.6	-	0.0
TOTAL MENSUAL	19.9	13.9	54.8	117.5	67.0	174.2	26.8	55.4	18.4	82.6	95.4	73.8
TOTAL A	NUAL	79	9.7									

DATOS DIARIO	S ESTACIÓN PÁRAMO (P09)
Madialia an as	

DÍA	E	F	М	Α	М	J	J	Α	S	0	N	D
1	0.0	0.2	0.4	0.2	0.2	6.2	0.4	0.0	7.1	0.4	10.7	1.5
2	0.4	0.0	0.2	0.6	4.5	0.6	0.2	0.2	1.1	0.4	11.1	0.6
3	0.2	0.0	0.0	12.4	1.7	3.0	0.4	0.0	1.5	0.2	15.0	0.0
4	0.2	0.0	1.5	1.7	2.8	2.1	0.4	1.5	0.9	0.6	0.6	0.0
5	0.2	0.4	0.6	2.6	1.5	0.2	0.4	1.5	0.6	0.4	0.0	0.2
6	0.2	0.2	0.2	6.0	4.3	1.5	0.4	0.0	0.0	1.5	1.1	0.2
7	0.2	0.0	0.0	0.9	0.2	7.3	0.0	3.0	0.4	5.6	0.0	0.0
8	0.0	0.0	0.6	4.5	0.4	4.3	2.8	6.2	0.2	0.4	0.4	5.8
9	0.0	1.3	0.6	4.9	1.1	0.9	0.4	2.6	0.0	7.3	6.0	1.9
10	0.0	0.2	0.4	4.3	1.9	0.0	0.0	1.7	0.2	1.7	5.8	0.2
11	0.0	0.0	0.2	1.9	0.2	0.9	0.4	5.8	0.2	0.6	0.4	0.6
12	0.4	0.0	0.2	0.9	0.9	8.6	0.4	7.7	0.2	0.9	0.2	0.6
13	0.2	0.4	0.0	3.0	1.9	11.1	0.4	1.3	1.7	8.6	0.2	0.4
14	0.2	1.7	3.4	3.0	0.0	22.3	0.4	1.9	0.0	1.1	0.2	6.8
15	0.0	1.5	0.0	0.2	1.9	12.8	3.9	1.5	2.1	4.9	0.2	9.2
16	0.2	5.8	2.1	3.6	5.4	3.9	0.9	6.6	2.1	0.4	1.5	1.5
17	0.6	1.5	1.1	3.4	0.2	0.0	0.0	3.9	0.2	0.0	1.5	0.6
18	1.5	0.4	0.0	1.9	4.9	0.2	0.2	6.4	0.0	7.3	0.2	4.5
19	0.0	0.0	0.4	2.6	1.3	0.6	0.2	0.4	0.0	6.4	0.2	7.3
20	1.3	3.6	2.6	2.4	5.8	5.1	7.1	0.4	0.2	7.1	0.0	15.0
21	0.2	0.2	0.2	1.9	2.4	12.6	1.7	0.6	0.2	11.6	2.6	1.7
22	4.3	0.0	0.2	1.7	1.3	7.1	1.1	1.3	0.2	11.6	4.7	0.4
23	0.2	0.0	10.1	14.8	0.2	3.0	0.2	0.2	0.2	2.1	4.3	1.7
24	0.6	0.2	2.1	1.1	0.4	2.8	0.0	0.2	0.4	0.6	0.4	0.2
25	3.2	0.9	1.3	14.8	2.1	1.3	0.6	0.4	5.6	0.2	0.2	0.4
26	6.2	0.2	0.9	6.2	0.4	4.3	0.4	0.9	0.2	1.3	0.2	1.3
27	0.0	0.2	7.7	1.5	0.4	5.4	7.1	0.0	0.2	9.6	0.4	0.0
28	0.2	0.0	5.4	0.4	0.6	0.2	0.4	6.6	0.4	2.1	0.0	0.2
29	0.0	0.0	1.7	0.6	1.7	0.4	0.2	1.3	1.5	0.4	0.9	0.2
30	0.2	-	3.0	6.8	5.8	0.0	0.0	1.1	0.2	1.1	2.8	0.4
31	0.9	-	0.0	-	5.4	-	0.2	2.1	-	1.1	-	0.0
TOTAL MENSUAL	22.0	19.0	47.3	110.9	61.8	128.6	31.5	67.4	28.0	97.6	71.9	63.8
TOTAL ANUAL 749.9												

Vale destacar la secuencia de lluvias excepcionalmente fuertes del 12 al 15 de junio y el 21 y 22 de junio de 2007 en la cuenca del glaciar 15, donde cayeron más de 150 mm en estos días. En las estaciones del páramo también hubo este evento de lluvias, durante los días 12 al 15 de junio y el 20 y 21 de junio de 2007, pero la cantidad de lluvia precipitada es un poco menor, con 70 mm, sin embargo en la estación Crespos Morrena P8, en esos días se registra 100 mm de lluvia.

Los resultados de la homogenización de los datos dan un gráfico de lluvia acumulada donde se puede observar claramente las zonas climáticas pluviométricas de las que se ha hablado, esto se presenta en la figura 4.7 y figura 4.8 a continuación.

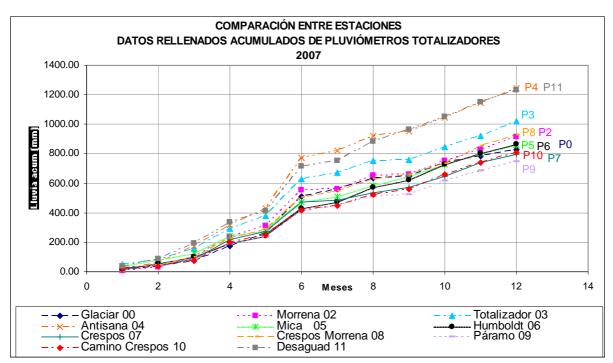


Figura 4.7. Precipitaciones mensuales acumuladas registradas en el Glaciar 15 y Glaciar Los Crespos. Datos Homogenizados de Pluviómetros Totalizadores. (Ver los datos antes de la corrección en la Figura 4.2)

En la figura 4.7 y en la tabla 4.5 se puede observar que las estaciones de la primera zona pluviométrica, Zona "Glaciar", que es donde existe mayor cantidad de precipitación se colocan en la parte superior, excepto por la estación Morrena 02, que a pesar de pertenecer a esta zona, la cantidad de lluvia captada es menor, probablemente debido al efecto del viento, pues la estación se encuentra en una zona muy expuesta. Este efecto se repite en los pluviógrafos.

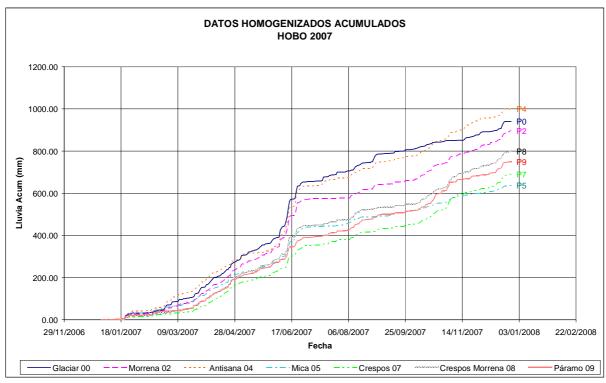


Figura 4.8. . Datos homogenizados diarios de los pluviógrafos para el año 2007 (Para visualizar los periodos de datos faltantes o sospechosos, ir al Figura 4.4 que presenta el mismo gráfico antes de las correcciones).

Después de esta homogenización de la información, los coeficientes de determinación r² mejoraron entre las estaciones significativamente, además se puede ver que las nuevas estaciones del páramo P8, P10 y P11 ya muestran una tendencia, como se puede observar en la tabla 4.7.

	P0	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11
P0		0.77	0.86	0.78	0.39	0.45	0.49	0.32	0.47	0.31	0.21
P2	0.77		0.81	0.67	0.36	0.43	0.47	0.48	0.59	0.43	0.44
P3	0.86	0.81		0.78	0.40	0.45	0.46	0.46	0.50	0.34	0.29
P4	0.78	0.67	0.78		0.37	0.41	0.43	0.38	0.33	0.29	0.34
P5	0.39	0.36	0.40	0.37		0.75	0.71	0.57	0.55	0.45	0.60
P6	0.45	0.43	0.45	0.41	0.75		0.76	0.64	0.88	0.59	0.51
P7	0.49	0.47	0.46	0.43	0.71	0.76		0.80	0.77	0.68	0.49
P8	0.32	0.48	0.46	0.38	0.57	0.64	0.80		0.62	0.82	0.46
P9	0.47	0.59	0.50	0.33	0.55	0.88	0.77	0.62		0.64	0.37
P10	0.31	0.43	0.34	0.29	0.45	0.59	0.68	0.82	0.64		0.29
P11	0.21	0.44	0.29	0.34	0.60	0.51	0.49	0.46	0.37	0.29	

Tabla 4.7. Correlación r² entre pluviómetros totalizadores. Datos Homogenizados Completos de Totalizadores desde el inicio de funcionamiento de cada estación hasta 2007.

Por la correlación fuerte que existe entre las estaciones de la parte nor – occidental y entre las estaciones de la parte occidental, se mantienen los dos índices planteados por (Lhuissier, 2005), explicados en el informe del año 2006.

4.5 Valores definitivos e Interpretaciones

Con la información homogenizada, se hizo comparaciones entre estaciones y entre los índices Pglaciar y Pparamo, se analizó la cantidad de lluvia registrada y se comparó con los años anteriores para conocer lo sucedido a lo largo del 2007.

4.5.1 Distribución Anual

El nevado Antisana forma parte de la zona Oriental (Papallacta), la cual se distingue por tener una repartición pluviométrica bastante uniforme en el transcurso del año con un máximo de precipitaciones entre los meses de marzo y junio, en este año, fue excepcional la lluvia producida en el mes de junio.

Hasta el presente informe se cuenta con una serie completa de datos obtenidos en las cercanías del Nevado Antisana con un período de 160 meses de registro continuo. Todos los valores de la tabla 4.8 y tabla 4.9, se los ha calculado con los índices definidos anteriormente, Pglaciar y Pparamo.

La precipitación total para este año fue menor al del 2006, globalmente esta cantidad de lluvia se encuentra muy cercano al promedio anual, en el figura 4.9 se observa a dos estaciones, las más antiguas del proyecto, aquí se marca la diferencia entre las dos zonas climáticas pluviométricas y se ve un comportamiento similar al de los años anteriores, en el resto de estaciones.

El valor máximo de la lámina de precipitación anual se registra sobre el pluviómetro totalizador P4 a 4450 msnm igual a 1246 mm y el valor mínimo de la lámina de precipitación anual se registra sobre el pluviómetro totalizador P9 a 4269 msnm y es igual a 748 mm.

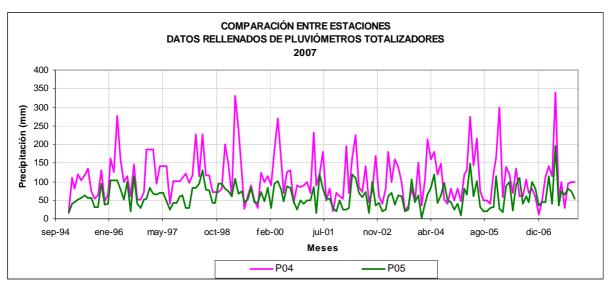


Figura 4.9. Precipitaciones mensuales registradas en el Glaciar 15 y en el Páramo. Pluviómetros totalizadores P04 (Antisana) y P05 (Mica). 1994 – 2007.

Meses / Años	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	Prom
Enero	23	52	151	104	157	96	80	46	34	26	35	213	20	80
Feb.	84	113	151	86	140	113	61	166	56	69	106	52	33	95
Marzo	64	94	126	91	83	78	72	65	155	144	107	136	73	99
Abril	101	239	86	200	252	150	188	144	92	138	234	118	129	159
Mayo	85	134	112	103	145	230	69	211	120	153	113	64	93	125
Junio	93	78	112	175	128	138	97	58	101	69	139	113	266	120
Julio	113	79	63	126	39	52	135	49	68	105	55	31	38	73
Ag.	56	52	25	92	60	103	45	96	16	37	24	39	87	56
Sept.	37	105	85	54	141	104	63	34	31	39	33	98	15	64
Oct.	57	38	85	81	50	36	36	67	83	71	45	72	92	62
Nov.	98	39	47	140	34	84	61	132	42	66	104	78	74	77
Dic.	40	48	79	59	122	59	60	61	116	64	180	44	82	78
Σ	852	1073	1120	1311	1350	1243	966	1129	914	979	1172	1059	1000	1090

Tabla 4.8. Precipitaciones mensuales registradas del Índice Pglaciar años 1995-2007.

Meses / Años	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	Prom
Enero	13	40	55	27	86	49	38	28	24	6	13	28	28	33
Feb.	40	111	88	27	79	88	53	38	28	41	83	24	40	57
Marzo	45	112	70	89	63	29	47	30	68	63	68	87	45	63
Abril	54	113	69	89	118	103	106	120	63	94	151	90	103	98
Mayo	58	85	74	103	72	109	25	110	42	105	63	39	48	72
Junio	67	54	73	143	79	84	121	80	58	51	81	106	191	91
Julio	58	107	49	83	47	49	90	70	65	87	65	63	39	67
Ag.	58	18	22	82	52	94	63	59	18	78	23	35	85	53
Sept.	31	125	43	42	88	89	56	12	23	35	23	65	60	53
Oct.	31	40	42	43	45	49	27	78	105	48	60	46	91	54
Nov.	101	27	64	102	42	22	36	58	42	23	36	100	75	56
Dic.	37	54	65	102	75	51	50	45	65	45	151	90	60	68
Σ	593	884	714	931	845	815	710	726	599	673	814	769	863	764

Tabla 4.9. Precipitaciones mensuales registradas del Índice Pparamo años 1995-2007.

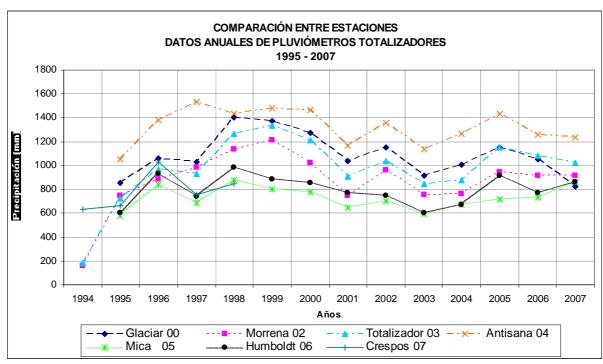


Figura 4.10. Precipitaciones anuales registradas en el Glaciar 15 y Glaciar Los Crespos. Pluviómetros totalizadores. 1994 – 2007. (Actualización de Lhuissier, 2005)

Al analizar la información de la tabla 4.8 y tabla 4.9 y las figura 4.10 y figura 4.11. Se puede ver claramente que durante los años 1998, 1999 y 2000 las precipitaciones en las cercanías del Glaciar 15 presentan un período más lluvioso. Desde el año 2001 hasta el 2007, se ha presentado una disminución de la lluvia, han sido períodos menos lluviosos.

Al trabajar con lo índices, se aprecia que a través de los años, continúa existiendo un comportamiento similar entre las estaciones que se encuentran cerca del Glaciar 15 (P0, P2, P3, P4) y las estaciones que se encuentran en el Páramo (P5, P6, P7) como se puede observar en la figura 4.11, y en las tabla 4.8 y tabla 4.9, donde se marca una clara diferencia entre estas dos zonas.

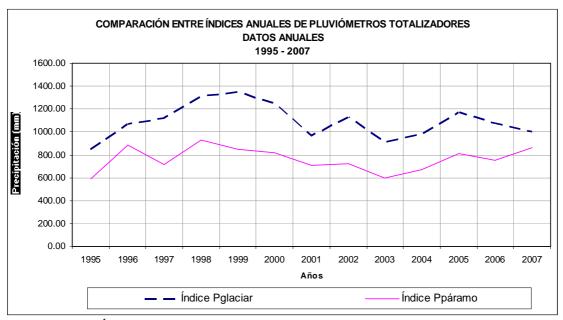


Figura 4.11. Índices de pluviometría anuales "Pglaciar" y "Pparamo". Pluviómetros totalizadores. Período 1995 – 2007. (Actualización de Lhuissier, 2005)

En los últimos años, en la zona "Glaciar" se puede observar que la mayor parte del año las precipitaciones van a tener un comportamiento semejante, es decir que existe un aumento o disminución seudo proporcional de un mes a otro, las correlaciones (r²), de la serie completa de datos, desde el inicio de funcionamiento de cada estación hasta el 2007, se muestran en la tabla 4.7.

4.5.2 Distribución Mensual y Estacional:

Para el año 2007, según los datos obtenidos en la red de pluviógrafos en los meses de abril y junio, se registra las mayores precipitaciones que varían entre 112 y 203 mm, en cambio las menores precipitaciones se dan en los meses de enero (muy distinto a lo que se vio en el año 2006), febrero, julio y septiembre con valores entre 25 mm y 30 mm, como se observa en la tabla 4.5. La precipitación total para este año fue levemente menor a la del 2006, globalmente esta cantidad de lluvia se encuentra en el promedio anual. La precipitación anual es de 941 mm entre los pluviómetros totalizadores P0, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, comparado con las precipitaciones anuales de los índices calculados: Pglaciar es de 1003 mm (P0, P2, P3, P4) y del Pparamo es de 863 mm (P5, P6).

Existe un hecho muy importante que cabe resaltar, existe un pico de lluvia en junio con totales del orden de 250 mm, con dos episodios paroxísticos muy notables: alrededor de 60 a 100 mm entre el 12 y 15 de junio y de 30 a 60 mm entre el 21 y 22 de junio. Estas precipitaciones recargaron substancialmente la parte baja de los glaciares.

La distribución de la lluvia que los resultados de los pluviógrafos arrojan, se puede observar en la figura 4.12 y figura 4.13. Se puede apreciar que la tendencia de la distribución es muy similar a la que se registra con los pluviómetros totalizadores, como se indicará en las líneas siguientes.

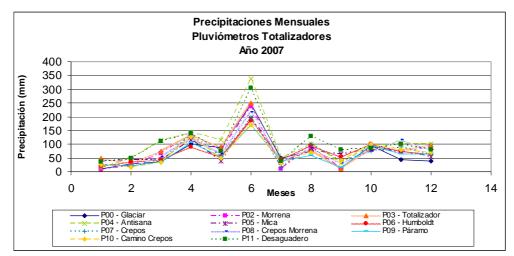


Figura 4.12. Precipitaciones mensuales registradas en el Glaciar 15 y en el Glaciar Los Crespos, año 2007. Datos homogenizados de pluviómetros totalizadores

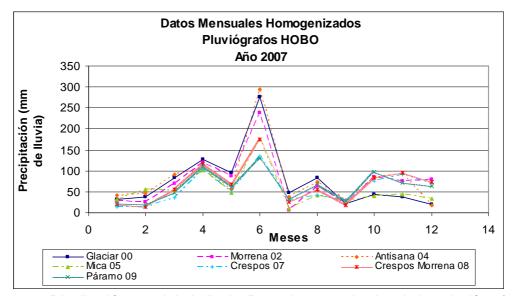


Figura 4.13. Distribución anual de la lluvia. Datos homogenizados de los pluviógrafos. Año 2007.

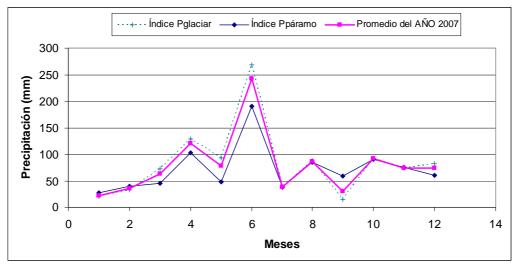
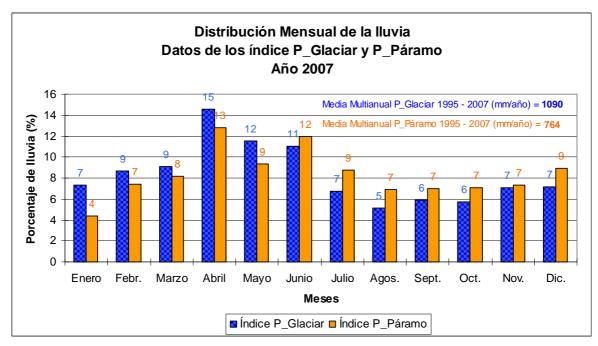
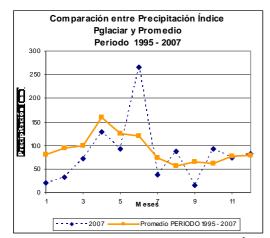


Figura 4.14. Régimen estacional de las precipitaciones en las zonas del "Pglaciar" y "Pparamo" a lo largo del año. Índices Pluviométricos año 2007. (Actualización de Lhuissier, 2005)




Figura 4.15. Porcentaje de distribución mensual de la lluvia en las estaciones cercanas al glaciar y al páramo

En la figura 4.15 se aprecia que tanto en las estaciones del glaciar como en las del páramo, en relación al promedio mensual del periodo 1995 – 2007, la época del año en la que existe mayor lluvia empieza en diciembre y termina en junio, con un porcentaje de 69% de la lluvia total anual en el período 1995 - 2007 para las estaciones del glaciar y 67% de la lluvia total anual en el período 1995 – 2007 para las del páramo, y que los meses de julio, agosto, septiembre, octubre y noviembre son los más secos del año con 31% del total de lluvia anual en las estaciones cercanas al glaciar y 33% del total de lluvia para las estaciones del páramo, en los cuatro meses durante el mismo periodo mencionado, sin embargo se puede afirmar que existe precipitación durante todo el año que se distribuye de manera uniforme en los diferentes meses.

