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SUMMARY 
 

We explored the usefulness of Dynamic factor analysis (DFA) to detect common patterns in the 
sets of CPUEs for Atlantic yellowfin (Thunnus albacares) and for eastern Atlantic skipjack 
(Katsuwonus pelamis), respectively. For yellowfin, the most appropriate model, in terms of 
AIC, identified two common trends. The 10 yellowfin CPUE series could be divided into 3 
groups based on factor loadings. The grouping corresponds in part to the geographic location 
of the fisheries (i.e., the western Atlantic area for group 1 and the northeastern tropical Atlantic 
region for group 2). The fact that the first group is constituted by CPUEs obtained from 3 
different fishing gears (pole and line, purse seine and longline), operating at different depth 
levels, suggests that the regional trend reflects more a sub-population response to a local 
exploitation rate than to environmental conditions. In light of the present results, the CPUEs 
should be combined respectively into two regional indices before performing a unique 
combined index. For skipjack, results are less conclusive and further studies with explanatory 
factors are required to account for the fact that this species is seldom targeted by the tuna 
fisheries.  

 
 

RESUME 
 

Nous analysons la pertinence de l’Analyse factorielle dynamique (DFA) pour détecter des 
tendances communes dans les jeux de CPUE respectifs pour l’albacore de l’Atlantique 
(Thunnus albacores) et pour le listao de l’Atlantique Est (Katsuwonus pelamis). Pour 
l’albacore, le meilleur modèle, au sens du critère d’AIC, identifie deux tendances communes. 
Les 10 séries de CPUE de l’albacore se distribuent en trois groupes distincts sur la base du 
poids des facteurs des tendances. Cette classification repose en partie sur la localisation 
géographique des pêcheries (ex. l’Atlantique Ouest pour le groupe 1, l’Atlantique tropical 
Nord-Est pour le groupe 2). Le fait que le premier groupe soit constitué de CPUE provenant 
d’engins différents (canne, seine et palangre) opérant à différentes profondeurs, suggère que la 
tendance commune régionale reflète plus la réponse d’une sous-population face à l’exploitation 
locale qu’une réponse à l’environnement. A la lumière de ces résultats, les CPUE devraient 
être combinées respectivement dans deux indices régionaux avant le calcul d’un indice 
d’abondance global. Les résultats du listao sont moins concluants et des analyses 
supplémentaires, incluant notamment des variables explicatives, devront être faites pour 
prendre en compte le fait que cette espèce est rarement ciblée par les pêcheries thonières.  

 
 

RESUMEN 
 

Se analiza la utilidad del análisis factorial dinámico (DFA) para detectar tendencias comunes 
en los conjuntos de CPUE respectivos para el rabil del Atlántico (Thunnus albacares) y el 
listado del Atlántico este (Katsuwonus pelamis). Para el rabil, el mejor modelo según el 
criterio AIC identifica dos tendencias comunes. Las 10 series de CPUE del rabil se distribuyen 
en 3 grupos distintos en base al peso de los factores de las tendencias. Esta clasificación se 
basa, en parte, en la localización geográfica de las pesquerías (por ejemplo, el Atlántico oeste 
para el grupo 1, el Atlántico tropical noreste para el grupo 2). El hecho de que el primer grupo 
esté constituido por CPUE procedente de diferentes artes (caña y liña, cerco y palangre) que 
operan en diferentes profundidades, sugiere que la tendencia común regional refleja más la 
respuesta de una subpoblación frente a la explotación local que una respuesta frente al medio 
ambiente. A la luz de estos resultados, las CPUE deberían combinarse respectivamente en dos 
índices regionales antes de calcular un índice de abundancia global. Los resultados para el 
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listado son mejor concluyentes y deberían hacerse análisis complementarios, que incluyan 
principalmente variables explicativas, para tener en cuenta el hecho de que esta especie es rara 
vez el objetivo de las pesquerías atuneras.  
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1. Introduction 
 
During the last tropical tuna stock assessment conducted by the International Commission for the Conservation 
of Atlantic Tuna (ICCAT) about ten catch per unit of effort (CPUEs) of Atlantic yellowfin (Thunnus albacares) 
and six CPUEs of eastern Atlantic skipjack (Katsuwonus pelamis), were combined into one common index 
assumed to be representative of the relative abundance of each species and used to fit surplus production models 
(Anon. 2009). 
 
