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Abstract. The determination of transition rules that farmers adopt to manage crop-fallow af-

ter forest clearing, is essential for deciding a sustainable strategy for forest conservation. The

effect of the type of farms with respect to these transition rules in forest border may mitigate

incentive measures planned by forest conservation policy. Agent-base modeling (ABM) of land

use is a relevant approach to manage the dynamics of heterogeneous mosaic landscapes such

as the border of the Malagasy Eastern rainforest. Transition rules between six land uses (for-

est, fallow, crop, grass, plantation and paddy field) are formalized at a plot level. A historical

database containing transitions between the first four land use states was used to calibrate

transition models for the ecological and farmer land use dynamics. Three land-use models

have been built: (1) a Markov chain (stochastic), (2) a timed automaton (deterministic), (3)

and an agent-based model, which introduces the farmers. The land use ABM allows to test

scenarios of deforestation with both varying initial population and farm spatial organization,

size or strategy. The land use ABM is first calibrated via a timed automaton, fitting time de-

lay parameters, the duration of each land use state (fallow, crop, grass), and the number of
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cropping cycles since the first forest clearing. It is then validated with the help of a Markovian

model, comparing two transition matrices with χ2 metrics. The two transition matrices were

respectively created with historical data of plot land use, and with simulated data produced

by the land use ABM. We finish with a general discussion on the validation of such a complex

system with a simple mathematical model.

Keywords: rainforest, transition, farmer, land use dynamics, agent-based model, timed au-
tomaton.

1. Introduction

Land use dynamics have been studied with different kinds of tools:

– differential equations [DBB97],
– stochastic models: Markov chains to model landscape spatial dy-

namics [Tur87, LDL85, MM94, Lui02] or vegetation dynamics [Bal00,
Del94], stochastic cellular automata identifying transition rules for spa-
tial cells [LF02, LDM+05],

– and rule-based models as timed automaton [LC00, CL03], transi-
tion rules model [CRP01] or agent-based model [CBND02].

This range of models, from the more aggregated to the more explicit
one, reveals that they no treat the same question, and that hypotheses,
objectives and scales varied. To this variety of models corresponds a
variety of validation methods. In a way, the ABM is more descriptive
and explicative, but the way it is validated need to be formalized.

Deforestation of the rainforest has been studied in Eastern Madagas-
car mainly by spatial analysis of past aerial and satellite images [GS90].
In the case of these rainforests, it has been demonstrated a return to a
forest state if no crop, no fire, and no pasture are applied to a plot af-
ter crop abandonment, during a long time (30 to 50 years). But few
researches were dedicated to post-forest land use dynamics and forest
regeneration [RSC07]. Prospective models are lacking to predict the
impacts of incentive conservation measures.

We are tackling the following questions: what is the applied prob-
lem, the global context of malagasy rainforest? How to influence farmer
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practices to obtain a required landscape? How to involve farmers in
forest conservation with clear incentives measures? The more general
question is then to identify the effect of farm diversity on land use de-
cision and forest conservation. The main objective of our modeling
process is to link rainforest conservation objectives with farmer’s strate-
gies and practices to be able to reduce the deforestation trends via farm
incentives. Deforestation must be studied into the forest and on the
borders, since post forest land uses in slopes increase after paddy field
saturation is achieved in marshlands [RRRH10]. However, the transfer
of forest management from public Water and Forest administration to
local communities, via local contracts (Gelose in 1996, effective since
2000), limited the access to forest resources. Since 2000, farmers have
then adapted their production system to this reduced access to forest
land [Toi09].

Farmers took two kinds of decision: to slash and burn a new plot
into the forest, and to let a cultivated plot into fallow (plot abandon-
ment), when the plot does not produce enough. Post-forest land use
is described, at the plot level, both as crop-fallow successions after the
first forest clearing and as vegetation successions after each plot aban-
donment. Studying land use dynamics at the plot level (1) enables to
link the resulting landscape to farmer practices, (2) supposes plot distri-
bution into farms and number and size of these plots (that means farm
diversity) have influence in land use decision and forest conservation.
In the case of forest conservation, it helps to design economic incentives
devoted to the farmers to reduce the incidence or frequency of slash and
burn practices.