En la figura 4.16, se nota que a nivel mensual, en el año 2007, la precipitación de la zona del glaciar (calculada con el índice Pglaciar), en los meses de enero, febrero, marzo, abril, mayo, julio y septiembre se encuentran bajo el promedio que se ha presentado con mayor frecuencia durante el período 1995 – 2007, en un porcentaje que varía entre 19% y el 77% de disminución de lluvia, sin embargo se observa que en los meses de febrero, julio y septiembre son meses deficitarios con respecto a la desviación estándar de que en esos meses se ha presentado normalmente durante el periodo 1995 – 2007. Al contrario, en el mes de junio, agosto y octubre la lluvia del año 2007 ha sido un poco mayor al promedio del período mencionado, en un 32% y 55%, y estos tres meses presentan un déficit anómalo de lluvia con respecto a la desviación estándar que se dado durante el período 1995 - 2007. En los meses de noviembre y diciembre los valores se mantienen dentro del promedio calculado en el período 1995 – 2007.

Con la figura 4.17, se aprecia que en el año 2007, la precipitación de la zona del páramo (calculada con el índice Pparamo), en los meses de febrero, marzo, mayo y julio se encuentran bajo el promedio del período 1995 – 2007, en un porcentaje que varía entre 28% y el 42% de disminución de lluvia, pero el mes de julio presenta un déficit de precipitación en el año 2007 con respecto a lo que se ha dado en el periodo 1995 – 2007. Al contrario, en el mes de junio, agosto y octubre, la lluvia del año 2007 ha sido un poco mayor al promedio del 1995 – 2007, en un 26% y 52%. Mientras que los meses de enero, abril, septiembre y

diciembre mantiene su valor de precipitación dentro del promedio calculado en el período 1995 – 2007.

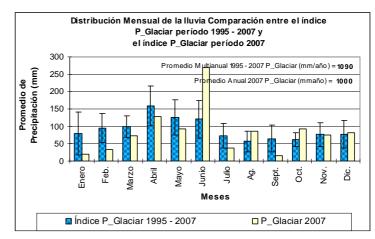
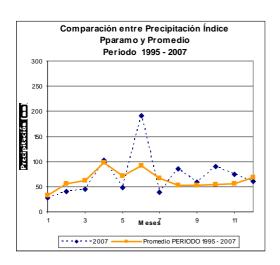



Figura 4.16. Comparación entre el Índice Pglaciar y el Promedio Mensual del periodo 1997 – 2007.

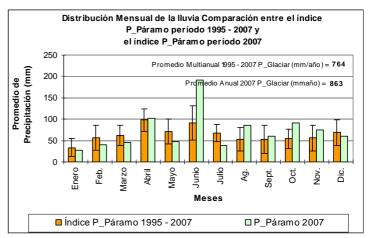
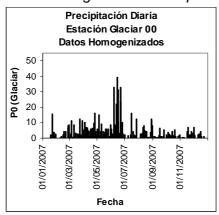
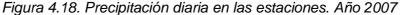


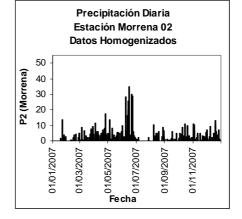
Figura 4.17. Comparación entre el Índice Pparamo y el Promedio Mensual del periodo 1997 – 2007.

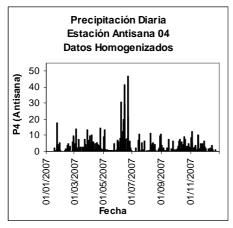
4.5.3 Distribución diaria

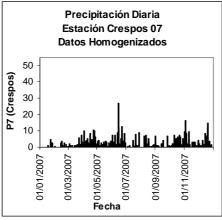
Para hacer este análisis se ha trabajado con los pluviógrafos. La tabla 4.10, se ha elaborado a partir de los datos diarios de todas las estaciones de las que dispone el programa GREATICE que trabajan con un pluviógrafo, se ha ordenado los datos de manera descendente de acuerdo a los datos de precipitación, para de esta manera observar el mes, y la estación en la que se presentan las mayores precipitaciones.

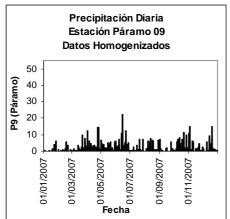

Observando la tabla 4.10 se constata que en el 2007 las estaciones donde se observa precipitaciones máximas más frecuentes son: la P0 Glaciar, la P2 Morrena y la P4 Antisana en el mes de junio.

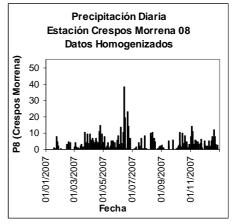

Otro parámetro que se puede ver en el tabla 4.10 es que, basándose únicamente en las observaciones del 2007, la lluvia más probable que ocurra por lo menos una vez al año es de 32 mm. La lluvia con más probabilidad de que ocurra por lo menos dos veces en el año es de 27 mm. La lluvia que puede ocurrir probablemente 4 veces al año tiene un valor de 18 mm, etc.


En la figura 4.18 se puede observar que los pluviógrafos del Glaciar, Morrena y Antisana presenta las precipitaciones más fuertes en comparación con los otros pluviógrafos y, a nivel general, la estación con menos lluvia es la P5 Mica, sin embargo, se puede ver también que en todas las estaciones existió en el mes de junio un pico de lluvia, en las fechas que se señala en la tabla 4.6.


Orden	Fecha	Dato	Estación
1	21/06/2006	47.08	P4
2	14/06/2006	41.73	P4
3	14/06/2006	39.38	P0
4	14/06/2006	38.31	P8
5	15/06/2006	34.88	P2
6	07/06/2006	32.96	P0
7	21/06/2006	32.85	P0
8	15/06/2006	31.24	P0
9	07/06/2006	30.82	P4
10	21/06/2006	29.75	P2
11	15/06/2006	29.32	P4
12	22/06/2006	28.68	P2
13	07/06/2006	28.46	P2
14	14/06/2006	26.96	P7
15	14/06/2006	25.47	P2
16	22/06/2006	23.97	P0
17	14/06/2006	23.97	P5
18	23/04/2006	23.33	P5
19	21/06/2006	22.90	P8
20	14/06/2006	22.26	P9
21	13/06/2006	22.04	P0
22	22/06/2006	21.40	P4
23	12/06/2006	20.12	P4
24	21/06/2006	19.90	P5
25	12/06/2006	19.47	P0
26	13/06/2006	19.47	P2
27	15/06/2006	19.26	P8
28	22/01/2006	17.98	P4


Tabla 4.10. Precipitaciones Máximas en 24 horas durante el año 2007 en las estaciones.





CAPÍTULO 5

5. MICROMETEREOLOGIA SOBRE EL GLACIAR

Autor Principal: Marco Rojas y Luis Maisincho

INDICE DEL CAPITULO

5.1	Estación Meteorológica ORE y GLACIOCLIM	66
5.1.1	Equipamiento de la ORE	67
5.2	Periodo con Perdida de Datos en la ORE	67
5.3	Estación Meteorológica SAMA A 4800 m.s.n.m.	68
5.3.1	Descripción	68
5.3.2	Periodo con perdida de datos en la SAMA	68
5.4	Temperatura Medida en las Estaciones CAMPBELL-FIX, SAMA y ORE	68
5.5	Radiación Incidente en el Glaciar 15 α	73
5.6	Velocidad del Viento	75

5.1 Estación Meteorológica ORE y GLACIOCLIM

En el periodo de tiempo del año 2007, la estación meteorológica automática ORE tuvo un funcionamiento regular y cumplió con el principal objetivo de registrar, almacenar y guardar los datos meteorológicos generados en la zona de estudio.

Estos datos, luego de un proceso de validación constituyeron la base para la modelización de los procesos meteorológicos a escala local, regional y global. Con ello se cuenta con las herramientas necesarias que posibilitan el conocimiento y la respuesta a los fenómenos meteorológicos que se producen a diferentes escalas.

GLACIOCLIM tiene por objetivo constituir una base de datos glacio-meteorológicos de largo plazo a fin de:

- 1. Estudiar la relación Clima-Glaciar es decir comprender las relaciones entre las variables climáticas y los balances de masa glaciares (Análisis de los flujos de masa y energía entre el glaciar y la atmósfera).
- 2. Prever la evolución futura de los glaciares en términos de recursos agua, contribución del retroceso de los glaciares a la elevación del nivel del mar y de otros impactos ligados a los glaciares.
- Comprender la respuesta dinámica de los glaciares (variación de espesor, longitud y velocidad de desplazamiento) a las fluctuaciones de los balances de masa, estudiar los riesgos naturales de origen glaciar.

5.1.1 Equipamiento de la ORE

El equipamiento en la estación ORE no ha cambiado durante este año. Para obtener información sobre las características técnicas de las estaciones y sus respectivos sensores se puede revisar los informes anteriores.

5.2 Periodo con Perdida de Datos en la ORE

El periodo de tiempo en el cual se registran los datos va desde el 1 de enero del 2007 hasta el 26 de diciembre del 2007. No todo este periodo de tiempo se encuentra con los datos completos. Por ello existe una discontinuidad o pérdida del registro de datos, comprendido en los periodos que están entre:

El 11 de julio de 2007 al 19 de julio del 2007

El 31 de agosto (incluido septiembre) al 1 de octubre del 2007

Los vacíos o pérdidas de los registros de datos en la estación ORE son debido posiblemente a:

- Una descarga de corriente estática en la central de la estación.
- Una falla o descarga inesperada de la batería que alimenta a la estación
- Las condiciones climáticas extremas que en ciertas ocasiones pueden llegar a afectar el buen funcionamiento de la estación

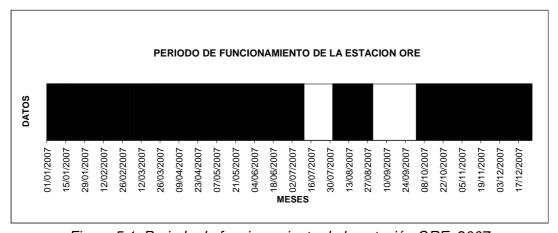


Figura 5.1. Periodo de funcionamiento de la estación ORE. 2007

Fecha	Albe_(%) (Onr1_(°C I	Oven_(°)(Geo_(mm L	win_(W/m2 Lv	vre_(W/m2 P	luv_(mm)	Rh_(%) I	Rnet_(W/m2 S	ond_(m)S	win_(W/m2)Sw	vre_(W /m 2	t0°_(°C)t	10º_(°Ct	30°_(°C)	air_(°C	U_(m/s]\	/ent_(°C)
enero	0,576	2,669	127,4	-0,034	-52,250	17,590	1,036	77,33	101,200	1,294	191,900	20,870	6,853	6,633	6,287	2,010	4,470	1,876
febrero	0,585	2,339	131,2	-0,243	-59,920	18,800	1,368	71,23	98,900	1,294	200,300	22,690	7,093	7,006	6,792	1,563	5,742	1,523
marzo	0,58	1,793	135,3	-4,916	-26,430	11,460	2,692	87,30	119,000	1,294	173,900	16,920	5,600	5,588	5,499	1,172	3,751	1,147
abril	0,605	1,733	153,0	4,817	-16,690	10,040	4,251	89,92	104,300	1,294	151,400	20,400	5,373	5,385	5,392	1,128	2,553	1,074
mayo	0,585	7,076	125,8	-7,837	-31,600	10,140	3,099	82,82	119,100	1,295	179,400	18,540	5,651	5,695	5,662	1,619	3,705	1,600
junio	0,821	-2315	105,1	4,779	-25,080	-2,562	9,224	85,88	55,520	0,787	201,400	123,400	1,331	1,742	2,237	-0,002	6,034	0,316
julio				-219,4			1,512	68,24		1,088			3,103	2,990	2,733	0,900	4,577	1,263
agosto																		
septiembre	•																	
octubre																		
noviembre	0,586	-24,35	128,1	2,198	-45,210	9,836	1,234	82,96	124,200	1,293	201,600	22,420	5,053	4,951	4,856	1,426	4,126	1,064
diciembre	0,602	-24,43	135,1	2,784	-35,420	7,586	0,718	85,33	101,700	1,235	168,700	24,000	4,046	3,982	3,969	0,678	3,376	0,454

Tabla 5.1. Medidas mensual ORE. 2007

5.3 Estación Meteorológica SAMA A 4800 m.s.n.m.

5.3.1 Descripción

La estación Sama (Estación Automática Móvil de Altitud, siglas en francés) conservando su configuración original fue trasladada en diciembre del año 2006, hacia el Glaciar 15 α hasta noviembre del 2007, a una altitud de 4860 m sobre la superficie glaciar.

La fusión del glaciar que provoca cambios importantes en la superficie obligo a mover paulatinamente la estación.

5.3.2 Periodo con perdida de datos en la SAMA

Durante el año 2007 la estación Sama situada a 4860 m.s.n.m. sobre el glaciar 15 del Antisana presenta vacíos en su serie de datos en los siguientes periodos:

12 al 28 de febrero: Perdida total de datos 28 al 30 de marzo: Perdida total de datos 22 de junio al 10 de julio: Perdida total de datos 31 al 1 noviembre: Perdida total de datos

La serie de datos de la estación Sama disponibles para el año 2007 se presentan en la figura siguiente:

Figura 5.2. Serie de datos disponibles para la estación SAMA año 2007 sobre el Glaciar 15 α 4860 m.s.n.m.

5.4 Temperatura Medida en las Estaciones CAMPBELL-FIX, SAMA y ORE

Los datos de temperatura presentados en la siguiente tabla y la figura, no muestran un patrón marcado en la evolución de la temperatura mensual durante los seis últimos años 2000, 2001, 2002, 2003, 2004, 2005, 2006 y 2007.

Meses	Temperatura 2000 Campbell fix	Temperatura 2001 Campbell fix	Temperatura 2002 Campbell fix	Temperatura 2003 Campbell fix	Temperatura 2004 SAMA	Temperatura 2004 Campbell fix	Temperatura 2005 SAMA	Temperatura 2005 ORE	Temperatura 2006 ORE	Temperatura 2007 ORE
Enero	-0.4	1.08	-	0.57	0.4	0.83	0.48	1.75	0.63	1.88
Febrero	-0.56	0.95		0.72	0.09		1.17	2.11	1,45	1.52
Marzo	-0.48	0.82	0.82	0.28	0.74		0.64	1.29	1.04	1.15
Abril	0:01	0.84	0.61	0.7	0.83	0.83	1.00	1.72	1.11	1.07
Mayo	0.14	1.51	0.73	0.95	0.45	1.27	0.61		1.79	1.60
Junio	0.08	0.93	-0.3	-0.16	-0.46	0.48	0.41	1.50	1.08	0.32
Julio	-0.57	1.06	0.22	-0.08	-100	0.34	-0.12	0.98	110700	1.26
Agosto	-0.82	1.22	-0.33	-0.01		0.48	-0.25	1.07	0.93	0.55
Septiembre	-0.59	0.99	0.12	-0.42	Ć.	0.6	0.13	1.38	0.54	
Octubre	0.21	1.65	0.17			2.48	0.03	1.11	1.47	0.49
Noviembre	0.41	1.39	0.1	0.58	0.73	1.35	0.30	1.28	0.83	1.06
Diciembre	0.07	1.24	0.82		0.4	1.38		0.53	1.10	0.37
Promedio anual	-0.208	1.14	0.3	0.31	0.4	1	0.40	1.34	1.09	1.03

Tabla 5.2. Promedios mensuales y anuales de temperatura Campbell, Sama y Ore

El promedio anual de temperatura entre las estaciones Campbell–fix y Sama del año 2004 presenta una diferencia de alrededor de 0.6 °C, es decir la temperatura tiende a ser más alta en la Campbell –fix a pesar que las dos estaciones realizaron sus mediciones sobre el mismo glaciar, sin embargo este valor debe ser tomado con cuidado debido al vacío de datos en las dos estaciones.

Los promedios de los años 2005 – 2006 - 2007 medidos en la estación permanente ORE, presentan un comportamiento similar, la cual es apreciada en la siguiente gráfica:

Figura 5.3. Evolución mensual de la temperatura en las estaciones ORE (2005, 2006, 2007)

La forma de las curvas son similares, Sin embargo, en el mes de enero, la temperatura del año 2007 mantiene un valor promedio de 1.88 °C el cual difiere bastante del valor de la temperatura del año 2006 que es de 0.63 °C y se asemeja al valor de la temperatura del año 2005 que es de 1.75 °C. De la misma forma, la temperatura del año 2007 tiende a comportarse de manera similar a los años anteriores, pero en el mes de julio la temperatura del año 2007 rebasa los valores de los años anteriores siendo el valor de 1.26 °C. Esto de acuerdo a los datos disponibles.

Se debe también señalar que la temperatura del año 2007 en el mes de diciembre es menor a las temperaturas de los años anteriores analizados, siendo este valor de 0.37 °C para este mes.

Humedad Relativa

De acuerdo a los promedios mensuales de humedad relativa registrados durante los últimos 9 años en el Glaciar 15 α indicados en la tabla y figura siguientes, durante el año 2004 existe una variación que es inferior a los datos del 2000, 2002 y 2003, de enero a junio, si tenemos en cuenta los datos de la estación Sama. El año 2000 presenta una evolución un poco diferente de los otros: un pico máximo en abril y un otro en septiembre y dos picos mínimos: julio y noviembre. Recordamos que este año fue marcado por La Niña. Mientras que los años 2002, 2003 y 2004 presentan una tendencia similar: un pico máximo entre marzo y abril y un segundo en noviembre, y un pico mínimo entre agosto y septiembre. En lo

que se refiere a la humedad relativa del año 2007, existen ciertas variaciones significativas a lo largo de los meses lo que se puede apreciar mejor en la gráfica de la siguiente tabla:

Meses	Humedad 2000 Campbell fix	Humedad 2002 Campbell fix	Humedad 2003 Campbell fix	Humedad 2004 SAMA	Humedad 2004 Campbell fix	Humedad 2005 SAMA	Humedad 2005 ORE	Humedad 2006 ORE	Humedad 2007 ORE
Enero	84		77.71	60.77	32.4	79.61	76.48	83.77	77.33
Febrero	82		81.64	77.27		80.16	79.66	82.32	71.23
Marzo	87	86.64	85.39	80.84		85.13	85.68	85.38	87.30
Abril	89	88.3	87.22	80.13	82.12	86.34	85.60	86.76	89.92
Mayo	87	85.06	81.95	78.91	74.86	78.37		75.42	82.82
Junio	81	80	83.34	76.34	70.54	80.50	77.55	77.47	85.88
Julio	80	75.82	73.98		76.13	70.79	68.66		68.24
Agosto	81	74.63	75.12		67	74.01	70.54	76.68	76.86
Septiembre	84	72.98	68.41		77.62	70.89	69.26	75.38	
Octubre	80	83.81			77.66	83.31	83.11	74.25	84.80
Noviembre	74	84.98	90.2	79.87	83.17	90.18	71.18	86.80	82.96
Diciembre	77	83.95		78.56	73.12		83.86	84.79	85.70
Promedio anual	82.17	81.62	80.5	76.59	71.46	79.93	76.77	80.42	81.19

Tabla 5.3. Promedios mensuales y anuales de humedad relativa registradas por las estaciones Campbel fix, Sama y Ore

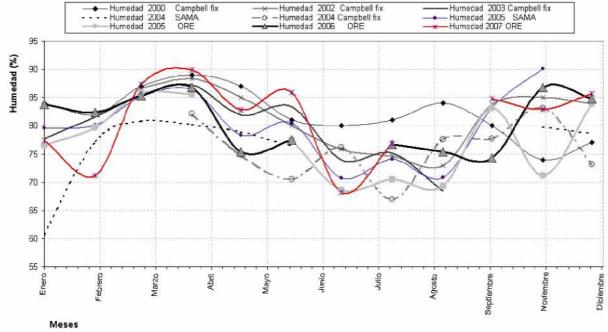


Figura 5.4. Evolución de la Humedad Relativa a nivel mensual en las estaciones Campbellfix, SAMA y ORE

De acuerdo a la gráfica anterior, el comportamiento de la humedad relativa de todos los años, sigue un comportamiento similar. Sin embargo, dentro de este comportamiento existen ciertas variaciones que diferencian unos años de otros. Al comparar los datos de los últimos 3 años 2005, 2006 y 2007, se puede ver que los datos de la humedad relativa del año 2007 tienden a ser mayor en todos los meses a excepción de marzo, mayo, junio, octubre y noviembre. Esto se puede apreciar de mejor manera en la tabla y figura siguientes:

	HUMEDAD	RELATIVA	
MESES	2005 ORE	2006 ORE	2007 ORE
ENE	76.48	83.77	77.33
FEB	79.66	82.32	71.23
MAR	85.68	85.38	87.30
ABR	85.60	86.76	89.92
MAY		75.42	82.82
JUN	77.55	77.47	85.88
JUL	68.66		68.24
AGO	70.54	76.68	76.86
SEP	69.26	75.38	
OCT	83.11	74.25	84.80
NOV	71.18	86.80	82.96
DIC	83.86	84.79	85.70
PROMEDIO	76.77	80.42	81.19

Tabla 5.4. Valores de Humedad Relativa en la Estación ORE en los años 2005, 2006 y 2007

De la misma manera, al comparar los datos de los últimos 3 años 2005, 2006 y 2007 se puede ver que sigue la lógica inversa de la temperatura es decir si la temperatura sube la humedad baja y viceversa.