Building abundance indices from commercial CPUEs remain problematic for many reasons. Stock assessment 
assumes that there is a direct proportionality between CPUEs and abundance but forms of non-proportionality, 
such as hyperdepletion and hyperstability, have been observed in many fishery studies (Hilbom and Walters 
1992). Another difficulty concerns the calculation of an overall trend index for change in a spatially structured 
stock. It makes sense to suppose that over the historic development of a fishery, spatial changes have occurred 
for different reasons: target switching due to market change, acquisition of new fishing rights with coastal states, 
reallocation of effort due to localized depletion, etc. But in such a situation what assumptions to use when 
analyzing long-term data for which changes in the spatial distribution of the fishing effort have been observed 
(Walters, 2003)?  As a rule of thumb, the larger the time series analyzed, the larger is the part of expert 
knowledge that must be taken into account before performing any statistical analysis. To conclude this brief 
introduction on the accuracy of CPUEs analyses for gauging the trajectory of the exploited population, the 
question of the change in catchability over the years, specifically due to an increase in fishing power, is a key 
issue in stock assessment (Fonteneau et al. 1999). 
 
One of the general rules in statistical inference is that more data leads to less uncertainty. But, as raised by 
Magnusson and Hilborn (2007) other features of the data also play a role. Consequently, there is no evidence that 
combining a large number of catch rates to fit population models improves our understanding of the situation 
since: (1) multiple indices from the same gear, few of which correlated with each other, may reflect only trends 
in relative biomass for a regional fraction of the stock or for a limited number of age classes, and (2) adding 
more CPUEs may lead to an unnecessary addition of noise since contradicting information may be embedded in 
the trajectory of each individual CPUE (Schnute and Hilborn, 1993; Andrade, 2009a).  
 
In this working paper, we will focus only on the exploration of the similarity of multiple CPUEs over time and 
how to summarize them into a reduced number of common trends. Dynamic factor analysis (DFA) is a technique 
especially designed for time series data, which enables underlying common patterns to be identified. This 
methodology allows to model short and nonstationary series in terms of common patterns and explanatory 
variables. For example, DFA can indicate whether there are any underlying common patterns in the N CPUE 
series, whether there are interactions between the response variables, and what the effects of explanatory 
variables are (Zuur et al. 2003). 
 
 
2. Material and methods 
 
2.1 Data 
 
As mentioned in the Introduction section, depending on the model used, about 10 CPUEs of Atlantic yellowfin 
and 6 CPUEs of eastern Atlantic skipjack have been used for the stock assessments. Some series were updated 
during the ICCAT tropical tuna stock assessment (Anon. 2009) but some data were lacking for 1969 and for 
2007. Consequently, we restricted the analysis to the period 1970-2006. 
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For Atlantic yellowfin, the indices were provided by national scientists for: 
 
 − JAPLL, the Japanese longline (standardized indices, Okamoto and Satoh, 2009): 1970-2006,  

 − USARR, the U.S. rod and reel (standardized, Cass-Calay, 2009): 1986-2006,  

 − USALL, the combined Mexico and U.S. longline in the Gulf of Mexico (standardized, Brown and 
Ramirez-Lopez, 2009): 1987-2006,  

 − BRZLL, the Brazilian longline (standardized, Travassos et al. 2009): 1986-2006,  

 − URULL, the Uruguayan longline (standardized, Pons and Domingo, 2009):1981-2006,  

 − VENPS, the Venezuelan purse seine (non-standardized but assuming a constant annual increase in 
catchability of 1%), 1983-2005, 

 − BRZBB, the Brazilian baitboats (non-standardized; notice that a standardized CPUE series has recently 
been submitted to ICCAT by Andrade, 2009a): 1981-2005 (2000 lacking), 

 − CANBB, the Spanish-Canary Islands baitboats (a non standardized series): 1980-2006,  

 − ECDKBB, the baitboat fleets (EC-France, EC-Spain, FIS, Senegal) operating from Dakar (Senegal), 
(non-standardized): 1984-2006, 

 − ECFADPS, the EC purse seine fishing on FADs mainly in equatorial areas (standardized CPUEs from 
Soto et al. (2009), then assuming a constant annual increase in catchability of 3%):1991-2005. 