An agent-based model (ABM) was designed to model deforestation
in Madagascar rainforest and to test explicit scenarios pertinent to ac-
count for farmers’ decision making. The use of ABM deals with the
Malagasy deforestation problem via the post-forest transitions operated
by farmers. However, the calibration and validation of such a model
raise particular challenges. The large number of parameters in an ABM
makes its calibration difficult [GM07]. In order to tackle this problem,
we propose to calibrate the agent behaviors through an average behav-
ioral model using a timed automaton model (TAM), which is easier to
calibrate on a mean behavior.
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The ABM validation relies on the adequate production of a global
phenomenon from local interactions. In our case, the local interactions
are land use transitions at a plot scale, based on historical records of
crop-fallow successions after the first forest clearing. The global phe-
nomenon to produce is the evolution of a landscape in terms of spatial-
ized land use successions. From plots to landscape, as it is impossible
to reproduce exactly what happened, we propose to statistically sum-
marize the global phenomenon with a Markov chain model (MCM).
This technique enables us to compare both observed field data and data
issued from ABM simulations.

In the following sections, we first present a state of the art on model
validation and more specifically on ABM validation. Then, we describe
the adopted methodology of validation before showing and discussing
our results. We finish with a general discussion on the validation of such
a complex system with a simple mathematical model.

2. State of the arts: model validation

2.1. Model validation

[ARB06] defines “verification” as checking the conformity of an im-
plemented software against specifications, “calibration” as identifying
where, in the space of parameters, the model has the expected prop-
erties, and “validation” as meeting the user needs with the delivered
software.

The verification and the validation of a model are relative to the
model objective, either predictive, or for understanding how does the
system operate. [Ryk96] suggests, before any kind of validation, to de-
fine not only the objective but also the criteria of acceptance and the
context of operation of the model.

Many validation tests are conducted all over the modeling and sim-
ulation process, during the initial stages of data collection and analysis,
when the conceptual model is built, as well as during the production of
results by the operational model. [LF05] suggested that model validity
must be assessed relatively to the objective at each step of the model-
ing and simulation process because each step brings its own source of
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errors. Many authors [CH97, ARB06] agree that validation is not uni-
versal, nor unique. Validation techniques depend on the model objective
and its domain of application.

Other kinds of validation have been proposed, either model-centered
or user-centered. Model-centered validation, called functional valida-
tion, corresponds to the design of an experimental plan to analyze the
influence of several combined factors on a global result of the model.
User-centered validation is defined by the problems that are sought to be
solved by the use of the model. Coherency (the model is not internally
contradictory) or veracity (the model does not contradict the reality),
evaluated by experts of the same scientific domain, users or actors, in-
crease trust in the results of the model [Bom97]

Role-playing games or visual simulations are considered as forms of
validation [ARB06, Guy06]. Visual interactive simulation allows modi-
fying the parameter values during simulation. With graphic animations,
the user may gain understanding of the model behavior, gain implica-
tion if he changes the parameter values, and link these results to his
knowledge of the real system.

Validation may be a condition of confidence that the model would
be used in the future. [Sar84] defined the validation as a proof that the
model has a reasonable margin of confidence in its domain of applica-
tion. The model is considered valid when the simulated data are very
similar to the observed data. We will keep this last definition in the
following.

2.2. ABM validation

How much confidence can we give to an agent-based model? Many
users prefer ABM to mathematical equations because those models are
more intuitive. However [Def05] asks: “do they really increase our
knowledge on the studied dynamics?” Due to their complexity and high
number of parameters, ABM are generally more difficult to calibrate
and validate than the other modeling approaches[BP07]. Several tests
exist in the object-oriented approach when validation, as a measure of
similarity with observed data, is not sufficient. [Axe97] claimed for



38 V2CS special issue of Studia Informatica Universalis

such a model comparison along with sensitive analysis in the case of
ABM applied to social sciences: “computational modeling would have
never provided the clear sense of domain of validity that typically can
be obtained for mathematical theories” [Axe97] .

[Bou95] proposes to validate ABM at a more global level of orga-
nization. The artificial universe of ABM has been built with forms,
typologies, distributions, and qualitative models, from which a global
behavior emerges. An ABM may be validated when compared with the
formalization of this knowledge at a superior level of organization.