	TE	MPERATUR	RA	HUMEDAD RELATIVA			
MESES	2005 ORE	2006 ORE	2007 ORE	2005 ORE	2006 ORE	2007 ORE	
ENE	1.75	0.63	1.88	76.48	83.77	77.33	
FEB	2.11	1.45	1.52	79.66	82.32	71.23	
MAR	1.29	1.04	1.15	85.68	85.38	87.30	
ABR	1.72	1.11	1.07	85.60	86.76	89.92	
MAY		1.79	1.60		75.42	82.82	
JUN	1.50	1.08	0.32	77.55	77.47	85.88	
JUL	0.98		1.26	68.66		68.24	
AGO	1.07	0.93	0.55	70.54	76.68	76.86	
SEP	1.38	0.54		69.26	75.38		
OCT	1.11	1.47	0.49	83.11	74.25	84.80	
NOV	1.28	0.83	1.06	71.18	86.80	82.96	
DIC	0.53	1.10	0.37	83.86	84.79	85.70	
PROMEDIO	1.34	1.09	1.03	76.77	80.42	81.19	

Tabla 5.5. Valores de Temperatura y Humedad Relativa en la Estación ORE en los años 2005, 2006 y 2007

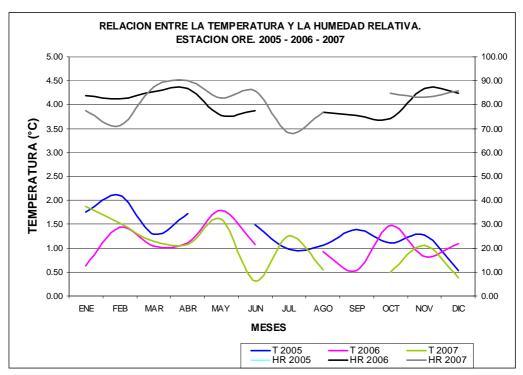


Figura 5.5. Relación entre la Temperatura y la Humedad Relativa. Estación ORE 2005, 2006 y 2007

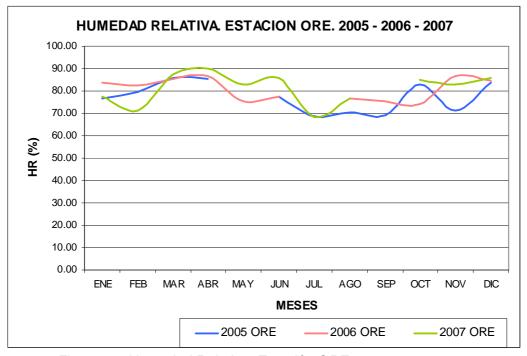


Figura 5.6. Humedad Relativa. Estación ORE 2005, 2006 y 2007

Estación ORE

De manera general, el registro de los datos de la humedad relativa está comprendido desde el 1 de enero del 2007 hasta el 26 de diciembre del 2007. Se debe indicar que no se disponen datos desde el 31 de agosto al 1 de octubre (incluido todo el mes de septiembre).

HUMEDAD RELATIVA. HR (%)

100.00
90.00
80.00
10.00
10.00
10.00
10.00
10.00
10.00

Podemos ver que el registro de la Humedad Relativa muestra un valor máximo 89.92% en el mes de abril; un valor mínimo de 68.24% en julio y un valor promedio de 81.19%

Figura 5.7. Humedad Relativa

JUN

MESES

JUL

AGO

SEP

OCT

NOV

DIC

5.5 Radiación Incidente en el Glaciar 15 α

FEB

MAR

ABR

MAY

ENE

Se analiza las radiaciones de onda corta incidentes medidas en el Glaciar 15 α (Estación ORE) y en el Glaciar Los Crespos (Estación SAMA)

En la Tabla 5.6 y la Figura 5.8 siguientes, se presentan los valores medios mensuales del año 2007 de radiación.

AÑO 2007	SWinc (W/m2) ORE 2007	SWinc (W/m2) SAMA 2007 (Glaciar Los Crespos)
ENE	191.91	208.05
FEB	200.30	241.48
MAR	173.85	173.66
ABR	151.45	153.58
MAY	179.40	166.82
JUN	201.42	173.93
JUL	235.84	204.43
AGO	249.08	
SEP		
ОСТ	167.11	
NOV	201.63	
DIC	162.85	

Tabla 5.6. Promedios mensuales de radiación neta para el año 2007 (Estación ORE)

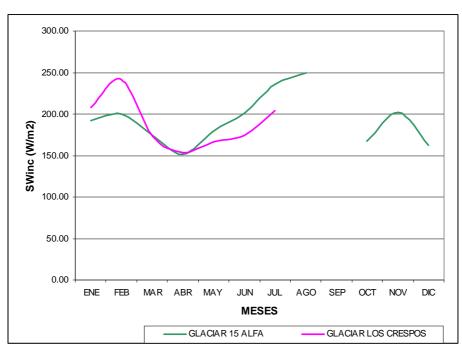


Figura 5.8. Promedios mensuales de radiación neta para el año 2007 (Estación ORE)

ESTACION ORE:

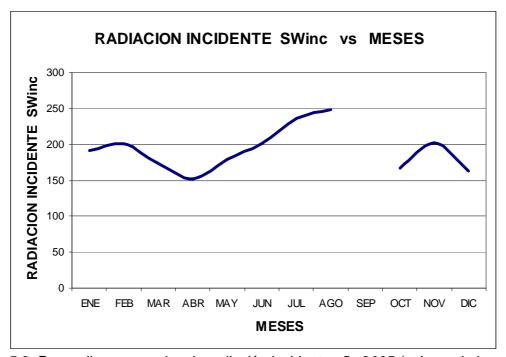


Figura 5.9. Promedios mensuales de radiación incidente año 2005 (valores de la estación ORE)

Durante las visitas de rutina se ha podido observar que las nubes llegan desde la amazonía (noreste) estas chocan contra el cuerpo del Antisana formando un pequeño anticiclón y por la configuración del volcán los flujos de aire/humedad pasan en su mayor parte rodeando al glaciar 15.

Otro factor que puede afectar las mediciones es la diferencia entre los sitios de medición ya que una superficie glaciar puede incrementar el valor de radiación por las múltiples reflexiones en las paredes de hielo/nieve que rodean a la SAMA, Además hay que tomar en cuenta la diferencia de precisión en la medición en los sensores: La ORE cuenta con un Radiómetro (CNR1-Kipp), mientras que la SAMA esta equipada con un par de piramometros (LI-COR)

La Radiación Solar (Estación ORE): el registro de los datos de la radiación neta está comprendido desde el 1 de enero del 2007 hasta el 26 de diciembre del 2007. Se debe indicar que no se disponen datos desde el 11 de julio al 19 de julio y desde el 31 de agosto al 1 de octubre (incluido todo el mes de septiembre)

Podemos ver que el registro de la Radiación Neta muestra un valor máximo 151.02 W/m2 en el mes de agosto; un valor mínimo de 55.52 W/m2 en junio y un valor promedio de 109.51 W/m2

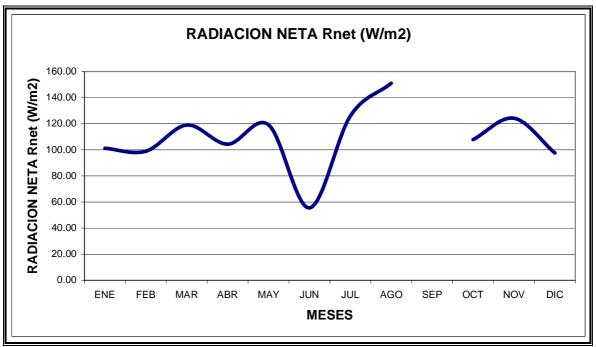


Figura 5.10. Promedios mensuales de radiación neta año 2007 (valores de la estación ORE)

5.6 Velocidad del Viento

El registro de los datos de la velocidad del viento está comprendido desde el 1 de enero del 2007 hasta el 26 de diciembre del 2007. Se debe indicar que no se disponen datos desde el 31 de agosto al 1 de octubre (incluido todo el mes de septiembre)

Podemos ver que el registro de la Velocidad del Viento muestra un valor máximo 6.60 m/s en el mes de agosto; un valor mínimo de 1.88 en el mes de octubre y un valor promedio de 4.23

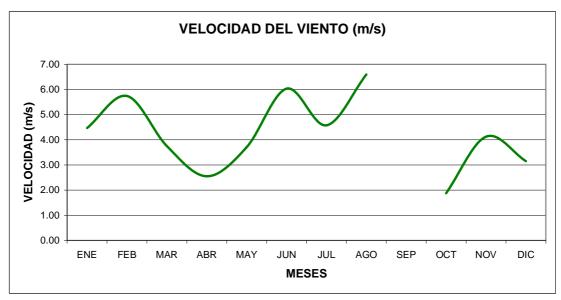


Figura 5.11. Promedios mensuales de velocidad del viento año 2007 (valores de la estación ORE)

Los promedios mensuales de velocidades del viento medidas en la morrena del glaciares 15 y en la estación SAMA están en la tabla siguiente y presentan una correspondencia que se demuestra con el coeficiente de correlación R2=0,6936 de este modo la velocidad de viento puede convertirse en una herramienta para corregir el resto de parámetros, pero se deberá observar el comportamiento de las velocidades del viento con diferentes pasos de tiempo.

	VELOCIDAD M	EDIA (m/s)
MES	GLACIAR LOS CRESPOS (ESTACION SAMA)	MORRENA DEL GLACIAR 15 (ESTACION ORE)
ENE	3.43	4.47
FEB	5.33	5.74
MAR	2.74	3.75
ABR	2.31	2.55
MAY	2.85	3.71
JUN	5.36	6.03
JUL	3.02	4.58
AGO		6.6
SEP		
OCT		1.88
NOV	1.48	4.13
DIC		3.15

Tabla 5.7. Promedios de la velocidad del viento. LOS CRESPOS (SAMA) Y GLACIAR 15 ALPHA (ORE) a nivel mensual

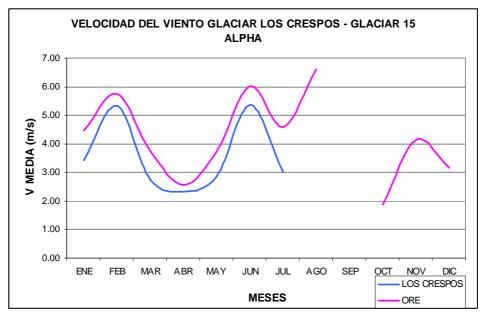


Figura 5.12. Promedios de la velocidad del viento. LOS CRESPOS (SAMA) Y GLACIAR 15 ALPHA (ORE) a nivel mensual

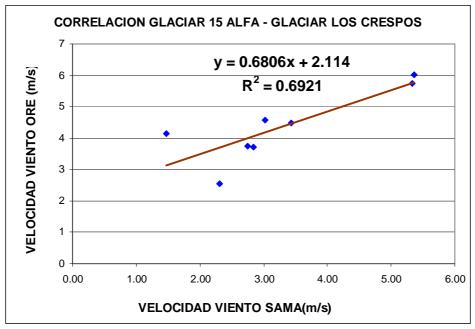


Figura 5.13. Correlación de la velocidad del viento. LOS CRESPOS (SAMA) Y GLACIAR 15 ALPHA (ORE) a nivel mensual

Los vientos más fuertes se producen en verano (entre junio y agosto, que corresponden a los vientos fuertes del este (easterlies) cuyo eje se encuentra sobre la línea ecuatorial.

Dirección Del Viento A 4900 M

Los anemómetros instalados en cada una de las estaciones nos permiten conocer la procedencia de los flujos de viento y con un análisis detallado podremos saber la dirección privilegiada así como también la menos favorecida para la llegada de los vientos.

En el glaciar 15 para el año 2007, tomamos como referencia el anemómetros de la estación ORE a partir de estos puntos trazamos dos círculos imaginarios divididos en espacios de 36

grados cada uno. De esta manera podemos graficar la rosa de los vientos como se indica en la figura siguiente

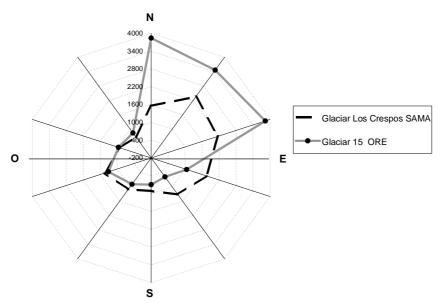


Figura 5.14. Rosa de los vientos para en el glaciar 15 alfa (Estación ORE) y en el glaciar Los Crespos con muestras de cada media hora

En el glaciar 15 la dirección del viento la distribución de los vientos no varía mucho ya que la dirección privilegiada es el Noreste mientras que el cuadrante suroeste es el menos favorecido.

Los flujos de vientos durante la mayor parte del año provienen del amazonía además se debe tomar en cuenta que el cuerpo del glaciar es capaz de producir vientos catabáticos los cuales descienden desde la parte alta hacia el pie del glaciar. Estos dos factores inciden en el predominio del viento proveniente del Este es decir entre 0 y 180 grados indicados en la tabla siguiente:

Dirección de viento (grados)	elGlaciar L Crespos SAMA	osGlaciar 1- ORE
0>Dv<36	1554	3837
36>Dv<72	2350	3457
72>Dv<108	2158	3830
108>Dv<144	1747	1056
144>Dv<180	1317	588
180>Dv<216	910	698
216>Dv<252	1110	894
252>Dv<288	1441	1307
288>Dv<324	903	954
324>Dv<360	679	839

Tabla 5.8. Ocurrencia del viento cada 36 grados calculados a partir de muestras de cada media hora Estaciones ORE Y SAMA)

En el futuro, utilizando la dirección del viento se puede clasificar los vientos, locales regionales, catabáticos y anabáticos en las dos estaciones.

En conclusión se puede decir que uno de los mayores inconvenientes que existen en el registro y almacenamiento de datos es la pérdida de los mismos principalmente debido a las condiciones climatológicas tan extremas en las cuales estos aparatos se encuentran trabajando.

En general el periodo de tiempo de pérdida de datos de las variables meteorológicas corresponde principalmente al mes de SEPTIEMBRE del año 2007.

Estos datos recopilados, luego de un proceso de validación constituyen la base para la modelización de los procesos meteorológicos a escala local, regional y global.

Los datos utilizados en la elaboración de este informe provienen de la estación ORE y de la estación SAMA.

CAPÍTULO 6

6. HIDROLOGÍA

Autores: Cristian Loyo, Margarita Arias Ortega, Eric Cadier, Marcos Villacís

INDICE	E DEL CAPITULO	
6.	HIDROLOGÍA	80
6.1	Estación Los Crespos	81
6.1.1	Equipos de medición	82
6.1.2	Serie de datos	84
6.1.3	Curva de calibración	86
6.1.4	Problemas y soluciones en las mediciones	87
6.1.5	Caudales calculados	90
6.2	Estación Humboldt	95
6.2.1	Equipos de medición	96
6.2.2	Recopilación de datos	98
6.2.3	Series de datos	98
6.2.4	Curva de calibración	101
6.2.5	Problemas en las mediciones	103
6.2.6	Caudales calculados	105
6.3	Separación de los caudales glaciares en las estaciones hidrológicas	111

El presente capítulo muestra los resultados hidrológicos del año 2007 de las estaciones hidrológicas Los Crespos y Humboldt.

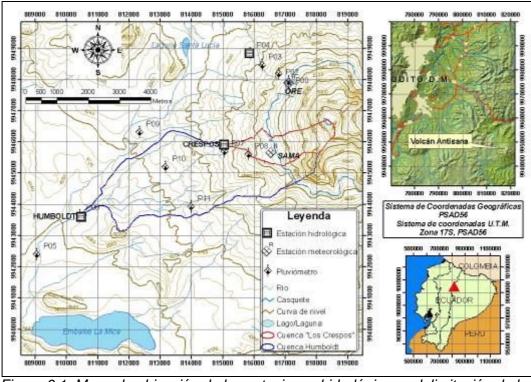


Figura 6.1. Mapa de ubicación de las estaciones hidrológicas y delimitación de las cuencas

A fin de determinar el comportamiento hidrológico y medir la producción de recursos hídricos de una cuenca con cobertura glaciar, sobre la cuenca del río Antisana en el flanco suroeste del volcán Antisana se construyeron dos estaciones hidrológicas, ubicadas sobre el mismo cauce; la estación hidrológica Los Crespos y la estación hidrológica Humboldt. Estas estaciones fueron construidas bajo el marco cooperación del Proyecto GREATICE, entre el IRD, el INAMHI y la EMAAP-Q.

A continuación, una detallada descripción de estas dos estaciones.

6.1 Estación Los Crespos

Superficie drenada: 2,4 Km²

Superficie Glaciar: 1,69 Km² (67%)

Altitud: 4521m

Funcionamiento: 2003-2007

Sección de control: Vertedero trapezoidal

Captor actual: Orphimedes OTT (2 equipos)

Figura 6.2. Foto de la estación hidrológica Los Crespos vertedero

La estación hidrológica Los Crespos esta ubicada en la parte alta de la cuenca del río Antisana, en las coordenadas U.T.M.² 815.058E y 9'945.918N, a una altitud de 4.521 m.s.n.m. Esta estación drena un área de 2,4 Km², en donde, 1,69 Km² corresponde a cubierta glaciar, lo que representa el 70.4% de la cuenca drenada; la parte no glaciar de la cuenca está principalmente constituida por morrenas, que son producto de la acumulación de fragmentos de roca y arena transportados y depositados por el movimiento del glaciar, y una pequeña cantidad de páramo que recubre la parte baja de la cuenca. Esta estación se localiza dentro de un cañón que fue cavado por el desfogue de 1987 producido por la rotura de la laguna de origen glaciar o subglaciar retenida atrás de la morrena frontal del glaciar Los Crespos.

La selección de la ubicación de esta estación en las cercanías al glaciar se debe primordialmente a dos razones:

- La cuenca de aportación tiene el mayor porcentaje posible de cobertura glaciar,
- La estabilidad de la zona para asegurar la continuidad de las mediciones.

Además, a esta estación llega una gran parte de los escurrimientos de origen glaciar que posteriormente pasan por la estación hidrológica Humboldt.

Capítulo 6: Hidrología 81

_

² Las coordenadas se presentarán en el Sistema de Coordenadas U.T.M. PSAD1956 Zona 17S, a menos que se indique lo contrario.

Esta estación fue construida en agosto de 2003 en el marco de cooperación del proyecto GREATICE por las tres instituciones INAMHI-EMAAP-Q e IRD.

Antes de la instalación de esta estación hidrológica que será denominada Los Crespos vertedero, 50 metros más arriba había un sistema de medición bastante precario, llamado "Crespos río arriba", que fue instalado en el 2002, la cual fue desinstalada en 2006. Estas dos estaciones en Los Crespos funcionaron de manera simultánea para permitir correlacionar los datos obtenidos, además, la estación "Crespos río arriba" proveyó datos cuando hubo un mal funcionamiento de la estación Los Crespos vertedero.