Moreover, to assure robust conclusions, many simulations have to
give the same results. Temporal dynamics at the local scale allow sim-
ulations on hundreds of years, without possible data to confirm these
dynamics. Spatial distribution at a global scale may be compared to ac-
tual maps and, as a consequence, may be more easily used in validation
protocols. [CBND02] adopted such a spatial validation with an ABM at
the village level. This ABM has been validated by simulation: (1) test-
ing hypothesis on the relative impact of some factors (access, land prop-
erty rules, agriculture-livestock interactions) on agrarian dynamics, and
(2) evaluating the gap between simulated and actual maps of land use.
Simulations are initialized by the map of the simulated village, by a ge-
ographic information system with information on land use in 1990, in-
cluding access, land availability for cropping and socio-economic data
on the villages. Different ABM validation processes have been pro-
posed, but without total satisfaction. The consequences are three: ABM
is difficult to compare to other models, ABM prospective use is criti-
cized and more confidence is needed for ABM.

Lobry proposed to build the mathematical theory of ABM
[TDM+07]. Checking the coherency of a process may be currently done
by mathematics, but only if the process is homogenous and the number
of agents is small [TDZ08]. In the case of a complex system unsolved
with mathematical equations, simulation is necessary. But computer
sciences may not solve every kind of problem. This explains why multi-
agent systems are normally more criticized than others.

[Gin03] proposes a statistical approach of ABM, rethinking the
building, understanding and use of complex systems in the basis of re-
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peated simulations with their respective statistical treatment. Calculat-
ing the variance of the response of the model, parameter per param-
eter, on the total range of variation of each parameter, allows to test
how much each parameter contributes to the response variability of the
model. Sensitivity analysis can be used on continuous and discrete pa-
rameters, initial conditions, stochastic components, and numeric resolu-
tion. However, any systematic exploration would need heavy statistics
tools because the number of variables is high [GM07]. The ABM pro-
duces too much information, and the problem is how to control this
complexity. Two options are available:

1) To start with simple mechanisms and to progressively complexify
them.

2) To differentiate part of the system, express all its complexity, and
then add progressively other mechanisms.

We selected the first option: to accept to have a first look on a simplified
image of the reality, namely the changes and sequences of four land use
states using Markov chains. Our aim is to use this mathematical model
to validate an ABM. We illustrate this option in the case of deforestation
in Madagascar, with an ABM based on post forest dynamic of land use
system. The objective, hypothesis, method and initial state of this model
are defined in [RHRM11].

3. Materials and methods

3.1. Available databases

Both the historical land-use database and the farm typology database
were elaborated on the western border of the forest corridor of Fia-
narantsoa, which links the national parks of Ranomafana and Andringi-
tra. Generally speaking, ecological and socio-economic data are rarely
collected together.

The land-use database results from direct observations of annual plot
use between 2003 and 2006 and inquiries about plot use since first forest
clearing (1973) with owners, neighbors and local guides. Since the data
is historical from an initial forest cover to an actual agricultural use,
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it appears necessary to cross different information sources, especially
direct observation with historical surveys.

The typology database is issued from a PhD thesis in agronomy and
geography realized during the period 2004-2009 in the Western and
Eastern sides of the forest corridor of Fianarantsoa [Toi09]. This farm
typology was built with an emphasis on farm spatial organization and on
farm adaptation to forest conservation. It resulted in 5 types of farms.
To simplify the use of this data in an ABM, these 5 types of farms
were brought together into 3 types of farms: savannah, mixed and for-
est types. In fact, the landscape bordering the Fianarantsoa corridor is
structured in three bands, defined by their distance to the forest: savan-
nah, savannah-forest, and forest.

3.2. Land use transitions

Mixed forest and farm landscape dynamic is summarized into six
land use states: forest, crop, fallow, grass, paddy field and plantation,
and the possible transitions between these six states (Figure 1). Paddy
field and plantation are states of long duration, resulting from heavy
transitions. They remain the same for either a long time (plantation)
or even definitively (paddy fields). Therefore, the active transitions we
may observe through historical data concern only four states: forest,
crop, fallow and grass. We call “fallow” what occurs to the plot after
harvest, with a shrub regeneration, and “grass” the herbaceous cover
that appears only after a determined number of crop-fallow cycles. In
order to analyze these data, we first consider stochastic chains of land
use transitions.

In order to analyze the behavior of the individual farmers, they are
considered to follow the same decision rules for the duration of each
of the three temporary land uses. The number of crop-fallow cycles
defines the cultivation intensity. This additional parameter is necessary
because a high number of cycles is an indication of the occurrence of
grass after crop.

In the following, each of the possible land use is coded as a letter as
follows: forest→ F , crop→ C, fallow→ J , grass→ G, plantation→
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Figure 1: The six land use states and their transitions

P , paddy field→ R. Only the four first land use states are considered
with their duration. As the collected data include annual plot use, the
durations can be calculated for each land state.

To choose the plot to cultivate, the farmer has the choice among var-
ious initial land cover. The farmers ordinate the states previous to crop-
ping in an order which respects two principles: to maintain soil fertility
and to reduce hand work. The farmers invest their work in plots where
they expect higher yields. Manually ploughing of grassland is consid-
ered less work than forest slash and burn, but more work than cultivating
a previously harvested plot (continuous cropping). The ordering based
on increasing invested work is: C → C,G → C,F → C. Globally,
fallow age is a good indicator of soil fertility. The ordering based on
increasing soil fertility is then: C → C,G→ C, J → C,F → C.

But this order of preference for crop precedence: Forest (F ) > Fallow
(J) > Plantation (P ) > Grass (G) > Crop (C) cannot be respected in
a context of forest conservation. Forest being protected, farmers may
choose between two strategies when they adapt their current ordering:

1) J → C, before G → C, before F → C, before C → C, when
farmers accept to preserve forest from slash and burn, but at last, they
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will choose a new plot in forest before accepting to cultivate one year
more a plot which does not produce enough. In this case, they exploit
mature forest soil fertility to preserve the soil fertility into their own
plots.

2) J → C, before G → C, before C → C, before F → C, when
farmers accept to preserve forest from slash and burn, choosing other
land covers before crop, including last crop. This ultimate strategy sup-
poses that continuous cropping is possible, either using new cropping
techniques available to restore soil fertility, or with a systematic weed
control.

The TAM and the ABM have been designed with the order (1).

3.3. The models

3.3.1. The MCM

The temporal sequences of plot land use are complex data. They
include first forest clearing date, crop successions, crop and fallow se-
quences, post-cropping vegetal successions. Many works have used
Markov models to represent the dynamics of vegetation or land cover
[LDL85, Tur87, Bal00, Lui02, RRRH10]. In our work, Markovian ma-
trices are used to summarize the complex information on changes and
sequences of land use with four states, on a stochastic basis. Formally,
given a set of possible states for each plot of the landscape, in our case
forest, crop, fallow and grass, a Markov state is a vector representing
the probability distribution over this set of states. In our case, the prob-
ability distribution represents the probability for a plot to be in a given
state in the landscape at a given time. A transition matrix encodes the
evolution of this landscape at each step (here the step is one year). The
multiplication of the Markov state vector by the transition matrix pro-
vides the new probability distribution at the next time step. Therefore,
given sequences of landscape states, the calibration consists in building
a Markov matrix. Given the initial distribution of land cover for the
landscape, the MCM is able to reproduce the sequence of distribution
of plots on the landscape.
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3.3.2. The TAM

In the TAM, the dynamics is represented by a timed automaton. To
make this process spatially explicit, this model has been implemented
as a cellular automaton where each cell represents a plot driven by a
timed automaton. A global (landscape level) algorithm selects a new
plot to be cultivated after a plot has been abandoned, to maintain the
same number of cultivated plots and to stabilize the food supply of the
families. The priority to select a new plot is defined by the transition
rules (3.2). The timed automaton has four parameters: the three time
delays for crop, fallow and grass, and the number of crop-fallow cycles,
since the first forest clearing. The crop time delay means the number
of annual successive crops. The crop-fallow cycle is determined by the
respective crop and fallow delay times; it begins with crop and ends
with fallow, before another cropping. Time delays are calculated from
the database for each of the land use state: crop, fallow and grass. These
time delays can also be obtained by calculating statistics on the time
series: average, standard deviation, and median.

However, using the timed automaton presents some limits. On one
hand, population scenarios with timed automata are rough and indirect,
for example, changing the one-to-one ratio to a one-to-two ratio. With
ABM, these scenarios can be more detailed and explicit with, for exam-
ple, changes in initial populations or demographic rates. On the other
hand, farmer population is not homogeneous, therefore, an average be-
havior is not realistic. The richest farmers are those who have enough
resources to contract labour to slash and burn forest and, therefore, to
exploit forest soil fertility. The adaptation capacity to a limited access to
forest plots depends on the spatial distribution of plots within the farm
[TSHL11].