La estación Los Crespos vertedero esta construida sobre una caída de agua de aproximadamente 1m, lo que la hace una sección de control hidráulica autolimpiante, consta de una pared de hormigón que obstruye el lecho del río y lleva las aguas por un vertedero trapezoidal inclinado a 45°, su base inferior de 0,42m y su base superior de 2,0m., debido al desgaste que producen los sedimentos se coronó la sección trapezoidal con un tubo de hierro colado de gran diámetro.

Figura 6.3. Foto del vertedero trapezoidal y regleta. Estación Los Crespos

6.1.1 Equipos de medición

Inicialmente, en la estación hidrológica Los Crespos vertedero funcionó una sonda Chloé de marca Serpe/Elsyde, hasta diciembre de 2004, mes en la que fue reemplazada por un limnígrafo de inyección de burbujas de aire ORPHIMEDES de marca OTT, paralelamente a estos sensores electrónicos en 2004 y 2005 se instaló un limnígrafo de papel de marca SIAP para prevenir los fallos que los aparatos electrónicos pudiesen presentar.

En la estación los "Crespos río Arriba" funcionó un limnígrafo de papel de marca SIAP hasta diciembre de 2005. La precisión y confiabilidad de los SIAP fue generalmente insuficiente produciendo misiones difícilmente utilizables.

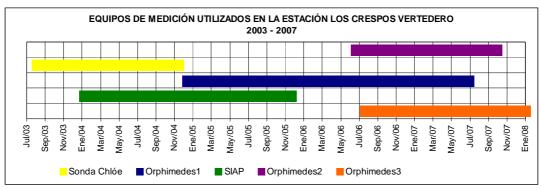


Figura 6.4. Cronograma de los equipos utilizados en la estación Los Crespos

Desde diciembre de 2004 hasta julio de 2007 se está utilizando un sensor de burbujeo de medición de nivel de agua ORPHIMEDES de marca OTT. Entre julio y agosto de 2006 se instalaron dos sensores del mismo tipo, con la misma marca para asegurar las mediciones, uno de ellos conocido como Orphimedes 2 dejó de funcionar en octubre de 2007 y el otro conocido como Orphimedes 3 continua funcionando hasta ahora.

ESPECIFICAC	CIONES TÉCNICAS DE LA SONDA DE PRESIÓN ORPHIMEDES OTT
Rango de medida	0 - 10,0 m columna de agua
Error de medida	± 1 cm. + 1 dígitos (máximo)
Resolución	0,01 m para unidades en m, 5 mm para unidades en mm
Unidades	Opcionalmente en m, mm o ft
Modo de medida	Profundidad (Distancia entre el punto de referencia de la superficie y el nivel del agua) y Nivel (Columna de agua)
Protección de sobrecarga	Linear, con display hasta 13,0 m. de columna de agua y sin display hasta 19,5 m. de columna de agua.
Memoria	Aproximadamente 11 200 valores. Memoria circular.*
Display	LCD línea sencilla, 4 ½ dígitos, altura de símbolos: 12 mm.
Intervalo de lectura	5, 15, 20, 30 min, 1, 2, 3, 4, 6, 8, 12, 24 h
Interface	IrDA (Tecnología Infrarroja)
Alimentación	6V (4 x 1,5 v pilas monocelulares redondas)#
Dimensiones	600 mm. de largo x 45 mm. de diámetro
Peso	1 Kg incluyendo baterías
Rango de temperaturas	De -5 a +50 °C.
Comunicación con el río	El limnígrafo bombea aire dentro de un tubo fino de 0,1 mm. de diámetro que debe ser fijado debajo de la superficie de agua en un lugar tranquilo y fuera de la zona de sedimentación. (Si hay velocidad, hay que instalar una pequeña cama de aire para amortiguar el impacto dinámico)
Limitador de presión	Cuando lecho del río se puede congelar es necesario instalar un limitador de presión para evitar sobrecarga de bombeo de aire.

Tabla 6.1. Datos técnicos del Orphimedes de marca OTT

- * Es decir que nunca se borra. Cuando la memoria está llena los datos arriba se graban sobre los más antiguos. Con un registro cada quince minutos, 11200 valores corresponden a 3 meses 24 días.
- # Debido al frío se recomienda cambiar las pilas cada mes

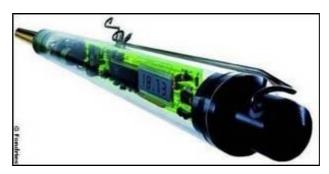


Figura 6.5. Limnígrafo Orphimedes de marca OTT

6.1.2 Serie de datos

En el proyecto GREATICE se tiene disponible para la estación Los Crespos los siguientes datos para el periodo 2003 - 2007.

Las series de datos existentes en la estación Los Crespos

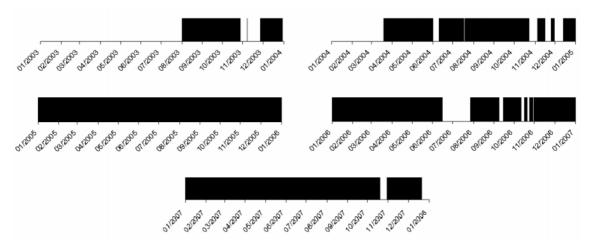


Figura 6.6. Serie de datos – Estación Los Crespos

En las series existentes de los datos brutos se han realizado básicamente las siguientes modificaciones:

- Correcciones por el desfase presentado en las mediciones realizadas por el captor de la estación hidrológica con respecto a las lecturas realizadas en la regleta del vertedero. (en tiempo y/o altura)
- Eliminación de datos evidentemente erróneos.
- Transformación de los datos de la estación "Crespos río arriba" para que puedan ser utilizados en la estación Los Crespos vertedero.

En el informe del año 2006 se presentan en detalle las correcciones realizadas a las series de datos de los años 2003 a 2006.

En la actualidad, el sistema de medición de arriba fue desactivado, y para asegurar la obtención de datos en la estación Los Crespos en vertedero se instaló dos sensores electrónicos Orphimedes que funcionan simultáneamente.

Los datos corregidos se encuentran en la base de Hydracces en el captor C07_Crespos_I-Defi_Cotas instantáneas definitivas desde 2003.

Figura 6.7. Ubicación de los datos de cotas corregidas de Los Crespos en Hydracces

C	ORRECC	IONES REALIZADAS A LOS DATOS DE LA ESTACIÓN LOS CRESPOS					
	SEP	Se suma 2 cm. desde el 5/09/2003 12:18 al 18/09/2003 09:39.					
2003	ост	Se suaviza el descenso de las crecidas de 16 al 21/10/2003 y de 23 a 27/10/2003.					
	NOV	Se resta 3 cm desde el 27 (11:00) al (24/12).					
	ENE	Se encuentran 3 puntos de control para la sonda Chlóe (9,15,29) pero no se encuentran datos de cotas para este periodo.					
	FEB	Se encuentran 4 puntos de control para la sonda Chlóe (12,19,19,27) pero no se encuentran datos de cotas para este periodo.					
94	MAR – JUL	Datos de cotas inician el 19/03, datos levantados de los rollos de arriba y transformados a vertedero mediante la ecuación <i>H_vertedero=1,63*H_arriba-34,56 [cm.]; R</i> ² = 93 %.					
2004	AGO	Se eliminan cotas menores a 4 cm. Serie de datos dudosos.					
	SEP- OCT	Se eliminan cotas menores a 4cm después de usar la ecuación <i>H_vertedero=1,63*H_arriba-34,56 [cm.]; R</i> ² = 93 %. Serie de datos dudosos.					
	NOV	Se utiliza la ecuación <i>H_vertedero=1,42*H_arriba-25,82 [cm.]; R</i> ² = 93 % obtenida a partir de los controles del 2005-2006.					
	DIC	Datos de Orphimedes utilizados a partir del 14.					

C	CORRECCIONES REALIZADAS A LOS DATOS DE LA ESTACIÓN LOS CRESPOS						
2005	AGO	Orphimedes y desde el 04 a las 14:00 hasta el 22 a las 13:30 se introducen los datos de Orphimedes 3 que funciona en paralelo y desde el 25 hasta el 08/09 a las 13:30 se reemplaza la serie con los datos de Orphimedes 3.					
2006	ост	Orphimedes se elimina los datos desde 05/10/2006 hasta 11/10/2006 en los que se presentaban un desfase y 2 crecidas fuertes en el mismo día.					
	ENE	Orphimedes 3, desfase de cota de 5cm desde 01/01/2007 hasta 17/02/2007 y en el Orphimedes 2, un desfase de tiempo de 11 horas y 15 minutos desde el 31/01/2007 hasta el 17/02/2007.					
	MAY	Orphimedes 2, desfase de tiempo de 1 día con 15 minutos					
2007	JUL	Orphimedes 2, desfase de tiempo de 8 horas y 45 minutos desde las 15:17 del 31/07/2007.					
	AGO	Orphimedes 2, desfase de tiempo de 12 horas desde las 13:50 del 30/08/2007 hasta el 20/10/2007					
	ост	Existe una laguna desde 20/10/2007 hasta el 30/10/2007					

Tabla 6.2 Correcciones realizadas en la estación Los Crespos de 2003 – 2007

6.1.3 Curva de calibración

Para esta estación con los datos obtenidos en el campo se ha definido la siguiente Curva de calibración:

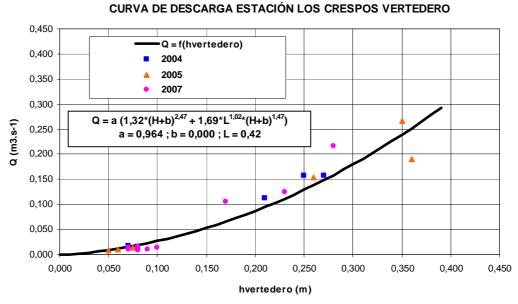


Figura 6.8. Curva de calibración de la estación Los Crespos vertedero (Villacís-Garcés)

Los datos de los caudales instantáneos, diarios y mensuales se encuentran en la base de Hydracces en los captores que se encuentran marcados en la Figura 5.5.

Los términos de esta ecuación corresponden a la forma trapezoide del vertedero que se puede considerar en una primera aproximación como la yuxtaposición de un vertedero triangular (exponente 2,47 ~ 2,5) y triangular (exponente 1,47 ~ 1,5).

El cero de la regleta coincide con la base del trapezoide del vertedero ($h_{regleta} = 0$ corresponden a Q = 0)

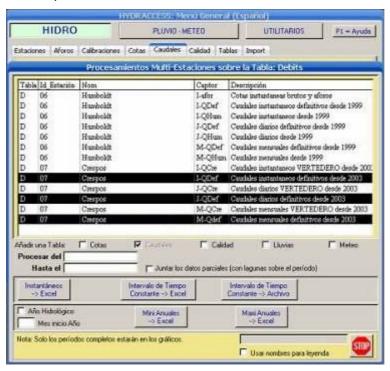


Figura 6.9. Ubicación de los datos corregidos de la estación Los Crespos en Hydracces

6.1.4 Problemas y soluciones en las mediciones

La sección de control trapezoidal proporciona hasta ahora una estabilidad a la curva de calibración de esta estación y, la presencia de dos limnígrafos permiten un registro casi continuo de los niveles.

Sin embargo, hay que chequear en cada visita la presencia de sedimentos cerca de la sección de control y cerca de los limnígrafos y limpiarlos si es necesario.

Otro problema en la estación está relacionado con el congelamiento del caudal, debido a las situaciones meteorológicas extremas, dificultando a los sensores el registro de los niveles de agua.

Aforos de la estación Los Crespos vertedero								
EMAAP-Q G	EMAAP-Q GERENCIA DE INGENIERIA UEPRO E HIDROLOGIA							
Sitio: Qbda. Glaciar Los Crespos								
Código:	Código: MS28			Caudal (I/s)				
Cuenca:	Río Antisan							
Coordenadas:	815058E	9945918N	Prom.:	134,6				
Altitud:	4521	m.s.n.m.	Máx.:	400,7				
Área de Drenaje:	2,44	Km ²	Mín:	5,4				

No	Fecha	Hora	Lectura Iimnimétrica	Calado medio (m)	Ancho (m)	Área (m²)	Veloc. (m/s)	Caudal (l/s)
1	0F con 02	10:30		0,15	· · ·		0,430	
2	05-sep-02		0,16		0,50	0,075		32,3
3	05-sep-02	11:00		0,17	0,50	0,085	0,303	25,8
4	05-sep-02	11:30 11:40	0.20	0,15	0,50	0,075	0,196	14,7
5	21-nov-02 21-nov-02	12:00	0,28 0,29	0,20 0,20	0,70	0,140 0,140	0,459 0,487	64,3 68,2
6	21-nov-02	12:15	0,29		0,70	0,140		-
7	21-nov-02	12:13		0,25	0,70		0,643	112,5 140,5
8			0,32	0,26 0,27	0,70	0,182	0,772	
9	21-nov-02	12:45	0,33	,	0,70	0,189	0,787	148,7
	21-nov-02	13:00	0,34	0,28	0,70	0,196	0,799	156,6
10 11	21-nov-02	13:15	0,35	0,30	0,70	0,210	0,933	195,9
	21-nov-02	13:30	0,37	0,30	0,70	0,210	0,991	208,1
12	21-nov-02	13:45	0,36	0,34	1,00	0,335	0,684	229,1
13	21-nov-02	14:00		0,26	1,00	0,347	0,738	256,1
14	21-nov-02	14:15	0.42	0,37	1,00	0,374	0,775	289,9
15	21-nov-02	14:30	0,42	0,40	1,00	0,400	0,798	319,2
16	21-nov-02	15:00	0,45	0,41	1,00	0,406	0,987	400,7
17	21-nov-02	15[:15		0,41	1,00	0,406	0,902	366,2
18	21-nov-02	15:30		0,36	1,00	0,406	0,897	364,2
19	21-nov-02	15:45	0.44	0,41	1,00	0,406	0,922	374,3
20	21-nov-02	16:00	0,44	0,40	1,00	0,400	0,888	355,2
21	21-nov-02	16:15	0,42	0,37	1,00	0,374	0,947	354,2
22	21-nov-02	16:30		0,37	1,00	0,374	0,926	346,3
23	21-nov-02	16:45		0,36	1,00	0,362	0,924	334,5
24	21-nov-02	17:00		0,36	1,00	0,356	0,944	336,1
25	21-nov-02	17:15	0.00	0,35	1,00	0,416	0,694	288,7
26	22-nov-02	7:05	0,22	0,13	0,30	0,039	0,276	10,8
27	22-nov-02	7:45	0.00	0,13	0,30	0,039	0,222	8,7
28	22-nov-02	8:35	0,22	0,13	0,30	0,039	0,264	10,3
29	22-nov-02	9:20	0,23	0,13	0,30	0,039	0,269	10,5
30	22-nov-02	10:00	0,23	0,07	0,30	0,021	0,259	5,4
31	22-nov-02	10:45	0,24	0,15	0,30	0,045	0,342	15,4
32	22-nov-02	11:35	0,24	0,15	0,30	0,045	0,329	14,8
33	22-nov-02	12:20	0,24	0,15	0,30	0,045	0,333	15,0
34	25-sep-02	16:10	0,29	0,22	0,60	0,130	0,579	75,3
35	28-oct-02	14:20	0,32	0,30	0,70	0,212	0,679	143,9
36	22-may-03	11:15	0,25	0,20	0,40	0,080	0,307	24,6
37	05-mar-04	10:50		0,18	0,30	0,054	0,344	18,6
38	05-mar-04	12:00	0.17	0,14	0,30	0,042	0,315	13,2
39	19-mar-04	10:45	0,17	0,14	0,30	0,042	0,325	13,7
40	17-jun-04	9:40	0,26	0,14	0,30	0,042	0,256	10,8
41	16-nov-04	10:10	0,21	0,17	0,30	0,051	0,290	14,8

No	Fecha	Hora	Lectura Iimnimétrica	Calado medio (m)			Veloc. (m/s)	Caudal (I/s)
42	16-nov-04	13:00	0,25	0,19	1,60	0,299	0,529	157,9
43	05-ene-05	11:15	0,21	0,13	0,30	0,039	0,212	8,3
44	05-ene-05	12:00	0,34	0,22	1,06	0,233	0,660	154,1
45	05-ene-05	12:20	0,37	0,26	1,06	0,275	0,820	225,4
46	05-ene-05	12:35	0,35	0,25	2,30	0,583	0,457	266,0
47	05-ene-05	13:15	0,36	0,25	2,30	0,563	0,339	191,0
48	06-ene-05	9:00	0,21	0,14	0,30	0,042	0,260	10,9
49	06-ene-05	11:00	0,23	0,17	0,30	0,051	0,270	13,8
50	01-abr-05	10:50		0,12	0,30	0,036	0,278	10,0
51	01-Mar-07	11:40		0,156	0,4	0,0625	0,1021	6,4
52	30-Mar-07	12:20	0,08	0,156	0,4	0,0625	0,1455	9,1
53	27-Abr-07	10:00	0,10	0,174	0,4	0,0695	0,2117	14,7
54	30-May-07	10:30	0,07	0,146	0,4	0,0585	0,2395	14,0
55	31-Jul-07	15:20	0,07	0,136	0,4	0,0545	0,1961	10,7
56	30-Ago-07	14:00	0,08	0,13	0,4	0,052	0,2981	15,5
57	03-Oct-07	12:30	0,09	0,13	0,4	0,052	0,1931	10,0
58	30-Oct-07	15:00	0,17	0,132	1,5	0,198	0,5347	105,9
59	29-Nov-07	12:00	0,23	0,16	1,4 0,224		0,5592	125,3
60	27-Dic-07	15:00	0,28	0,2	1,6	0,32	0,6736	215,6

Tabla 6.3 Aforos de la estación Los Crespos vertedero

6.1.5 Caudales calculados

Caudales medios diarios – Estación hidrológica Los Crespos 2007

Sitio: Qbda. Glaciar Los Crespos Coordenadas: 815058E 9945918N Código: Altitud: 4.521 m.s.n.m.

Cuenca: Río Antisana Área drenada: 2,44 Km²

Día	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1	0,088	0,084	0,07	0,059	0,048	0,032	0,04	0,02	0,016		0,026	0,044
2	0,093	0,078	0,08	0,065	0,047	0,026	0,049	0,02	0,017		0,05	0,027
3	0,088	0,078	0,061	0,066	0,044	0,029	0,062	0,028	0,025	0,044	0,047	0,038
4	0,079	0,077	0,033	0,087	0,055	0,026	0,061	0,023	0,038	0,039	0,038	0,064
5	0,097	0,074	0,061	0,055	0,047	0,038	0,054	0,029	0,035	0,041	0,044	0,046
6	0,086	0,078	0,08	0,041	0,049	0,032	0,044	0,038	0,032	0,036	0,038	0,045
7	0,091	0,084	0,056	0,054	0,034	0,03	0,039	0,038	0,035	0,027	0,037	0,041
8	0,104	0,081	0,046	0,061	0,067	0,023	0,034	0,031	0,041	0,044	0,043	0,029
9	0,088	0,046	0,074	0,05	0,065	0,018	0,027	0,022	0,046	0,026	0,045	0,051
10	0,072	0,041	0,076	0,047	0,082	0,023	0,03	0,016	0,047	0,034	0,037	0,059
11	0,093	0,052	0,045	0,048	0,072	0,024	0,034	0,013	0,038	0,024	0,039	0,049
12	0,095	0,048	0,049	0,045	0,05	0,016	0,037	0,012	0,043	0,031	0,029	0,039
13	0,091	0,068	0,042	0,031	0,056	0,012	0,033	0,02	0,026	0,028	0,043	0,056
14	0,081	0,052	0,045	0,064	0,075	0,01	0,031	0,019	0,03	0,023	0,057	0,05
15	0,076	0,023	0,047	0,066	0,059	0,007	0,034	0,014	0,022	0,021	0,054	0,037
16	0,102	0,022	0,033	0,041	0,062	0,008	0,036	0,022	0,02	0,06	0,05	0,034
17	0,056	0,045	0,059	0,05	0,041	0,009	0,033	0,021	0,035	0,068	0,085	0,028
18	0,075	0,054	0,06	0,042	0,031	0,018	0,033	0,02	0,044	0,054	0,077	0,057
19	0,052	0,034	0,046	0,043	0,05	0,023	0,031	0,024	0,046		0,066	0,031
20	0,083	0,014	0,074	0,07	0,085	0,025	0,035	0,036	0,039		0,069	0,032
21	0,078	0,016	0,064	0,05	0,043	0,026	0,031	0,048	0,04		0,061	0,035
22	0,079	0,054	0,054	0,042	0,048	0,022	0,032	0,041	0,045		0,077	0,042
23	0,114	0,075	0,054	0,033	0,053	0,023	0,036	0,044	0,057		0,054	0,051
24	0,044	0,069	0,06	0,034	0,067	0,032	0,033	0,047	0,042		0,061	0,06
25	0,049	0,057	0,084	0,034	0,027	0,025	0,023	0,052	0,029		0,053	0,063
26	0,059	0,049	0,083	0,036	0,041	0,023	0,023	0,03	0,029			0,053
27	0,088	0,063	0,068	0,042	0,053	0,018	0,023	0,031	0,054			0,053
28	0,1	0,076	0,051	0,03	0,028	0,016	0,018	0,033	0,056			0,052
29	0,097		0,05	0,037	0,041	0,022	0,016	0,027	0,044			0,072
30	0,064		0,056	0,045	0,04	0,03	0,022	0,033	0,062		0,042	0,07
31	0,021		0,067		0,024		0,025	0,026		0,041		0,064
Med	0,08	0,057	0,059	0,049	0,051	0,022	0,034	0,028	0,038	0,038	0,051	0,047

Tabla 6.4 Caudales diarios – Estación Los Crespos 2007

0,007

0,038

Mini Instantáneo = 0.003 m3/s --> 01/02/2007 09:15 Maxi Instantáneo = 0.353 m3/s --> 23/01/2007 14:30

0,016

0,062

0,012

0,052

0,016

0,062

0,021

0,068

0,026

0,027

0,072

Debit Moyen Annuel = 0,047241 m3/s

0,014

0,084

0,033

0,084

0,021

0,114

Min

Max

Lagunas: verde = 1 a 2 días, naranja = 3 a 5 días, rojo = 6 a 15 días.