3.3.3. The ABM

These arguments made us choose an ABM in which:

1) The spatial constraints are supposed to influence farmers’ adapta-
tion to a limited access to forest; they are summarized by distance from
forest: plots into the forest, near the forest, out of the forest. We divided
the landscape into three bands parallel to the forest linear corridor, from
the East to the West: forest, forest border, savannah.
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2) The demographic process is a key factor in explaining land use
transitions. The ABM allows to explicit demographic parameters as
initial population and demographic growth rate.

3) Land use decision may vary around average decision rules, ac-
cording to farm strategies. To maintain the food supply of the family
is a survival strategy that can be qualified as “simple reproduction”. To
open more plots than actually needed by the family is a growing land
access strategy to secure future access to land for the next generation; it
can be qualified as “enlarged reproduction”.

The resulting ABM is illustrated by an UML conceptual model (Figure
2). Following [TSHL11], we introduce a typology of only three types
of farms (forest, mixed and savannah farms), depending on the distance
to the forest. The village territory is composed of three zones, forest,
forest border and savannah. The population of plots managed by a farm
is part of the village territory. Land use states differ between rain fed
slopes and plane marshlands. Finally the time delays and the number of
cycles issued from the timed automaton along with the farm typology
are used to generate the ABM.

4. The validation process

Figure 3 illustrates the whole calibration/validation process. First the
observed data, i.e. sequences of land cover successions, are used to cal-
ibrate a Markov chain, producing a transition matrix (1). This transition
matrix is considered as the reference summary of the land use dynam-
ics. The timed automaton model, parametrized by the time delays for
each state, and the number of crop-fallow cycles, then run to simulate
the land use dynamics. The generated data is used to calibrate a new
Markov chain, producing a new transition matrix (2). The comparison
between the observed transition matrix (1) and the matrix issued from
timed automaton simulation (2) is used to adjust the time delays and
the number of cycles until both matrices are close enough. Notice that
the calibration process produces an adjustment of the model parameters
while the validation process produces a yes/no answer (is the model
valid or not?).
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Figure 2: The ABM conceptual model

Figure 3: The whole calibration/validation process
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In our case, we take care of validating the model with another set
of data than the data used to calibrate, both on another period and on
another site. The model is considered validated when the simulated
data are very similar to the observed data. Two land-use data subset
were then separated on a geographical basis: 104 plots dispersed in the
forest border and 66 plots grouped in two small watersheds. The first
dataset, covering a period of 34 years (1973-2006), was used to calibrate
the timed automaton. The second dataset, which covers a period of 22
years (1985-2006), was used to validate the model.

The time delays and number of cycles, calibrated above, are used as
parameters in the ABM. The ABM simulation produces new data on
which a new Markov chain can be calibrated (3). The resulting matrix
is used to compare the observed data and the ABM simulated data. The
comparison between real data and simulated data is tested by a χ2 com-
parison of two transition matrices. These two matrices are the summary
of crop and fallow successions issued respectively from the simulation
of the calibrated ABM (3) and the observed dataset (1).

If we make the hypothesis that both processes are the same, the simu-
lated transition matrix should be identical to the observed transition ma-
trix. For i, j = 1 . . .m, statistic of test 1 is χ2 withm(m−1) degrees of
freedom, where m denotes the number of possible states [AG57]. Prob-
ability pij is empirically estimated by the ratio pij = nij/ni where nij

is the number of transitions from state i to state j and ni is the number
of landscape units in the i state [Ber88].

We use the same method of comparison for validation as for calibra-
tion: Markovian matrices with χ2 test. The way we use calibration and
validation for each kind of model is summarized in table 1.

5. Results

As described in the methodology, we have first calibrated and vali-
dated an MCM in order to represent in a synthetic way, the dynamics of
the land use transitions. The obtained matrix will be used to calibrate
and validate the other two models: the TAM and the ABM.



ABM validation using Markov 47

Table 1: Strategies of calibration and validation for the different model
types used in this study.

Model type Calibration Validation
Markov
model

Mathematical formalization
easy to calibrate with a tran-
sition matrix if this matrix is
time-homogenous.

Aggregated model easy
to validate with a tran-
sition matrix calculated
on another set of data
than the set of data used
for calibration.

Timed au-
tomaton

Calibration by simulation
with the hypothesis that tran-
sition rules are unique and
stable in time. Comparing
real and simulated Markovian
matrices allows to adjust the
four parameters of Timed
automaton.

Validation by simula-
tion on another set of
data with the parame-
ters adjusted by calibra-
tion.

ABM Global calibration difficult
because parameters are too
many. Partial calibration cen-
tered on time delays, using
the adjusted parameters de-
fined by timed automaton.

Validation by simula-
tion on another set of
data with the adjusted
parameters defined by
timed automaton.
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5.1. TAM calibration

The timed automaton is calibrated and validated with the help of a
Markov chain according to the χ2 metric [AG57], from two samples
of plots initially covered with forest and considered independent and
not spatially localized. The timed automaton is calibrated by simulat-
ing during a 34 years with the first sample of historical transitions with
4 land use states and then validated during a 22 years with the sec-
ond sample since forest clearing as to minimize the distance between
two Markov transition matrices, which summarize the simulated and
observed dynamics [RHRM11].

The calibration of the timed automaton is the adjustment of the val-
ues of the four parameters of the transition rules, the time delays for
crop, fallow and grass states and the number of crop/fallow cycles. Re-
iterative simulation is managed for each combination of four parame-
ters in their intervals of possible discrete values (time delays). The ad-
justed parameters are those that minimize the distance between the two
Markovian transition matrices, the observed and the simulated. The ac-
ceptance of fitted parameters is based on the results of the χ2 test and
our knowledge about farmer practices. The calibration results are shown
in the figure 2; the resulting fitted parameters are given in the table 3.

In the table 3, we also mentioned the statistics directly made on the
observed time series. The histograms reveal that the probability distri-
bution follows a decreasing exponential law of parameter λ. Therefore
the mean σ is an estimation of λ (λ = 1/σ). The results were obtained
by removing the last homogeneous sequence from each plot because it
very often corresponds to a definitive abandonment into fallow or grass.
By just calculating the median, we find almost directly the fitted param-
eters. Further work is necessary to better understand the small differ-
ences. The advantage of our method is to be completely independent of
the kind of model we are calibrating and validating. The corresponding
model is really used as a black box.
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Table 2: Comparison of Markovian matrices with observed and timed
automaton simulated transitions for calibration

Observed matrix Automaton simulated matrix
States Forest Fallow Crop Herb Forest Fallow Crop Herb
Forest 0 0 1 0 0 0 1 0

(F)
Fallow 0 0.59 0.41 0 0 0.63 0.37 0

(J)
Crop 0 0.26 0.72 0.02 0 0.25 0.71 0.04
(C)

Herb 0 0 0.19 0.81 0 0 0.18 0.82
(H)

χ2 test, risk α=5%, freedom degree=12
Statistic test: 5.52 ; critical threshold: 31.03

Table 3: Observed and calibrated values of times delays and number of
crop-fallow cycles

Parameters values
Land use states Crop

(years)
Fallow
(years)

Grass
(years)

Nb crop-
fallow
cycles

Observed parameters values 1 to 9 1 to 12 2 to 7 2 to 4
Mean, standard deviation,
median

2.59,
2.82, 2

2.89,
4.40, 2

4.28,
3.24, 5

2.88,
0.61, 3

Parameters with the mini-
mum distance between both
Markovian matrices

2 2 3 4
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5.2. ABM setting and validation

Calibration based of farm typology and decision rules for each agent
would introduce many parameters, making very difficult any kind of
calibration. It is the reason why we used an existing farm typology and
the parameters fitted for the TAM to set the initial state of the ABM.