0,03

0,087

0,024

0,085

Subrayado = Reconstituido, Itálico = Dudoso

Caudales Medios Diarios - Estación "Los Crespos" 2007

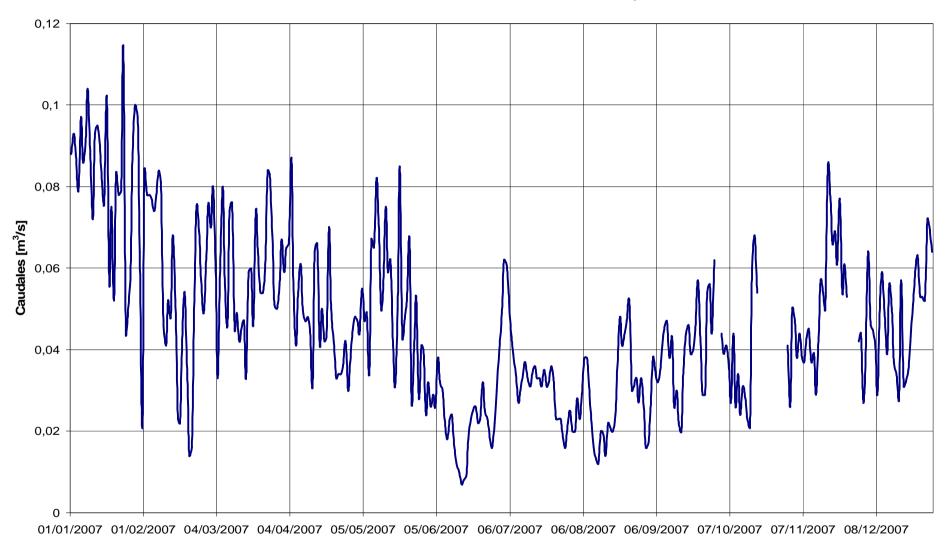


Figura 6.10. Caudales diarios en la estación hidrológica Los Crespos vertedero para el 2007

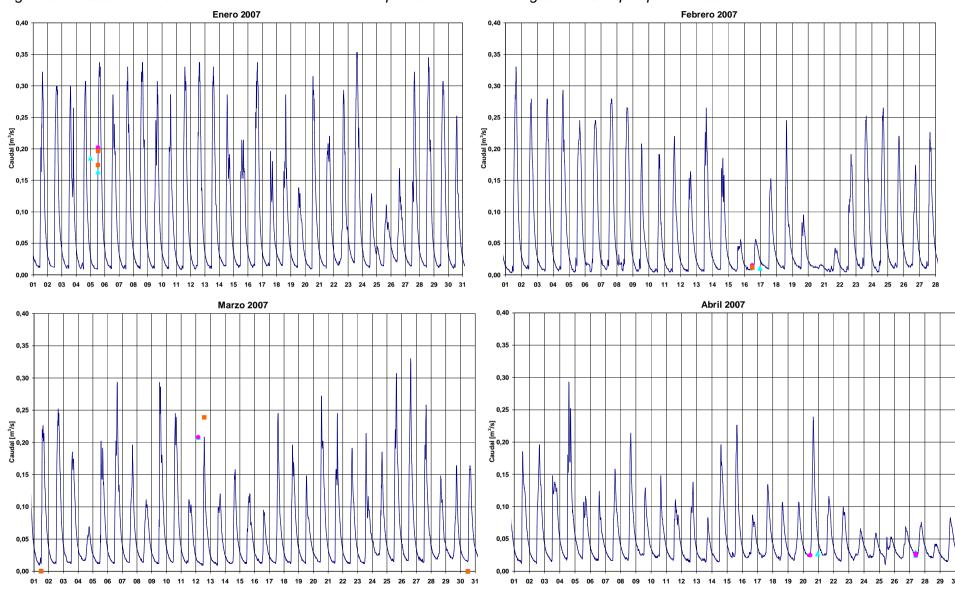
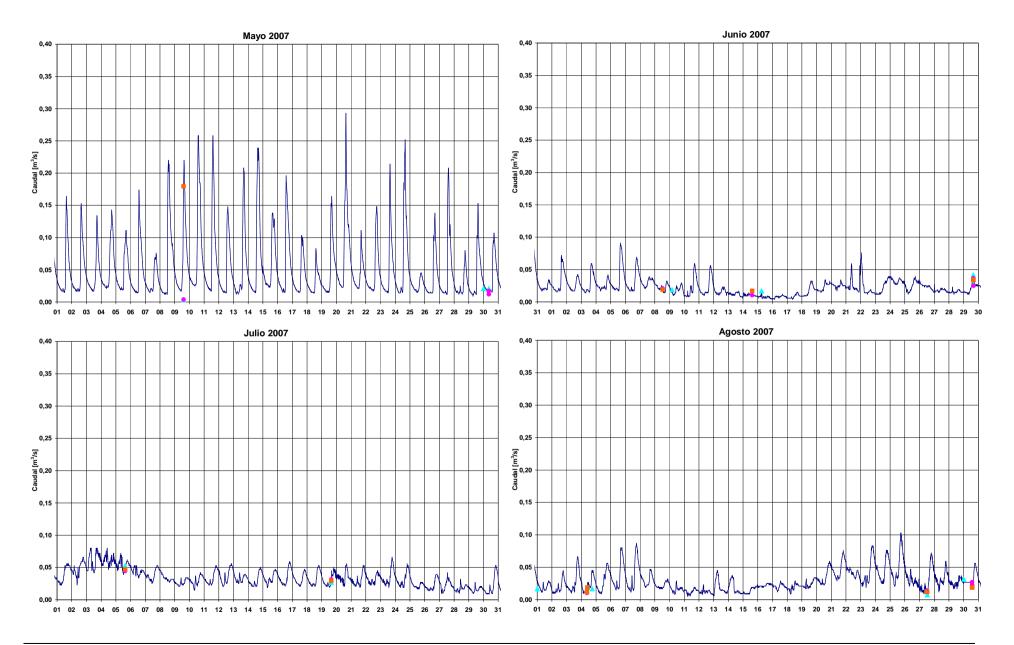
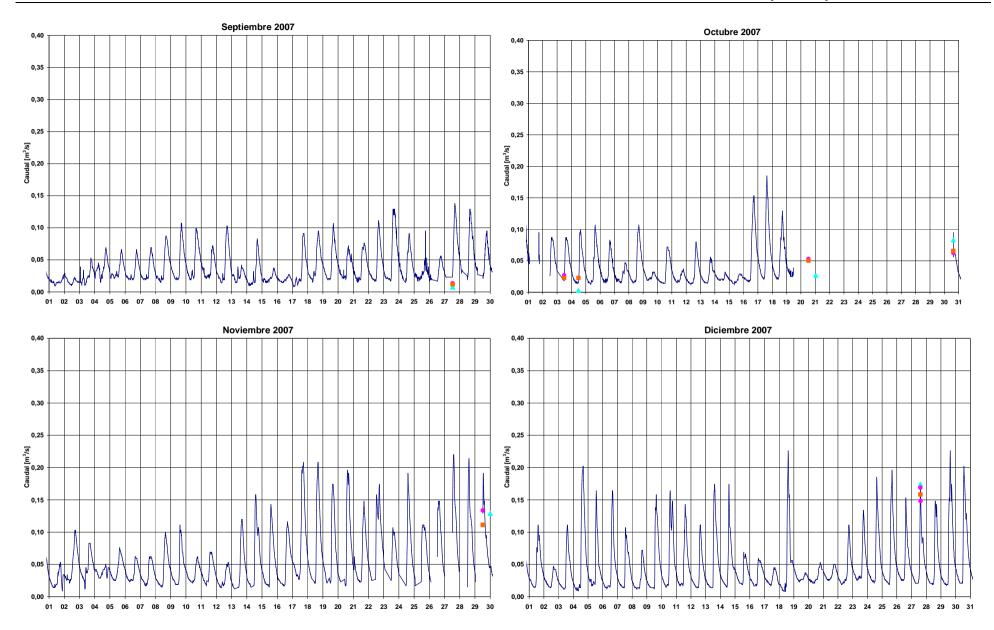




Figura 6.11. Caudales instantáneos de cada mes medidos por la estación hidrológica Los Crespos para el 2007

6.2 Estación Humboldt

Superficie drenada: 14,20 Km²

Superficie Glaciar: 1,97 Km² (14%)

Altitud: 4010m

Funcionamiento: 1999-2007

Sección de control: Canal rectangular con caída abajo

Captor actual: Nimbus OTT

Figura 6.12. Foto de la estación hidrológica Humboldt

La estación hidrológica Humboldt esta ubicada en la parte baja de la cuenca del río Antisana, en las coordenadas U.T.M. 810.477E y 9'943.609N, a una altitud de 4.010 m.s.n.m. Esta estación drena un área de 14,20 Km², en donde, 1,97 Km² corresponde a cubierta glaciar, lo que representa el 14% de la cuenca drenada; la parte no glaciar de la cuenca está principalmente cubierta por vegetación propia de los páramos y una pequeña cantidad de morrenas que recubren la parte media de la cuenca. Esta estación se localiza a corta distancia del campamento de la EMAAP-Q en la laguna de la Mica en donde inicia el Proyecto La Mica Quito Sur. Lo que le confiere una gran utilidad para determinar el comportamiento hidrológico de la cuenca de origen glaciar que contribuye a este importante proyecto de abastecimiento de agua potable para Quito.

La cuenca que drena hasta la estación Humboldt contiene en su totalidad a la cuenca drenada hasta la estación Los Crespos.

El escurrimiento del glaciar Los Crespos constituye la aportación más importante de origen glaciar hacia la estación Humboldt y adicionalmente al sur de este glaciar hay un área glaciar adicional de 0,34 Km² que contribuye también a la cuenca del río Humboldt.

Esta estación fue construida en 1999 en el marco de cooperación del proyecto GREATICE por las tres instituciones INAMHI-EMAAP-Q e IRD y empezó su funcionamiento en noviembre del mismo año.

La estación hidrológica Humboldt está compuesta por dos muros laterales de hormigón ciclópeo con una altura de 1,60 metros que encausan las aguas del río Antisana, la sección del canal es rectangular con un ancho de 1,28 metros, y una longitud de 6,0 metros. Junto al canal se construyó un pozo que mantiene un mismo nivel de agua que el canal pero con aguas tranquilas.

Debido a la erosión del canal rectangular de hormigón presentada en el inicio de su funcionamiento se recubrió el fondo del canal con piedras grandes e irregulares, las cuales generan turbulencias que disminuyen la precisión de los aforos, y provocan oscilaciones cerca de la regla del canal.

Abajo del canal hay una pequeña caída. Por estos motivos se puede considerar que la Curva de calibración debe ser próxima de la formula de Chezy para un canal rectangular.

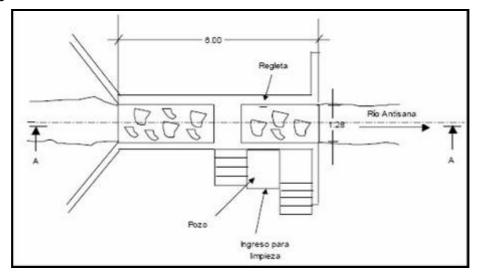


Figura 6.13. Plano de la estación hidrológica Humboldt Fuente: EMAAP-Q 2004

Figura 6.14. Conformación de la estación hidrológica Humboldt

A lo largo del periodo de funcionamiento de esta estación se han utilizado varios equipos hidrométricos debido a facilidades técnicas y de operación.

6.2.1 Equipos de medición

Para realizar las mediciones hidrométricas se ha utilizado diferentes equipos de medición, desde limnígrafos de papel hasta sensores electrónicos.

En esta estación se encuentran instaladas dos regletas, la primera se encuentra en la pared izquierda del canal donde hay mucho oleaje y la segunda, en la entrada del pozo tranquilizante donde se mide el mismo nivel.

Desde su instalación en noviembre de 1999 hasta agosto de 2003 funcionó un limnígrafo de tipo Chloé de la marca SERPE/ELSYDE, y debido a un mal funcionamiento fue reemplazado por una sonda de marca Global Water hasta enero de 2005, que a su vez fue reemplazada por un limnígrafo de burbuja de aire "Nimbus" de marca OTT.

Figura 6.15. Cronograma de los equipos de medición utilizados en la estación Humboldt

En la actualidad, "Nimbus" esta funcionando en paralelo con un Orphimedes para asegurar la continuidad de las mediciones.

Este equipo de medición tiene básicamente el mismo principio de funcionamiento que el equipo de medición Orphimedes.

Este equipo esta programado para tomar el dato del nivel de agua cada 15 minutos y el extremo de la manguera se encuentra ubicado en el punto 0 junto a la regleta del pozo.

ESPECIFICA	CIONES TÉCNICAS DE LA SONDA DE PRESIÓN NIMBUS OTT						
Rango de medida	0 - 13 m (42 ft.) de columna de agua						
Error de medida	± 1 cm. (0.03 ft)						
Resolución	1 cm. para unidades en m; 5 mm para unidades en mm.						
Unidades	Opcionalmente en m, mm o ft						
Modo de medida	Profundidad (Distancia entre el punto de referencia de la superficie y el nivel del agua) y Nivel (Columna de agua)						
Memoria	Aproximadamente 11 200 valores. Memoria circular.						
Display	LCD linea sencilla, 4 1/2 digitos, Altura de los símbolos: 12 mm						
Intervalo de lectura	Intervalo regulable de 5 min a 24 horas						
Interfase	Conexión a dispositivos externos, IrDA (Tecnología Infrarroja)						
Alimentación	Externa de 12V vía paneles solares, batería y regulador						

Dimensiones		230 x 100 x 60 mm (L x W X H)
Rango temperaturas	de	De -10 a +60 °C

Tabla 6.5 Datos técnicos de Nimbus de marca OTT

Figura 6.16. Detalle de la parte interior del equipo Limnígrafo Nimbus de marca OTT

6.2.2 Recopilación de datos

La recopilación de datos de cotas de esta estación hidrológica ha procedido principalmente de dos fuentes: los registros de los sensores electrónicos y los rollos limnigráficos, estos últimos han sido digitalizados.

Para asegurar la recopilación de los datos son necesarias las visitas de campo frecuentes, tanto para comprobar el correcto funcionamiento de los equipos, como para realizar la descarga de los datos. En ambas estaciones hidrológicas cada vez que se realiza una inspección de campo se toma cuidadosamente lectura del nivel del agua en la regleta que esta en el vertedero, la lectura que en ese mismo instante se registra en el equipo de medición, la hora y la fecha; esto da un valor puntual en hidrograma llamado "Punto de Control", y permite comprobar que los datos registrados por los equipos de medición sean correctos.

Los datos brutos, los datos corregidos y los registros de campo son almacenados en una base de datos mediante el programa computacional Hydracces.

6.2.3 Series de datos

En el proyecto GREATICE se tiene disponible para la estación Humboldt los siguiente datos para el periodo 1999 - 2007.

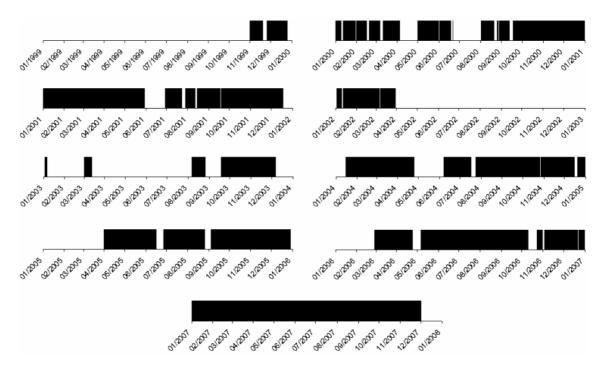


Figura 6.17. Serie de datos existentes en la estación Humboldt

Los espacios en negro corresponden a las series de datos de cotas existentes en la estación Humboldt, en esta serie se realizaron algunas correcciones previas a la realización del presente estudio, correcciones que se muestran en detalle en el informe de Laval R., 2005 "Etude hydrologique d'un bassin versant partiellement englacé subtropical en Equateur et application aux petites centrales hydroélectriques et étude d'un projet de petite hydroélectricité en Equateur".

Sin embargo, para este periodo se realizaron algunas correcciones menores, que se detallan a continuación.

Para algunos meses se eliminaron datos que evidentemente estaban erróneos debido a variaciones abruptas en la serie. El gráfico 5.18 indica un ejemplo de esta situación.

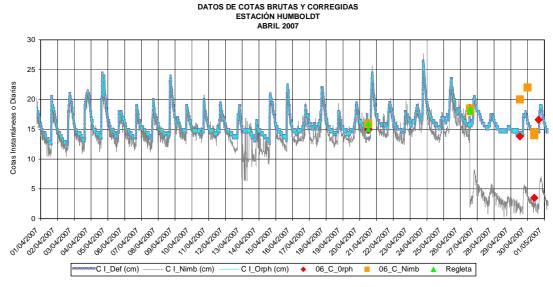


Figura 6.18. Datos de cotas brutas y corregidas. Estación Humboldt. Abril 2007

Para una parte de julio y agosto de 2007 los datos de la sonda Orphimedes se desfasaron 1.5 cm., situación que fue confirmada por los controles de campo. Por lo que, a los datos brutos se les restó 1.5 cm.

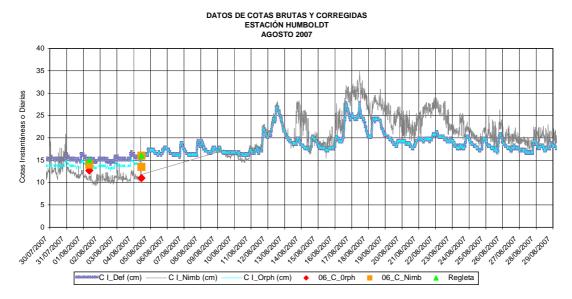


Figura 6.19. Datos de cotas brutas y corregidas de la estación Humboldt. Agosto 2007

Los datos corregidos se encuentran en la base de Hydracces en el captor C06_Humboldt_I-Defi_Cotas instantáneas Definitivas desde 1999.

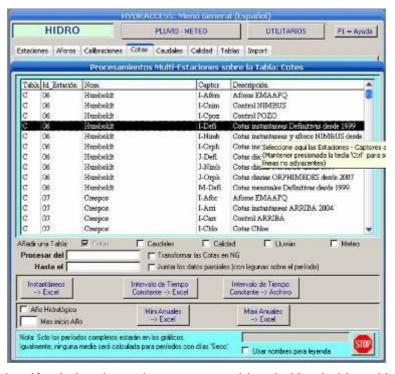


Figura 6.20. Ubicación de los datos de cotas corregidas de Humboldt en Hydracces

	MAR	31 se ingresan datos que registra Nimbus							
	ABR	Datos registrados por Nimbus							
2005	MAY	Hasta el 25 datos registrados por Nimbus (desde el 31/03 no se habían pasado los datos de Nimbus completos)							
	NOV	El 12 se eliminar datos con variaciones abruptas							
	DIC	El 15 se eliminar datos con variaciones abruptas							
	FEB	Desde el 5 al 26 hay un desfase que no es posible corregir debido a que solo hay 2 puntos de control, además, es muy probable que la descalibración sea progresiva. Se podría utilizar los datos climatológicos a fin de justificar una posible corrección.							
2006	ост	Del 6-9 se eliminan los datos que aumentan abruptamente. Se eliminan los datos del 10-22, debido a que no se pudo reconstruir esta serie. Desde el 23 se resta 21,8cm de las cotas desfasadas y se eliminan datos erróneos (nuevos datos coinciden con los controles).							
	NOV	Desde el día 30 a las 15:00 se reducen 4cm y se corrigen los saltos abruptos							
	DIC	Desde 30/11 15:00 hasta 27/12 la serie de datos esta desfasada, por lo que, se reducen 4cm con la finalidad de igualar la cota base con periodos anteriores y posteriores y se corrigen los saltos abruptos. A partir del 27 se reemplazan los datos con la serie de Orphimedes3							
	ENE	En el I período desde 01/01 00:00 hasta 07/07 16:30, se conservaron los datos del sensor Orphimedes, el sensor Nimbus no tiene datos válidos.							
2007	JUL	En el periodo 07/07 16:30 hasta 04/08 11:00, se hizo una corrección de 1.5 cm en la cota mismo que se determinó gracias a los controles de medida hechos en el campo el 04/08 11:10 y 01/08 08:30.							
	AGO	Desde 04/08 11:15 hasta el 31/12 23:45 se tomaron como definitivos los datos del sensor Orphimedes.							