Therefore, to set the ABM parameters, we used the time delays al-
ready fitted by timed automaton calibration, i.e. the time delays of three
land use states, crop, fallow and grass and the number of cropping cy-
cles. In the ABM, each agent is considered as a rule-based model, in
conformity with its main objective and the respective times of crop-
fallow successions. The ABM uses also i.e. the parameters introduced
by the farm typology. In reference to farm typology, we need 12 other
variables to describe farm relation to forest corridor. These twelve vari-
ables are (Table 4):

1) The three types of farm,
2) The corridor zones as defined by the distance from forest (three

zones: savannah, forest border, forest),
3) Three land uses: paddy-field, crop and fallow. Note that grass land

use state is not specified. Note that these land uses are the agricultural
land uses, which include the three land use states of timed automaton
model (land uses with transitions) and the paddy-field land use without
transitions,

4) the number of plots by farm type and by corridor zone (3 types
and 3 zones, generating 9 variables). These complementary variables
are used to define the initial state of the model.

Table 4 shows the 12 additional variables to add to the 4 already defined
time delays and crop intensity parameters. The calibration of a model
with 16 variables is heavy and the protocol of calibration is not defined
here. Obviously, it would need more detailed data. As the transition
rules are the same for all farmers, the differences between farms are due
to the number of plots (size) and the spatial plot distribution, and not to
the time delays of the four selected parameters.
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Table 4: Farm typology according to the spatial distribution of plots

FARM
TYPE

ZONE Total
plots

No
paddy

Farm
house

Savannah Forest Forest fields locali-
border plots -sation

Savannah - 2 paddy - 2 crops 7 5 Savannah
farms
(12%) [1
Farm]

- 1 crop - 2 fallows

Mixed - 2 paddy - 1 paddy - 1 paddy 8 4 Savannah
farms - 1 crop - 1 crop - 1 crop
(58 %) [6
Farms]

- 1 fallow

Forest - 1 crop - 3 paddy 6 3 Forest
farms - 1 crop
(30%) [3
Farms]

- 1 fallow
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The validation was achieved on the global result of the ABM, the
land use landscape that results from the farm distribution and the farm
strategies. The results are shown in the figure 5.

Table 5: Comparison of Markovian matrices with observed and ABM
simulated transitions for validation

Observed matrix ABM simulated matrix
States Forest Fallow Crop Herb Forest Fallow Crop Herb
Forest 0 0 1 0 0 0 1 0

(F)
Fallow 0 0.65 0.35 0 0 0.69 0.31 0

(J)
Crop 0 0.32 0.65 0.03 0 0.29 0.69 0.02
(C)

Herb 0 0 0.17 0.83 0 0 0.17 0.83
(H)

χ2 test, risk α=5%, freedom degree=12
H0: observed matrix is identical to simulated matrix
Statistic test: 4.99; critical threshold: 21.03
H0 approved at a 5% risk: no significative difference between both ma-
trices

6. Discussion

In Madagascar, forest conservation is viewed as a spatial protection
of a specific forest territory. Our hypothesis is that farmer adaptation is
mainly a spatial adaptation. A spatial typology has been built and tested
by ABM on forest-agriculture transitions. This spatial typology does
not validate the time delays. The parameters of this spatial typology
are issued from field studies. These parameters have not been used in
the ABM calibration but they are used to initialize this model. Thus the
ABM is calibrated with the four fitted parameters issued from the TAM.
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Additionally, a Markov model has been used for calibration of the
TAM and for both validations.

The three kinds of models used in this modeling process are part of
the ABM validation. Each one is dedicated to a particular kind of use.
In order to make it explicit, we propose a set of descriptors to qualify
these kind of models: the structure of the initial state, and the possible
thematic objects (table 6); the mathematical, computational and the-
matic objectives or questions, and their respective answers, relatively
to hypothesis (mathematical and computational) or assumptions (the-
matic) (table 7); finally the calibration and validation process, and the
used scenarios (table 8).

7. Conclusion

Model validation is a complex process. It needs to define a protocol
and intermediate steps. Progressive validation could be another but un-
explored solution. Relatively to ABM validation, our proposal is to rely
on one of the property of multi-agent systems, i.e. to produce a global
phenomenon from local interactions. Therefore, its success relies on its
ability to accurately produce this global phenomenon. Consequently,
we proposed to describe the global dynamics using a Markov model
in order to summarize it in a simple, stochastic, way. Comparing the
global dynamics produced by the ABM simulation with the observed
global dynamics allows to validate the model as being able to repro-
duce the targeted behavior. But it does not imply that the underlying
local interactions are the right ones. It only implies that the hypotheses
made at the local level do not contradict the globally observed behavior.
However these local interactions themselves need to be calibrated and
validated. Being, in principle, simpler than the complete ABM system,
we used a third formalism, the timed automaton, in order to calibrate
and validate the local behaviors (here, the transition rules). The general
lesson learned from our proposed methodology is the usefulness of us-
ing a set of carefully chosen formalisms, and not only a single one, to
deal with the various aspects of both the ABM and the targeted research
questions. Having used three formalisms; the Markov chain, the timed
automaton and the ABM, we proposed a synthetic analysis of the con-
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Table 6: Comparative synthesis of the 3 models (1)