Tabla 6.6. Resumen de las correcciones realizadas en la estación Humboldt

6.2.4 Curva de calibración

Para la estación Humboldt se ajustó la Curva de calibración con una formulación próxima a la formula de Chezy para un canal rectangular.

$$Q_{Humboldt} = 6,071 * H^{1,807}$$

Globalmente la Curva de calibración de la estación Humboldt es estable. Es robusta, su extrapolación es confiable, basada en la hidráulica simple de un canal rectangular. Los principales problemas provienen de los sedimentos que obstruyen los aparatos de medición y de la imprecisión de las lecturas en la regla del canal al momento de regular el limnígrafo y de realizar aforos. (Cáceres, B., 2004)

Para obtener la Curva de calibración la EMAAP-Q realizó 145 aforos entre 152 l/s y 1756 l/s. Lamentable solo hay un aforo arriba de 624 l/s (1756 l/s el 23 de mayo de 2000), pero el caudal máximo fue estimado en solamente 3700 l/s el 23 de mayo de 2000. El 10% de los aforos son superiores a 456 l/s mientras que 90% son superiores a 170 l/s. (Cáceres, B., 2004)

CURVA DE DESCARGA - ESTACIÓN HUMBOLDT

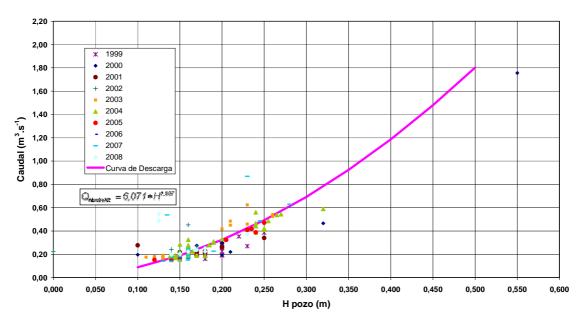


Figura 6.21. Curva de calibración para la estación hidrológica Humboldt

Los datos de los caudales instantáneos, diarios y mensuales se encuentran en la base de Hydracces en los captores que se encuentran marcados en el Gráfico 5.22.

Figura 6.22. Ubicación de los datos de caudales de Humboldt en Hydracces

6.2.5 Problemas en las mediciones

Básicamente, se presentan aunque en forma atenuada las mismas dificultades para obtener datos confiables en la estación Humboldt y en la estación Los Crespos, además:

El hecho que haya un solo aforo arriba de los 624 L/s produce incertidumbres en el cálculo de caudales en la parte alta de las crecidas.

Los tubos capilares de medición se encuentran dentro de un pozo tranquilizante, donde el oleaje y la velocidad existentes en el canal, se disipa, de esta manera, las mediciones cuentan con mayor precisión.

El transporte de sedimentos es importante ocasionando acumulaciones que son limpiadas durante las visitas regulares para el control de la estación.

Aforos de la estación Humboldt										
EMAAP-Q GERENCIA DE INGENIERÍA UEPRO E HIDROLOGÍA										
Sitio:	Río Antisana	l								
Código:	MS21	MS21								
Cuenca:	Río Antisana	l								
Coordenadas	810429 E	9943630 N	Prom.	267						
Altitud	4010	msnm	Máx.	497						
Área de Drenaje:	14,3	Km ²	Min.	162						

No	Fecha	Horo	REG	LETA	Calado	Ancho	Area	Veloc	Caudal
No	recna	Hora	i	f	medio (m)	(m)	(m2)	(m/s)	(I/s)
153	05-ene-06	12:20		0,18	0,2	1,3	0,26	0,816	212
154	02-feb-06	11:35		0,16	0,2	1,28	0,261	0,841	219
155	23-feb-06	11:40		0,17	0,17	1,28	0,218	0,853	186
156	08-mar-06	12:05		0,18	0,18	1,2	0,22	0,736	162
157	22-mar-06	11:20		0,14	0,18	1,28	0,228	0,772	176
158	04-abr-06	11:50		0,15	0,2	1,28	0,253	0,839	213
159	25-abr-06	13:30		0,19	0,19	1,25	0,233	0,845	196
160	11-may-06	12:30		0,17	0,22	1,28	0,285	0,88	251
161	30-may-06	16:15	0,23	0,22	0,29	1,28	0,376	1,321	497
162	07-jun-06	11:40	0,17		0,22	1,28	0,28	0,943	264
163	26-jun-06	11:25	0,14	0,14	0,21	1,28	0,274	0,929	254
164	28-jun-06	14:30	0,15	0,15	0,21	1,28	0,274	0,862	236
165	04-jul-06	11:20	0,12	0,12	0,21	1,28	0,27	0,949	256
166	02-ago-06	11:40	0,15		0,19	1,28	0,246	0,661	163
167	30-ago-06	11:50	0,14	0,14	0,18	1,28	0,235	0,723	170
168	30-ago-06	13:40			0,18	1,28	0,226	0,727	164
169	05-sep-06	11:20	0,16		0,18	1,28	0,225	0,824	186
170	26-sep-06	12:00	0,2		0,23	1,28	0,293	0,904	265
171	28-sep-06	16:20	0,15		0,18	1,28	0,23	0,816	188
172	10-nov-06	10:50	0,15	0,15	0,19	1,28	0,237	0,932	220
173	18-dic-06	12:30	0,15		0,17	1,28	0,221	0,886	196
175	27/12/2006	17:20	0,21	0,23	0,25	1,28	0,314	1,217	382
176	03/01/2007	11:50	0,15		0,17	1,28	0,216	0,757	163
177	12/02/2007	12:40	0,15		0,17	1,28	0,218	0,683	149
178	15/02/2007	11:00	0,14	0,14	0,16	1,28	0,206	0,826	170

179	15/02/2007	17:40	0,13	0,13	0,16	1,28	0,199	0,703	140
180	28/02/2007	13:00	0,14		0,18	1,28	0,227	0,666	151
181	13/03/2007	12:30	0,14	0,14	0,17	1,28	0,215	0,647	139
182	29/03/2007	14:40	0,16	0,16	0,17	1,28	0,217	0,788	171
183	20/04/2007	11:45	0,16		0,19	1,28	0,247	0,721	178
184	26/04/2007	13:20	0,18		0,22	1,28	0,276	0,872	241
185	18/05/2007	12:25	0,15	0,15	0,18	1,22	0,217	0,699	152
186	29/05/2007	13:30	0,18	0,14	0,18	1,28	0,229	0,658	151
No	Fecha	Hora	REG	LETA	Calado	Ancho	Area	Veloc	Caudal
			i	f	medio (m)	(m)	(m2)	(m/s)	(l/s)
187	15/06/2007	12:40	0,46	-	0,35	1,28	0,448	1,939	868
188	27/06/2007	13:30	0,28	0,28	0,32	1,28	0,410	1,536	629
189	27/07/2007	12:40	0,21		0,25	1,28	0,313	1,065	333
190	01/08/2007	8:30	0,15	0,15	0,19	1,28	0,239	0,755	180
191	17/08/2007	12:50	0,27	-	0,31	1,28	0,394	1,365	538
192	31/08/2007	8:30	0,17		0,22	1,28	0,282	0,952	269
193	11/09/2007	11:55	0,16	0,16	0,21	1,28	0,266	0,944	251
194	21/09/2007	13:40	0,16	0,16	0,19	1,28	0,246	0,950	233
195	02/10/2007	14:00	0,16	0,16	0,20	1,28	0,253	0,754	190
196	22/10/2007	11:45	0,19	0,19	0,23	1,28	0,288	0,787	226
197	31/10/2007	9:00	0,19	-	0,24	1,28	0,311	0,967	301
198	13/11/2007	14:40	0,17		0,19	1,28	0,245	0,872	214
199	19/11/2007	14:40	0,25	0,24	0,29	1,28	0,330	1,472	487
200	29/11/2007	13:50	0,17		0,20	1,28	0,253	1,018	271
201	12/12/2007	12:10	0,17	0,17	0,20	1,28	0,252	0,971	245
202	17/12/2007	13:40	0,16		0,19	1,28	0,247	0,893	221
203	27/12/2007	16:30	0,22	-	0,27	1,28	0,347	1,096	380
204	28/12/2007	13:45	0,24		0,27	1,28	0,350	1,004	352

Tabla 6.7. Aforos de la estación Humboldt

6.2.6 Caudales calculados

Caudales medios diarios – Estación hidrológica Humboldt 2007

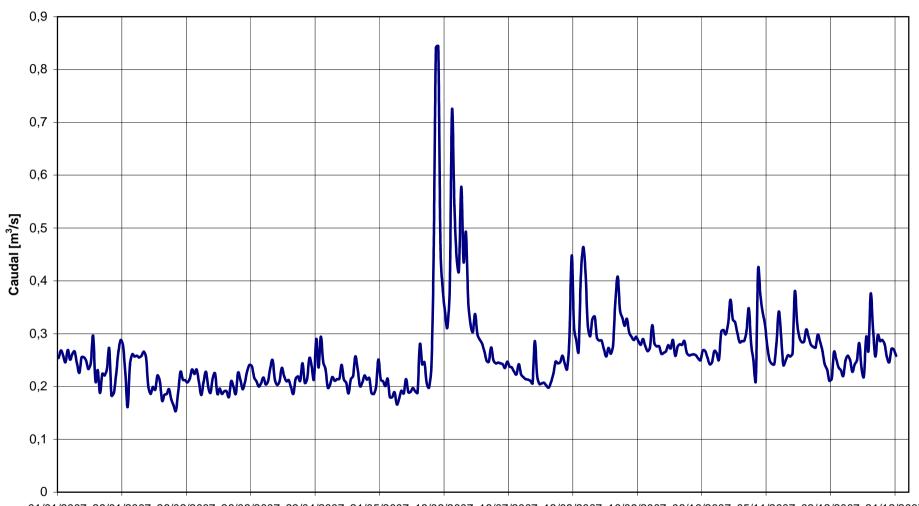
Sitio: Río Antisana Coordenadas: 810477E y 9943609N

Código:MS21Altitud:4.010 m.s.n.m.Cuenca:Río AntisanaÁrea drenada:14,20 Km²

Día	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1	0,254	0,242	0,224	0,204	0,211	0,214	0,337	0,202	0,408	0,264	0,421	0,232
2	0,268	0,261	0,232	0,209	0,214	0,189	0,299	0,198	0,345	0,259	0,374	0,211
3	0,258	0,257	0,209	0,235	0,215	0,19	0,289	0,208	0,33	0,26	0,34	0,215
4	0,246	0,258	0,184	0,25	0,241	0,197	0,282	0,224	0,315	0,261	0,318	0,265
5	0,269	0,255	0,208	0,212	0,214	0,191	0,267	0,247	0,328	0,259	0,276	0,252
6	0,251	0,258	0,228	0,203	0,207	0,188	0,249	0,244	0,302	0,253	0,25	0,236
7	0,262	0,266	0,2	0,209	0,187	0,28	0,247	0,246	0,294	0,25	0,243	0,231
8	0,266	0,256	0,188	0,235	0,214	0,242	0,274	0,258	0,288	0,268	0,242	0,22
9	0,244	0,199	0,216	0,22	0,22	0,246	0,25	0,243	0,294	0,267	0,281	0,249
10	0,226	0,186	0,225	0,21	0,257	0,206	0,244	0,233	0,286	0,255	0,342	0,258
11	0,255	0,199	0,186	0,212	0,232	0,198	0,245	0,287	0,279	0,242	0,296	0,25
12	0,255	0,194	0,196	0,199	0,201	0,238	0,244	0,448	0,29	0,246	0,241	0,228
13	0,248	0,221	0,186	0,186	0,208	0,448	0,242	0,314	0,276	0,267	0,25	0,242
14	0,233	0,209	0,191	0,214	0,221	0,841	0,235	0,287	0,267	0,263	0,259	0,25
15	0,245	0,173	0,191	0,219	0,213	0,844	0,247	0,266	0,273	0,251	0,257	0,282
16	0,296	0,184	0,18	0,211	0,216	0,46	0,238	0,408	0,316	0,304	0,263	0,234
17	0,21	0,186	0,21	0,244	0,188	0,38	0,236	0,464	0,281	0,307	0,38	0,219
18	0,231	0,195	0,2	0,207	0,186	0,339	0,228	0,417	0,276	0,299	0,319	0,294
19	0,188	0,175	0,186	0,214	0,2	0,312	0,223	0,314	0,276	0,32	0,293	0,268
20	0,224	0,164	0,226	0,254	0,251	0,39	0,242	0,295	0,262	0,364	0,284	0,376
21	0,221	0,154	0,212	0,238	0,213	0,723	0,223	0,327	0,264	0,327	0,285	0,306
22	0,234	0,191	0,195	0,214	0,21	0,542	0,218	0,332	0,267	0,322	0,308	0,257
23	0,272	0,228	0,208	0,29	0,201	0,443	0,214	0,292	0,278	0,302	0,293	0,297
24	0,183	0,213	0,23	0,236	0,215	0,419	0,213	0,287	0,272	0,284	0,279	0,286
25	0,188	0,212	0,241	0,294	0,18	0,578	0,211	0,287	0,288	0,286	0,275	0,288
26	0,222	0,208	0,238	0,247	0,18	0,436	0,206	0,271	0,258	0,287	0,274	0,28
27	0,267	0,215	0,217	0,233	0,189	0,492	0,286	0,257	0,275	0,306	0,298	0,256
28	0,288	0,232	0,21	0,198	0,166	0,364	0,219	0,273	0,28	0,348	0,284	0,246
29	0,278		0,2	0,204	0,177	0,32	0,205	0,262	0,279	0,28	0,267	0,271
30	0,225		0,206	0,218	0,192	0,303	0,206	0,279	0,286	0,25	0,242	0,27
31	0,161		0,217		0,187		0,207	0,36		0,212		0,258

Med	0,241	0,214	0,208	0,224	0,207	0,374	0,243	0,291	0,291	0,28	0,291	0,259
Min	0,161	0,154	0,18	0,186	0,166	0,188	0,205	0,198	0,258	0,212	0,241	0,211
Max	0,296	0,266	0,241	0,294	0,257	0,844	0,337	0,464	0,408	0,364	0,421	0,376

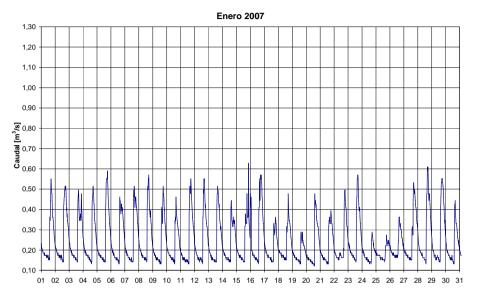
Tabla 6.8 Caudales medios diarios – Estación hidrológica Humboldt 2007

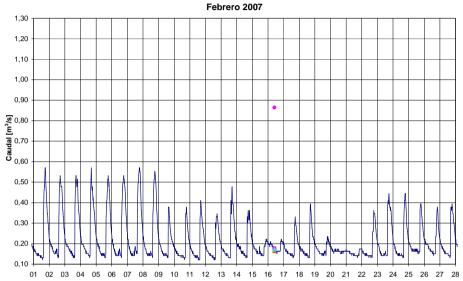

 $\label{eq:minimization} \mbox{Mini Instantáneo} = 0,122 \ \mbox{m3/s} \ --> 20/01/2007 \ 13:30 \qquad \qquad \mbox{Maxi Instantáneo} = 1,492 \ \mbox{m3/s} \ --> 01/11/2007 \ 19:15 \ \mbox{Maxi Instantáneo} = 1,492 \ \mbox{m3/s} \ --> 01/11/2007 \ \mbox{Maxi Instantáneo} = 1,492 \ \mbox{m3/s} \ \mbox{m3/s} \ \mbox{m3/s} \ --> 01/11/2007 \ \mbox{Maxi Instantáneo} = 1,492 \ \mbox{m3/s} \ \mbox{m3/s} \ \mbox{m3/s} \ \mbox{m3/s} \ \mbox{m3/s} = 1,492 \ \mbox{m3/s} \ \mbox{m3/s} \ \mbox{m3/s} = 1,492 \ \mbox{m3/s} \ \mbox{m3/s} \ \mbox{m3/s} = 1,492 \ \mbox{m3/s} \ \mbox{m3/s} = 1,492 \ \mbox{m3/s} =$

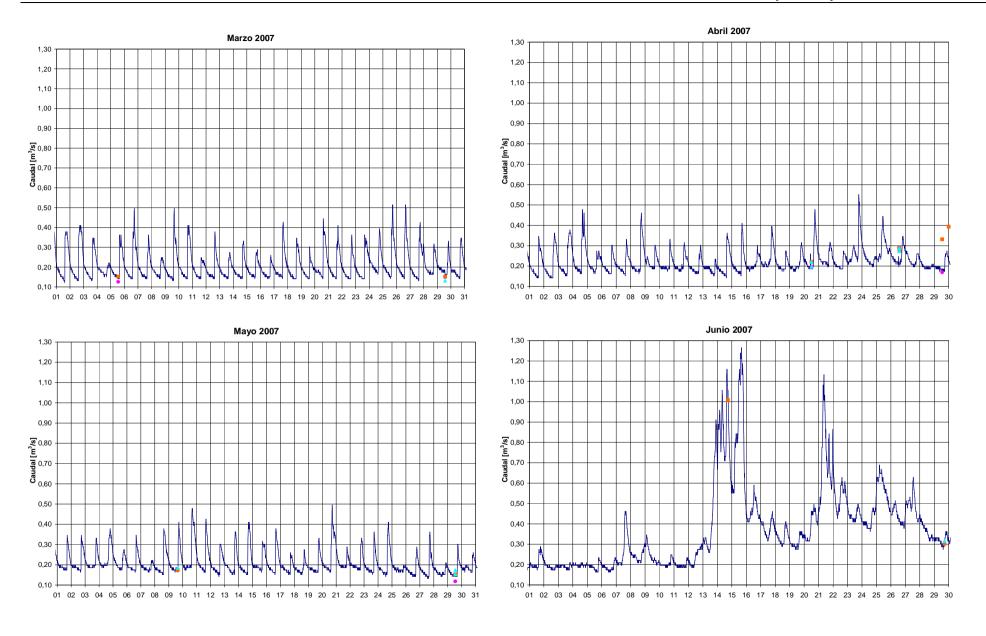
Debit Moyen Annuel = 0,26 m3/s Volumen = 8,2037 Hm3 Lámina = 577,7 mm

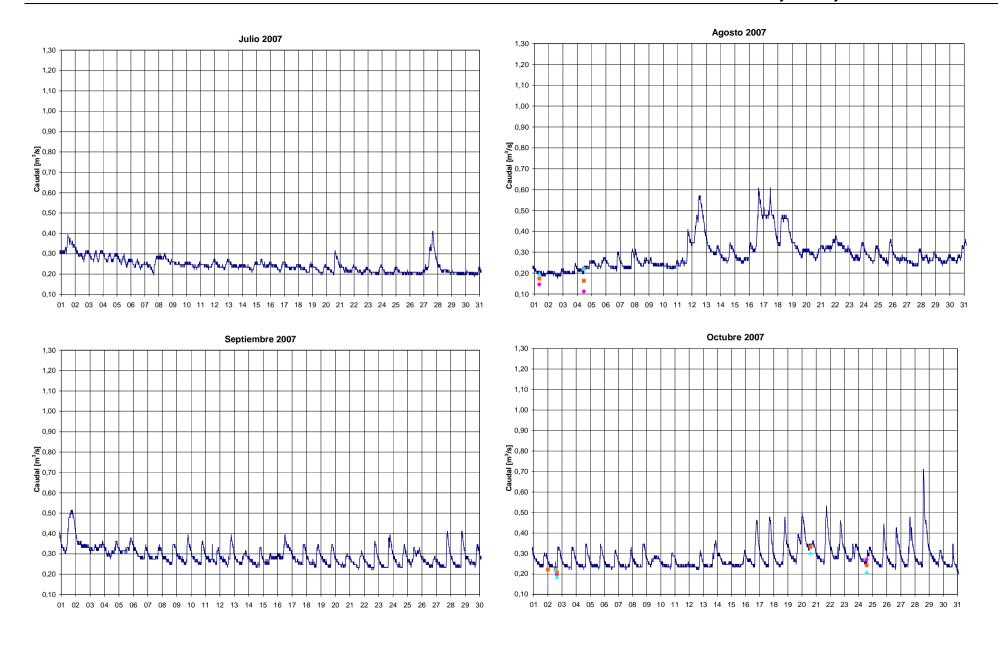
Lagunas: verde = 1 a 2 días, naranja = 3 a 5 días, rojo = 6 a 15 días.

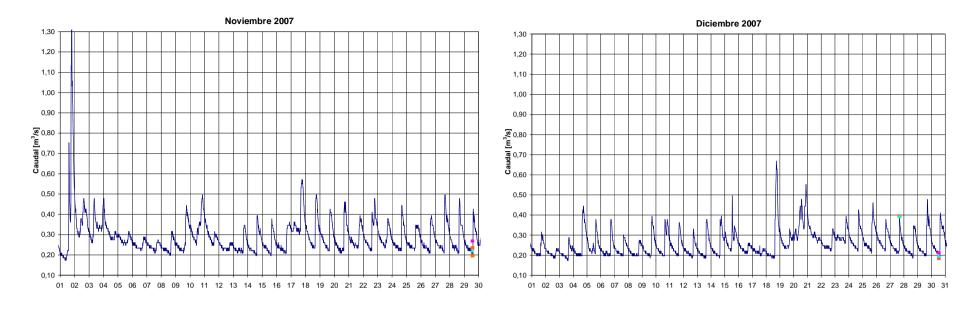
Subrayado = Reconstituido, Itálico = Dudoso


Caudales Medios Diarios - "Estación Humboldt" Año 2007




 $01/01/2007 \ 29/01/2007 \ 26/02/2007 \ 26/03/2007 \ 23/04/2007 \ 21/05/2007 \ 18/06/2007 \ 16/07/2007 \ 13/08/2007 \ 10/09/2007 \ 08/10/2007 \ 05/11/2007 \ 03/12/2007 \ 31/12/2007 \ 03/$


Figura 6.23. Caudales diarios en la estación Humboldt para el 2007


Figura 6.24. Caudales instantáneos de cada mes medidos por la estación hidrológica Humboldt para el 2007

6.3 Separación de los caudales glaciares en las estaciones hidrológicas

En los hidrogramas de las estaciones Los Crespos y Humboldt se registran características propias a las cuencas de origen glaciar. La marca que presentan las crecidas a nivel diario es muy evidente, lo que permite en cierta medida identificar el origen del recurso, sea este de origen glaciar o del escurrimiento proveniente de la precipitación.

En el hidrograma del Gráfico 5.25 se puede ver claramente que después de la línea punteada que corresponde al medio día, llega bruscamente una crecida muy marcada, en la estación Los Crespos desde las 11:30 y en la estación Humboldt de 14:00 a 15:00, que es producto de la fusión glaciar.

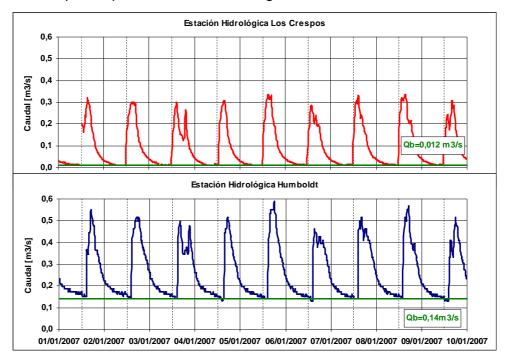


Figura 6.25. Crecidas glaciares en las estaciones hidrológicas Los Crespos y Humboldt

Para separar el caudal glaciar y el caudal de base del caudal total que escurre por las cuencas hidrológicas Los Crespos y Humboldt, se van a tomar las siguientes consideraciones:

- Se va ha considerar que la marca de la crecida glaciar de los hidrogramas proviene exclusivamente de la fusión de nieve y/o hielo que se encuentra sobre la lengua glaciar Los Crespos.
- Para separar el caudal glaciar y caudal de base se traza una línea por debajo de la marca donde de la crecida glaciar empieza, todo lo que se halla bajo la línea corresponde al caudal de base y al ser restado del caudal medio diario se obtiene el caudal glaciar. Es importante señalar que aunque se tengan hidrogramas con crecidas glaciares fuertes y marcadas, en la separación del caudal de base y del caudal glaciar se presenta una proporción que es difícil definir, ya que parte del caudal de base puede provenir de la fusión del glaciar, presentándose en el hidrograma como una prolongación del caudal de la crecida glaciar del día anterior y/o una resurgencia del agua glaciar infiltrada. Esto podría esta ocasionando un sesgo de la crecida glaciar. Puede también ser que una parte del caudal de base de la estación Humboldt provenga de infiltraciones de debajo del glaciar que escapan a la estación Los Crespos.

		Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Med
2003	Q	-	-	-	-	-	_	-	0,039	0,045	0,036	_	0,052	0,043
	Q _{gl}	-	-	-	ı	-	-	-	0,026	0,029	0,026	-	0,037	0,030
	Qb	-	-	-	-	-	_	-	0,013	0,015	0,010	_	0,015	0,013
	%gl	-	-	-	-	-	_	-	66%	66%	72%	_	72%	69%
2004	Qm	-	-	-	0,065	0,072	0,042	0,038	0,031	0,049	0,055	-	0,060	0,051
	QgI	-	-	-	0,046	0,047	0,027	0,024	0,019	0,031	0,022	_	0,052	0,034
	Qb	-	-	-	0,019	0,025	0,014	0,014	0,011	0,018	0,033	_	0,008	0,018
	%gl	-	-	-	71%	65%	66%	63%	63%	63%	40%	_	87%	65%
2005	Qm	0,066	0,087	0,046	0,062	0,048	0,041	0,025	0,043	0,063	0,048	0,063	0,033	0,052
	QgI	0,057	0,073	0,036	0,040	0,038	0,030	0,015	0,034	0,051	0,032	0,045	0,019	0,039
	Qb	0,008	0,014	0,010	0,022	0,010	0,011	0,010	0,008	0,012	0,016	0,017	0,014	0,013
	%gl	87%	84%	78%	64%	79%	72%	61%	80%	80%	66%	72%	57%	73%
	Qm	0,051	0,066	0,051	0,049	0,064	0,033	-	0,039	0,050	-	0,054	0,055	0,051
2006	QgI	0,035	0,050	0,035	0,031	0,047	0,017	-	0,030	0,032	-	0,038	0,040	0,035
20	Qb	0,016	0,017	0,016	0,018	0,018	0,016	-	0,010	0,018	-	0,017	0,015	0,016
	%gl	68%	75%	68%	64%	73%	51%	_	75%	63%	_	69%	72%	68%
	Qm	0,080	0,057	0,059	0,049	0,051	0,022	0,034	0,028	0,038	0.038	0.051	0.048	0,049
2007	QgI	0,069	0,050	0,046	0,032	0,036	0,009	0,012	0,013	0,021	0.023	0.032	0.032	0,034
	Qb	0,011	0,007	0,013	0,017	0,015	0,013	0,022	0,015	0,016	0.015	0.019	0.016	0,015
	%gl	86%	88%	78%	65%	70%	40%	37%	46%	56%	60%	63%	66%	68%

Tabla 6.9. Separación de caudales – Estación Los Crespos

Lagunas: Verde = 1 a 2 días, naranja = 3 a 5 días, rojo = 6 a 15 días.

		Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Med
1999	Qm	_	_	_	_	-	_	_	_	-	_	0,270	0,254	0,262
	QgI	_	_	_	_	_	_	_	_	_	_	0,075	0,071	0,073
	Qb	_	_	_	_	_	_	_	_	_	_	0,195	0,183	0,189
	%gl	_	_	_	_	_	_	_	_	_	_	28%	28%	28%
	Qm	0,256	0,256	0,244	_	0,480	_	_	0,299	0,315	0,308	0,303	0,305	0,307
	QgI	0,072	0,045	0,036	_	0,065	_	_	0,040	0,035	0,053	0,069	0,077	0,055
2000	Qb	0,184	0,211	0,207	-	0,415	_	-	0,258	0,280	0,255	0,234	0,228	0,253
	%gl	28%	18%	15%	-	14%	_	-	14%	11%	17%	23%	25%	18%
2001	Qm	0,264	0,284	0,282	0,277	0,279	_	0,244	0,290	0,240	0,281	0,294	0,276	0,274
	QgI	0,066	0,081	0,079	0,062	0,075	_	0,042	0,042	0,047	0,087	0,102	0,096	0,071
	Qb	0,198	0,204	0,203	0,215	0,204	_	0,202	0,247	0,193	0,194	0,192	0,181	0,203
	%gl	25%	28%	28%	23%	27%	-	17%	15%	19%	31%	35%	35%	26%
75	Qm	0,281	0,249	0,246	-	-	-	-	-	-	-	-	-	0,258
	QgI	0,113	0,102	0,095	-	-	-	ı	-	-	ı	-	-	0,103
2002	Qb	0,168	0,148	0,151	_	_	_	_	_	_	_	_	_	0,155
	%gl	40%	41%	39%	-	_	_	-	_	-	-	_	_	40%
33	Qm	_	-	_	_	_	_	_	0,207	-	0,236	0,227		0,224
	QgI	-	-	-	-	-	-	-	0,036	-	0,073	0,065		0,058
2003	Qb	-	-	-	-	-	-	-	0,171	-	0,163	0,162		0,166
	%gl	ı	ı	ı	-	-	-	ı	17%	-	31%	29%		26%
	Qm	0,292	0,249	0,296	0,277	-	0,192	0,209	0,231	0,228	0,243	0,278	0,263	0,251
2004	QgI	0,145	0,074	0,117	0,091	_	0,048	0,035	0,044	0,045	0,057	0,104	0,086	0,077
20(Qb	0,147	0,174	0,179	0,186	-	0,144	0,174	0,187	0,183	0,186	0,174	0,177	0,174
	%gl	50%	30%	39%	33%	_	25%	17%	19%	20%	23%	37%	33%	30%
2005	Qm	-	1	-	0,387	0,290	0,327	0,180	0,224	0,231	0,190	0,220	0,197	0,250
	QgI	-	-	-	0,051	0,060	0,040	0,026	0,042	0,077	0,044	0,066	0,032	0,049
	Qb	-	1	-	0,336	0,230	0,287	0,154	0,182	0,153	0,146	0,154	0,166	0,201
	%gl	_	-	_	13%	21%	12%	15%	19%	33%	23%	30%	16%	20%

Separación del caudal de base y glaciar del caudal medio diario – Estación Humboldt														
		Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Med
2006	Qm	-	1	0,207	0,220	0,257	0,254	0,229	0,215	0,213	0,265	0,269	0,277	0,241
	QgI	_	1	0,047	0,039	0,058	0,030	0,035	0,045	0,039	0,110	0,057	0,075	0,054
	Qb	ı	1	0,160	0,181	0,199	0,225	0,194	0,170	0,174	0,154	0,212	0,202	0,187
	%gl	-	ı	23%	18%	23%	12%	15%	21%	18%	42%	21%	27%	22%
2007	Qm	0,241	0,214	0,208	0,224	0,207	0,374	0,243	0,291	0,291	0,279	0,291	0,259	0,260
	Qgl	0,102	0,081	0,068	0,047	0,048	0,031	0,028	0,028	0,039	0,051	0,071	0,060	0,055
	Qb	0,139	0,133	0,139	0,177	0,159	0,343	0,215	0,263	0,252	0,228	0,220	0,199	0,206
	%gl	42%	38%	33%	21%	23%	8%	12%	10%	13%	18%	25%	23%	22%

Tabla 6.10. Separación de caudales – Estación Humboldt

Lagunas: Verde = 1 a 2 días, naranja = 3 a 5 días, rojo = 6 a 15 días.

Referencias bibliográficas

1. Informes anuales Greatice Ecuador

- Cáceres B., Maisincho L., Manciati C., Loyo C., Cuenca E., Villacís M., Francou B, Cadier E., et Al. 2008: Glaciares del Ecuador: Antisana y Carihuayrazo. Balance de Masa, Topografía, Pluviometría, Meteorología & Hidrología. <u>Año 2006</u>. *Informe 10*. IRD, INAMHI, EMAAP-Q; 120p. (Con una versión CD).
- Maisincho L., Cáceres B., Manciati C., Loyo C., Cuenca E., Villacís M., Paredes D., Garces A., Laval R., Mailler S., et Al. 2008: Glaciares del Ecuador: Antisana y Carihuayrazo. Balance de Masa, Topografía, Pluviometría, Meteorología & Hidrología. <u>Año 2005</u>. *Informe 9.* IRD, INAMHI, EMAAP-Q; 142p. (Con una versión CD).
- Cáceres B., Maisincho L., Taupin JD., Francou B., Cadier E., Delachaux F., Bucher R., Villacís M., Paredes D., Chazarin JP., et Al. 2005: Glaciares del Ecuador: Antisana y Carihuayrazo. Balance de Masa, Topografía, Meteorología & Hidrología. <u>Año 2004</u>. *Informe 8*. IRD, INAMHI, EMAAP-Q; 175p. (Con una versión CD).
- Cáceres B., Maisincho L., Taupin J.D., Bucher R., Paredes D., Villacís M., Chazarin J.P., Francou B., Cadier E. 2004.: Glaciar 15 del Antizana (Ecuador). Balance de masa, topografía, meteorología e hidrología. <u>Año 2003</u>. *Informe 7*. IRD, INAMHI, EMAAP-Quito,: 100 p. (con una versión CD)
- Cáceres B., Maisincho L., Taupin J.D.; Favier V., Tachker P., Chazarin J.P., Francou B., Cadier E., & Cruz F. 2003: Glaciar 15 del Antizana (Ecuador). Balance de masa, topografía, meteorología, hidrología y balance de energía. <u>Año 2002</u>. *Informe 6*. IRD, INAMHI, EMAAP-Quito,: 100 p. (con una versión CD)
- Cáceres B., Maisincho L., Taupin JD, Tachker P., Chazarin J.P., Francou B., Favier V. 2002: Glaciar 15 del Antizana (Ecuador). Balance de masa, topografía, meteorología, hidrología y balance de energía. <u>Año 2001</u>. *Informe 5.* IRD, INAMHI, EMAAP-Quito 100p. (con una versión CD)
- Cáceres B., Maisincho L., Favier V., Francou, B., Ramírez J., Vargas A., Chango R., Cruz F. & Neubert D. 2000: Glaciar 15 del Antizana (Ecuador). Balance de masa, topografía, prospección geofísica, meteorología, hidrología y balance de energía. <u>Año 2000</u>. *Informe 4*. IRD, INAMHI, EMAAP-Quito, INGEOMINAS-COLOMBIA; 100 p. (con una versión CD).
- Favier V., Cáceres, B., Maisincho L., Francou B., De la Cruz A., Chango R., & Neubert D., 2000: El Glaciar 15 del Antizana (Ecuador). Mediciones glaciológicas, hidrométricas, meteorológicas y topográficas. <u>Año 1999</u>. Informe NGT-Ecuador. *Informe 3*. IRD, EMAAP-Quito, INAMHI; 100 p. (con una versión CD).
- Bontron G., Francou B., Ayabaca E., Cáceres B., Maisincho L., Chango R., de la Cruz A., Garzón, L. A., & Neubert D., 1999. El Glaciar 15 del Antizana Mediciones

- glaciológicas, hidrométricas y topográficas. <u>Años 1997-1998</u>. *Informe 2*. IRD-INAMHI-EMAAP-Q; 142 p.
- Sémiond H., Francou B., Ayabaca E., De la Cruz A., & Chango R., 1998. El Glaciar 15 del Antizana (Ecuador): investigaciones glaciológicas 1994-1997. <u>Años 1994-1997</u>. *Informe 1*. ORSTOM-IFEA-EMAAP-Q-INAMHI, Quito ; 90p.

2. Informes y memorias Greatice Ecuador

- Brière J., 2004; Modélisation des écoulements issus de la fonte du glacier 15 de l'Antizana; DEA Sciences de la Terre et de l'Environnement. Université Paul Sabatier. Toulouse; IRD, 33p.
- Cáceres B.; Ramírez J.; Francou B.; Eissen J.P.; Taupin J.D.; Jordan E.; Ungerechts L.; Maisincho L.; Barba D.; Cadier E.; Bucher R.; Peñafiel A.; Samaniego P.; Mothes P.; 2004. Determinación del volumen del casquete de hielo del volcán Cotopaxi. INAMHI, IRD, IG-EPN, INGEOMINAS, EMAAP-Q, Quito. 53p.
- Cadier E., Maisincho L., Ulloa D., Mella R., Mothes P., Schaeffer M., Francou B., Rivero D., Jordan E., Ungerechts L., Barba D., David E., Samaniego P., 2007. Segunda campaña de mediciones de los glaciares del volcán CotopaxI; 19 al 27 de enero 2007; Informe provisional; INAMHI; IRD-LGGE; IG-EPN; Instituto de Geofísica de la Escuela Politécnica Nacional CECS(Centro de Estudio de Glaciología y Cambio Climatico Chile). Quito; 37p.
- Delachaux F., 2005: Représentativité de la station météorologique ORE Equateur par rapport à la météo locale du glacier 15 de l' Antizana (0°25'S, 78°09'O), Cordillère Orientale d'Equateur. VCI IRD Unidad de Investigación Great Ice, Ecuador, 60p.
- Dubreuil J., 2005 : Conception d'une station hydraulique en écoulement Glaciaire. Ingénieur CC GMM '05; Ecole Nationale des Ponts et Chaussees. IRD, INAMHI, EMAAP-Q GREATICE, Ecuador. 55p.
- Dupré la Tour J., 2008: Etude hydrologique du glacier 15 de l'Antisana (stations 15 et 15 alfa). Promotion 06; Sup Agro Montpellier. IRD, INAMHI, EMAAP-Q GREATICE, Ecuador. 20p.
- Eissen J.P., Beate B., Hall M., Francou B., Cottren D., Andrade D., Cáceres B., Hidalgo S. El volcán El altar elementos geológicos y origen del deslave del 13 de octubre de 2000. Memorias, cuartas jornadas de ciencias de la tierra, 3-6 de abril de 2001.
- Favier V. 2004. Etude du bilan d'énergie de surface et de la production des écoulements de fonte d'un glacier des Andes d'Equateur: Relation glacier-climat en zone tropicale; Thèse de doctorat de l'Université de Montpellier II. IRD, INAMHI, EMAAP-Q, GREATICE. Ecuador; 243p.
- Favier V., 2001. Etude hydrologique du bassin versant du Glacier 15 de Antizana (0o25´S, 78° 09´ 0). Première modélisation hydrologique à partir du bilan d'énergie et d'une approche précipitation/débit. Mémoire de DEA SEEC de l'Université de Montpellier II. IRD, INAMHI, EMAAP-Q, GREATICE ; 57 p.
- Ganino C., 2003: Hydrologie des glaciers 15 (et Crespo) de l'Antisana. Magistère des sciences de la Terre et de l'Univers 2ème année. IRD, INAMHI, EMAAP-Q, GREATICE. Ecuador; 21p.