Model Object Initial state
Formal Thematic

Markov
(stochastic)

Vector state and
transition matrix
(mathematical)

Temporal se-
quences of vegetal
cover in each plot:
crop and fallow
successions

Any kind of land
use. In our case,
all forest.

Timed au-
tomaton
(determinis-
tic)

Finite state au-
tomaton with
timed transition
rules (computa-
tional)

Time delays and
transition rules
per plot, extracted
from owners
inquiries and
direct observa-
tions. Transition
rules are consid-
ered as the same
mean rules for all
peasants.

Number of plots
initially forested
and number of
plots initially
cultivated, on the
basis of one plot
per person.

Agent-
based
(ABM)

Multi-agent
system with
its agents and
environment

- Decision rules
- Farmers
- Landscape

Farm typology de-
fined by:
3 zones by their
distance from the
forest,
Number of farms
per type of farms
Number of plots
per farm and per
zone.
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Table 7: Comparative synthesis of the 3 models (2)

Model Question Answer
Formal Thematic Formal Thematic

Markov
(stochastic)

Is there a sta-
tionary state ?

Do we obtain a
stable mosaic
landscape ?

Homogeneity
of the transi-
tion matrix
Ergodicity
Vector made
of state proba-
bilities

Partial answer
Historic of a
sample of spa-
tialised plots.

Timed
automaton
(determin-
istic)

How to repre-
sent time de-
lays by a mini-
mal automaton
?

What is the
medium be-
haviour of
peasants to
cover aliment
needs of the
family?

Time delays
in the tran-
sition graph
and motor
for aban-
doned plot
replacement.

Average time
delays in
each of the
three states
and number
of crop fal-
low cycles
(obtained by
calibration)
Motor re-
placement of
abandoned
plot.

Agent-
based
(ABM)

What is the
global phe-
nomenon that
emerges from
the individual
behaviours?
What kind
of interac-
tion between
agents and
between the
agents and the
environment
generates a
global given
dynamics?

What land-
scape is build
from an initial
distribution of
farms in the
landscape ?

History of
land use state
successions.
The fitted time
delays cor-
rectly generate
the sequences
we want to
reproduce, the
real observed
sequences.

Spatial typol-
ogy does not
answer to the
question of
time delays in
each land use
state.
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Table 8: Comparative synthesis of the 3 models (3)

Model Calibration Validation Scenarii
Markov
(stochastic)

Building the
transition matrix
from data.

Comparing matri-
ces calibrated with
two different sets
of data

By modifying the
initial state.

Timed au-
tomaton
(determinis-
tic)

Fitting the param-
eters of the transi-
tion rules.

Validation by sim-
ulating with an-
other set of data,
using the values
of fitted parame-
ters by calibration.

With fixed time
delays, defor-
estation scenarii
varying the rate
of abandoned plot
remplacement.
Formally, these
scenarii are cel-
lular automaton
scenarii, not timed
automaton.

Agent-
based
(ABM)

Calibration meets
difficulties if too
much parameters
have to be esti-
mated by simula-
tion. Some pa-
rameters of agent
behavior may be
qualitative.

Validation by sim-
ulation is difficult
if too much param-
eters

Complex scenarii
Forest cover evo-
lution varying
initial pressure
on land, demo-
graphic growth
rate and land use
intensification
strategies.
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tribution of each of them for various questions to be answered around a
complex model for both calibration and validation.

The definition and realization of a global evaluation of an ABM sim-
ulation still leave a conceptual unsolved problem. Even if the desired
global phenomenon is produced, the calibration of a large number of
parameters at the local level remains to be done, as well as their val-
idation. A method could be to validate individual strategies using the
farm typology, and then the effect of the interactions (in our case the
plots exchanges). However, it remains problematic with complex sys-
tems in general, where the global behavior is more than the sum of the
individual ones.
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