- Garcés A., 2004: Etude de l' hydrologie du flanc ouest du volcan Antisana en Equateur. Stage de deuxièmen année et Projet d'Ingénieur de Fin d'Etudes (PIFE), Polytech'Montpellier Sciences et Technologies de l'Eau. IRD, INAMHI, EMAAP-Q, GREATICE. Ecuador; 70p.
- Lafaysse M., 2008: Aplication de modèles physiques (CROCUS, CROCUS ISBA) pour comprendre la dynamique de la couverture neigeuse sur un site de haute altitude en Equateur. Ingénieur de l'ENM Ecole National de la Météreologie. IRD, INAMHI, EMAAP-Q, GREATICE. Ecuador; 100p.
- Laval R., 2005: Etude hydrologique d'un bassin partiellement englacé subtropical, application aux petites centrales hydroélectriques et étude d'un projet de petite hydroélectricité en Equateur. Rapport de thèse professionnel Mastère ENSAM. IRD, INAMHI, EMAAP-Q, GREATICE. Ecuador; 62p.
- Lhuissier P., 2005. Mise en evidence de modéles de Comportement Pluviométriques sur le Volcan Antizana. IRD, INAMHI, EMAAP-Q, GREATICE. Ecuador. Pag. 23.
- Loyo C., 2008. Afectación a los Recursos Hídricos por el retroceso de Los Glaciares. Estudio de Caso: Cuenca del Río Antisana y Glaciar "Los Crespos" del Volcán Antisana. Tesis de ingeniería de la Universidad Central del Ecuador. IRD, INAMHI, EMAAP-Q, GREATICE; Ecuador; Pag. 122
- Mailler S., 2006. Exploitation de photographies du glacier 15a de l'Antisana, tentative d'application d'un modèle degré-jour. Rapport de stage. Pag. 25.
- Maisincho L. 2007 Primer intento para extrapolar los datos meteorológicos desde la Morrena hacia el Glaciar: Antizana 15 -Ecuador y Zongo-Bolivia. Reporte de estadia junio julio 2007. LGGE IRD- GREATICE-INAMHI. Septiembre 2007 18p
- Manciati C., Freire, D., 2007. Relación a escala mensual y estacional entre la información hidrometereologica local y regional y la fusión de los glaciares tropicales del Ecuador. Casos de estudio: Glaciar15 y Glaciar "Crespos" del Nevado Antisana. Tesis de ingeniería de la Escuela Politécnica Nacional. IRD, INAMHI, EMAAP-Q, GREATICE; Ecuador; Pag. 176
- Manciati C., Freile D. Fierro, V., Cadier E.; Calvez R. 2007, Correcciones de las mediciones de precipitaciones realizadas en el Antisana; IRD, INAMHI, EMAAP-Q, GREATICE; Ecuador; 17p.
- Mattersdorf G., 2007: Utilisation des Sig en Glaciologie : exemple d'application sur les Glaciers de l'Antisana (Equateur). Ingénieur Agronome à Montpellier Sup'Agro. IRD, INAMHI, EMAAP-Q, GREATICE; Ecuador; 20p.
- Menegoz M., 2004: Etude de la couche limite atmosphérique sur le glacier de l'Antizana (Equateur) et estimation des flux turbulents. Travail effectué dans le cadre du stage de MASTER « Terre, Univers, Environnement » (TUE). IRD, INAMHI, EMAAP-Q, GREATICE; Ecuador; 57p.
- Miege C., 2007: Traitement statistique de données météo (Stations ORE et SAMA), M1 ENS Lyon. IRD, INAMHI, EMAAP-Q, GREATICE; Ecuador; 28p.
- Praderio E., 2003. Etudes sur le transfert de l'eau du Glacier 15 de l'Antisana, Equateur. Mémoire de fin d'études EPFL, Lausane. IRD, INAMHI, EMAAP-Q, GREATICE; Ecuador; 41 p. + annexes.

- Sémiond H., 1997. Recorrido alrededor del Antisana a inicio del mes de enero 1997; Inventario de glaciares y de recursos hídricos IFEA, ORSTOM, EMAAP-Q. Quito, 18p, 1 mapa.
- Stephan M., 1998. Hidrología preliminar de las vertientes occidental del Antisana ORSTOM-INAMHI-EMAAP-Q. Ecuador; 100p.
- Vallejos D., 2008. Implementación de un Gis para estimar la Variación de la Cobertura Glaciar y de los Recursos Hídricos en las Cuencas de los Glaciares del Antisana. Tesis de ingeniería de la Universidad Central del Ecuador. IRD, INAMHI, EMAAP-Q, GREATICE; Ecuador; Pag. 160.
- Villacís M. 2001- Influencia de el Niño oscilación del sur-ENOS sobre la precipitación en los Andes centrales del Ecuador. Travail de fin d'études « Escuela Politécnica Nacional del Ecuador »; IRD, INAMHI, EMAAP-Q, GREATICE; Ecuador; Pag.
- Villacís M. 2008 Ressources en eau glaciaire dans les Andes d'Equateur en relation avec les variations du climat : Le cas du volcan Antisana. Thèse de Doctorat Montpellier IRD-USTL. 250p

3. Artículos científicos Greatice

a) Revista arbitrada internacional

- Cáceres B., Francou B., Antisana 15 Alpha (Ecuador / Tropical Andes), Fluctuations of glaciers 2000-2005, vol IX, World Glacier Monitoring Service, IAHS-UNEP-UNESCO, in prensa.
- Cáceres B., Upgrade of the Inventory for the Glaciers of Ecuador, Fluctuations of glaciers 2000-2005, vol IX, World Glacier Monitoring Service, IAHS-UNEP-UNESCO, in prensa.
- Cáceres B., Francou B., Antisana 15 Alpha (Ecuador / Tropical Andes), Fluctuations of glaciers 2000-2005, MBB9, 2004-2005, World Glacier Monitoring Service, IAHS-UNEP-UNESCO, in prensa.
- Cáceres B., Francou B., Favier V., Bontron G., Tachker P., Bucher R., Taupin J.D., Vuille M., Maisincho L., Delachaux F., Chazarin J.D., Cadier E., Villacís M. El glaciar 15 del Antisana investigaciones glaciológicas y su relación con el recurso hídrico. Climate Variability and Change-Hydrological impacts (Proceedings of the Fifth Friend World Conference held at Habana, Cuba, November 2006) IAHS Publ. 308, 2006.
- Cáceres B., Programa Glaciares Ecuador, revista Simbioe, in prensa
- Cadier E., Villacis M., Garcés A., Lhuissier, Maisincho L., Laval R., Parédes D., Cáceres B., & Francou B., 2007. Variations of a low latitude Andean glacier according to global and local climate variations: first results. Glacier Mass Balance Changes and Meltwater Discharge (selected papers from sessions at the IAHS Assembly in Foz do Iguaçu, Brazil, 2005). IAHS Publ. 318: 66-74.
- Favier V., Coudrain A., Cadier E., Francou B., Ayabaca E., Maisinsho L., Praderio E., Villacís M., and Wagnon P., (2008). Evidence of groundwater flow on Antizana ice covered volcano, Ecuador. Hydrological Science Journal sous presse.

- Favier V., Wagnon P., Chazarin J.P., Maisincho L., & Coudrain A., 2004: One-year measurements of surface heat budget on the ablation zone of Antizana Glacier 15, Ecuadorian Andes, Journal of Geophysical Research, 109, D18105, doi:10.1029/2003JD004359.
- Francou B., Cáceres B., Ramírez E. & Mendoza J. 2000. Glacier evolution in the tropical Andes during the last decades of the 20th century: Chacaltaya, Bolivia, and Antizana, Ecuador. Ambio, XXIX, 7, 416-422.
- Francou B., Cáceres B., Gómez J., Sorurco A. 2005. Coherence on the Glaciar signal Throughout the tropical Andes over the last decades. Conferencia Cambio Climático. Bogotá
- Francou B., Vuille M., Favier V. & Cáceres B., 2004: New evidences of ENSO impacts on glaciers at low latitude: Antizana 15, Andes of Ecuador, 0°28' (in press). Journal of Geophysical Research, 109, doi: 10.1029/2003JD004484.
- Francou B., Vuille M., Wagnon P., Mendoza, J. & Sicart J.E., 2003: Tropical climate change recorded by a glacier of the central Andes during the last decades of the 20th century: Chacaltaya, Bolivia, 16°S. Journal of Geophysical Research, 108, D5, 4154, doi: 10.1029/2002JD002959.
- Francou B. 2004: Glaciares al tiempo de los Viajeros. In: Homenaje a Olivier Dollfus, Ediciones del IFEA, Lima.
- Jordan E., Cáceres B., Francou B., Ungerechts L., 2003. Die Glazialforschungen Hans Meyers aus heutiger Sicht Wertung der wissenschaftlichen Leistungen Meyers in den Hochanden von Ekuador aus aktueller Sicht und Ausblick auf die gegraphischen Forschungsergebnisse der vergangen 100 Jahre. Die Anden Gegraphische Erforschung und künstlerische Darstellung. Wissenschaftliche Alpenvereinshefte 37, München 2003, S. 159-193.
- Schotterer U. Grosjean M., Stichler W., Ginot P., Kull C., Bonnaveira H., Francou B., Gäggeler H.W, Gallaire R., Hoffmann G., Pouyaud B., Ramirez E., Schwikowski M., Taupin J.D. 2003. Glaciers and climate in the Andes between the Equator and 30°S: What is recorded under extreme environmental conditions? Clim. Change, vol. 59, n°1-2, p. 157-175.
- Williams M.W., Hood E.W., Ostberg G., Francou B. & Galarraga R, 2001: Synoptic survey of surface water isotopes and nutrient concentrations, páramo high elevation region, Antisana ecological reserve, Ecuador, Arctic, Antarctic and Alpine Research, 33, 4: 397-403.
- Williams M.W., Francou B., Hood E.W., Vaugh N., 2002: Interpreting climate signals from a shallow Equatorial core: Antisana, Ecuador. In: Casassa, G., Sepulveda, F. & Sinclair, R.M., The Patagonian Ice Fields, Kluwer, Dordrecht, 169-175.

b) Revista arbitrada nacional

Cáceres B., 2003: Estudio de la evolución del glaciar 15 del Antisana de 1956 al 2001 utilizando fotogrametría y topografía y su relación con los eventos climáticos regionales. Revista Politécnica. Monografía de recursos minerales 2. Volumen 24, #2.

- Cáceres B., 2007: Programa Glaciares Ecuador, revista de la Cámara de la construcción, in prensa.
- Cáceres B., Jordan E., Francou B., Peñafiel A. 2007: Actualización de la evaluación geométrica del Casquete Glaciar del Volcàn Cotopaxi, utilizando fotogrametría digital. Revista Oro y Petróleo. Colegio de Ingenieros en Geología Minas y Petróleo, in prensa.
- Cáceres B., Jordan E., Ungerechts L., Francou B., Peñafiel A. Evaluación reciente de la cobertura Glaciar del volcán Cotopaxi. Revista Politécnica in prensa.
- Taupin J.D., Cáceres B. 2003: Glaciares Andinos, testigos fieles del clima del pasado. Desafío, revista de divulgación de Ciencia y Tecnología de Ecuador. Número seis; p. 46-50.

c) Ponencias en reuniones nacionales y/o internacionales

- Cáceres B., 2005: Evaluación reciente del área del casquete glaciar del volcán Cotopaxi mediante la utilización de Fotogrametría digital. Memorias XII Congreso Latinoamericano de Geología, Quito.
- Cadier E., Bucher R., Brière J., Villacis M. 2004: Etudes hydrologiques du glacier 15 de l'Antizana, Equateur Présentation au Congrès International de Glaciologie, Huaraz (Pérou)
- Cáceres B., Francou B., Favier V., Bontron G., Tachker P., Bucher R., Taupin J.D., Vuille M., Maisincho L., Delachaux F., Chazarin J.D., Cadier E., Villacís M. 2006: El glaciar 15 del Antisana investigaciones glaciológicas y su relación con el recurso hídrico. Climate Variability and Change-Hydrological impacts (Proceedings of the Fifth Friend World Conference held at Habana, Cuba, November 2006) IAHS Publ. 308.
- Cáceres B., Francou B., Favier V., Bontron G., Maisincho L., Tachker P., Bucher R., Taupin J.D., Delachaux F., Chazarin J.P. 2007: El Glaciar 15 del Antisana. Diez años de investigaciones glaciológicas. Memorias Conferencia sobre Cambio Climático, Bogotá.
- Cáceres B., Francou B., Favier V., Bontron G., Maisincho L., Tachker P., Bucher R., Taupin J.D., Delachaux F., Chazarin J.P., Cadier E. 2007: El glaciar 15 del Antisana. Once años de investigaciones glaciológicas. Pág. 8. Memorias IX Congreso Nacional de Hidráulica y I de Manejo Integral de Recursos Hídricos, Quito.
- Loyo C., Villacís M., Manciati C., y Cadier E., 2007: Estimaciones del comportamiento hidrológico de los recursos hídricos de alta montaña. Caso de estudio: cuenca del río Antisana y glaciar "Los Crespos" del volcán Antisana 9p. Memorias IX Congreso Nacional de Hidráulica y I de Manejo Integral de Recursos Hídricos, Quito.
- Maisincho L., Delachaux F., Wagnon P., Cadier E., Chazarin JP. 2006: ORE A long range climate monitoring program close to an inner tropical glacier. The Antizana case. (0° 25'S, 78° 09'W) Cordillera Real, Ecuador. Climate Change: Organizing the Science for the American Cordillera (CONCORD) Mendoza, Argentina.
- Maisincho L., 2006: Análisis de los primeros datos obtenidos en el glaciar Pico de Orizaba (19,02° N, 97,26° O)- México, 15p.

- Maisincho L. Wagnon P., 2007: Proyecto ORE-GLACIOCLIM, workshop Symposium organizado por el Banco Mundial, Quito-Ecuador.
- Manciati C., Freile D., Galárraga R., Sánchez, Cadier E., Francou B., 2007: Modelación del balance de glaciares tropicales de America del sur. Casos de estudio en el nevado Antisana, Ecuador. Pág. 9. Presentado en el IX Congreso Nacional de Hidráulica y I de Manejo Integral de Recursos Hídricos. Quito.
- Ramirez E., Hoffmann G., Taupin, J. D. Francou B., Pouyaud B., Ribstein P., 2004. The climatic records of three new andean ice cores from Illimani (6350 m), Sajama (6542 m) and Chimborazo (6280 m). Symposium on recent glacier shrinkage in the Andes and consequences for water resources, IRD, 6-9 July 2004, Huaraz, Peru, communication, abstract book.
- Ramirez J., Eissen J.-P., Francou B., Cáceres B., Maisincho L., Barba D., Samaniego P., Jordan E., Taupin J.-D., Cadier E. & Bucher R., 2004: Determination of the ice-cap volume of Cotopaxi volcano (Ecuador) as a constraint to debris flow modeling. IAVCEI General Assembly, Pucon, Chili, Nov. 2004.
- Taupin J.D., Ginot P., Eissen J.-P., Schotterer U., Hoffmann G., Ramirez E., Bonnaveira H., Petit J.-R., Schwikowski M., Gäggeler H.W., Caceres B., Maisincho L., Chango R., Francou B., Gallaire R., Wagnon P., Pouyaud B., 2004: Preliminary results of drilling to Chimborazo (Ecuador). Symposium on mass balance of Andean glaciers, Huaraz, Perú, July 2004.
- VillacÍs M., Taupin J.D, Vimeux F., 2004: Isotopic variability of precipitation in Nuevo Rocafuerte (Ecuador): Climatic implication and tool towards The interpretation of Chimborazo ice core. European Geophysical Union, 1rst General Assembly. Geophysical Research Abstract EGU04-A-02037, Vol 1, Nice, 25-30 april, p.299.
- VillacÍs M., Taupin J.D, Vimeux F. 2004: Evidence of the link between the isotopic composotion of precipitation in the ecuadorian sierra and precipitation over the Amazon basin: towards the interpretation of Chimborazo ice core Symposium on recent glacier shrinkage in the Andes and consequences for water resources, IRD, 6-9 July 2004, Huaraz, Peru, poster, abstract book.
- Villacís M., Galárraga R., Ayabaca M., and Molina J., 2007: Daily precipitation-runoff modelling in an Andean Amazon River Basin. Case Study: The Quijos River Basin in the Upper Amazon Napo River Basin in Ecuador Pág. 7. Memorias IX Congreso Nacional de Hidráulica y I de Manejo Integral de Recursos Hídricos, Quito 2007

4. Referencias Generales Glaciología, Climatología e Hidrología

- Brugman M. M., 1991. Scale dependent albedo variations and runoff from a glacierized alpine basin, Snow Hydrology and Forests in High Alpine Areas. Proceeding of the Vienna Symposium, August 1991. Bergmann, Lang, Frey, Issler & Salm ed. IAHS Publ. 205, 61-71.
- Brusteart W., 1982. Evaporation into the atmosphere, D. Reidel, Norwell, Mass., 299 p.
- Chow V. T., Maidment D. R., & Mays L. W., 1994. Hidrología aplicada: McGraw-Hill Interamericana S.A., Santafé de Bogotá. Traducido de la primera edición en inglés de: Applied Hydrology, 1988. McGRaw-Hill.

- Duguay C.R., 1993: Radiation modeling in mountainous terrain Review and Status, Mountain Research and Development, 13 (4), 339-357.
- Francou B., Pouyaud, B. 2004; (con la colaboración de 13 otros autores, 2004: Método de observación de glaciares en los Andes tropicales. Mediciones de terreno y procesamiento de datos. Documento GREAT ICE en versión electrónica (CD-WEB): 243 p.
- Funk M., Bosch H., & Valla F., 1993. Mesures des épaisseurs de glace par la méthode radar sur le glacier de Sarennes. Grenoble. Inédito. Icefield Instruments INC., 1997. Using the Radar. Yukon.
- Jomelli V., Naveau, P., Cooley, D., Grancher, D., 2004; Lichénométrie: une nouvelle méthode basée sur la théorie des valeurs extrêmes. Environnement périglaciaire, sous presse.
- Kaser G., Hastenrath S., & Ames A., 1992. Mass balance profiles on tropical glaciers: Zf. Gletscherkunde und Glazialgeologie, 20 (82), 85-97.
- Kuhn M., 1987. Micro-meteorological conditions for snowmelt,. J. Glaciology 33, 24-26.
- Lliboutry L., 1974. Multivariate statistical analysis of glacier annual balances. J. Glaciology, 13 (69), 371-392.
- Male D.H. & Granger R.J., 1981. Snow surface energy exchange. Water Resources Research, 17(3), 609-627.
- Monin A.S. & Obukhov A. M., 1954. Basic laws of turbulent mixing in the ground layer of the atmosphere. Tr. Geofiz. Instit. Akad. Nauk. S.S.S.R., 24(151), 164-187.
- Morris E.M., 1989. Turbulent transfer over snow and ice. J. Hydrology, 105, 205-223.
- Narod B. B., & Clarke, G.K.C, 1994. Miniature high-power impulse transmitter for radio-echo sounding. J. Glaciolology, 40 (134), 190-194.
- Naveau P., Jomelli, V., Cooley, D., Rabatel A., 2004: Modeling uncertainties in lichenometry studies with an application: The Tropical Andes (Charquini Glacier in Bolivia). Arctic, Antarctic and Alpine Research (submitted).
- Oerlermans J. & Fortuin N. C., 1992. Sensitivity of glaciers and small ice caps to greenhouse warming. Science, 258, 115-117.
- Paterson W.S.B., 1994. The physics of glaciers. Pergamon, Tarrytown, N. Y., 3rd ed., 477 p.
- Perrin de Brichambaud Ch., 1963. Rayonnement solaire et échanges radiatifs naturels. Gauthiers-Villars, Paris.
- Pouyaud B., Zapata M., Rodriguez A., Ribstein & P. Yerren J. (2003). Water resources from the glaciers of the Cordillera Blanca (Peru). Variability for the second half of the twentieth century. Symposium on "mass balance of Andean glaciers", CECS-IAHS-ICSI & IGS, Valdivia (Chili).
- Prandtl L., 1952. Guide à travers la mécanique des fluides, Dunod, 448p.

- Ribstein P. 2002 : Climat et glaciers des Andes tropicales. Impacts hydrologiques. Mémoire d'Habilitation à Diriger des Recherches, Université Paris VI, Paris (France). 105 p.
- Rossel F., 1997. Influencia de El Niño sobre los regímenes del Ecuador, Tomo II. Informe INSEQ IRD-INAMHI, 18, Quito.
- Sicart J.E., 2001: Contribution a l'étude des flux d'énergie, du bilan de masse et du débit de fonte d'un glacier tropical : le Zongo Bolivie -Thèse de doctorat Université Paris VI Pierre et Marie Curie,
- Wagnon P., 1999 : Analyse du bilan d'énergie d'un glacier tropical. Application a la relation glacier-climat -Thèse de doctorat Université Joseph Fourier Laboratoire de glaciologie et géophysique de l'environnement (CNRS),
- Wagnon P., Ribstein P., Francou B., & Pouyaud B., 1999: Annual cycle of energy balance of Zongo Glacier, Cordillera Real, Bolivia, J. Geophysical Research, 104(D4), 3907-3923.
- Wagnon P., Ribstein P., Kaser G., & Berton P., 1999: Energy balance and runoff seasonality of a Bolivian Glacier, Global Planetary. Change, 22, 49-58.
- Wagnon P., Ribstein P., Schuler T., & Francou B., 1998: Flow separation on Zongo Glacier, Cordillera Real, Bolivia, Hydrol. Processes., 12, 1911-1926.

Mapas

- EMAAP-Q (Empresa Municipal de Alcantarillado y Agua Potable Quito), 2006: Restitución imagen Aster año 2000, Proyecto Ríos Orientales.
- IGM (Instituto Geográfico Militar), 1982: Cartas topográficas: La Mica, Papallacta; escala 1:50.000.