 
For the eastern Atlantic skipjack: 
 
 − PORBB, the Portuguese-Azorean fleet (standardized index after omitting the smallest boats fishing in 

coastal waters of Azores, Cass-Calay and Pereira, 2009): 1970-2006, 

 − CANBB, the Spanish-Canary Islands baitboats (a non standardized series, tentatively broken down in 
two periods of time, prior to and following the adoption of the associated school fishing technique in 
1992, but due the large variability between successive years we used it as a single time series): 1980-
2006, 

 − ECDK1BB and ECDK2BB, the baitboat fleets (EC-France, EC-Spain, FIS, Senegal) operating from 
Dakar (Senegal), (standardized by the author for the whole time series, then broken down prior to and 
following the adoption of the associated school fishing technique in 1984, as suggested by Figure 4 in 
Fonteneau and Diouf, 1994): 1970-1983 and 1984-2006, 

 − GHNBB, the Ghanaian vessels (non-standardized CPUE; Wise, 1986): 1969-1982, 

 − ECDKPS, the EC-purse seiners and associated purse seiners, targeting free schools of skipjack off 
Senegal during the second quarter of the year (standardized, and then assuming a constant annual 
increase in catchability of 3%): 1980-2006, 

 − ECFADPS, the EC purse seiners fishing on FADs mainly in equatorial areas (standardized from Soto et 
al. (2009), and then assuming a constant annual increase in catchability of 3%): 1991-2006. 

 
2.2 Methods 
 
The basic idea of dynamic factor analysis is to estimate the underlying common trends among a group of time 
series. The CPUEs may be modeled in terms of (i) a linear combination of common trends, (ii) explanatory 
variables, (iii) a level parameter, and (iv) a noise component. For this explanatory analysis we considered a 
model with M common trends and noise only. The model formulation is as follows: 
 

Yit = Zi1 α1t + Zi2 α2t +, …, + ZiM αMt + eit 
 
where Yit is the value of the ith time series at time t, αjt is the jth common trend, Zij is the factor loading, and eit is 
an error term.  
 
From the values of factor loadings and canonical correlations, it can be inferred which common trends are 
important to a particular CPUE and which group of CPUEs are related to the same common trend. Notice that in 
contrast to the conventional factorial analysis (FA), the new axes created in DFA (i.e., the common trends) are 
smooth functions over time, with smoothing estimated automatically as part of a two-step Expectation-
Maximisation algorithm. The trends represent the underlying common patterns over time, in such a way that the 
trends at time t are expressed as a function of the trends at time t-1, plus an assumed normally distributed error 
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term with mean zero and diagonal matrix R. It should be stressed that using a diagonal matrix for R leads in 
general to common trends related only to two or three response variables. To overcome this aspect, an alternative 
symmetric positive-definite covariance matrix can be used (Zuur et al. 2003). In such case, off-diagonal 
elements of R represent information in two response variables that cannot be explained by the common trends.  
 
As for model selection procedure in GLM analysis, different competing models were ranked according to the 
Akaike information criterion (AIC). The top-ranking model (i.e., smallest AIC) from each set of CPUEs by 
species was reported as the most parsimonious model, which is the model that best explains the variation in the 
data while using the fewest parameters (Burnham and Anderson, 2002). AIC is a trade-off between the measure 
of fit and the number of parameters. 
 
Estimated models presented in this paper were obtained with the software package Brodgar2. Different 
applications of DFA in fishery studies can be found in Zuur et al. (2003), Erzini et al. (2005) and Azevedo et al. 
(2008). 
 
 
3. Results 
 
To determine how many common trends to use for each species, the AIC was calculated for candidate models 
containing 1, 2, 3 and 4 common trends (Table 1). For Atlantic yellowfin, the model containing two common 
trends and based on a symmetric non-diagonal matrix R is the most appropriate (i.e., smallest AIC value). The 
underlying common trends estimated by the parsimonious DFA model are presented in Figure 1 and the 
corresponding factor loadings are given in Figure 2. From this figure it can be seen that the factor loadings 
discriminate three groups of CPUEs: 
 

− The Brazilian longline, Brazilian baitboat, Venezuelan purse seine and likely US longline,  

− The baitboat fisheries: Dakar-based and Canary Islands pole and line,  

− A group located close to the center of the figure which is composed by the Uruguayan longline, the U.S. 
rod and reel and the EC purse seiners fishing on FADs. Surprisingly, the Japanese longline index is 
located between the first and the second group. 

 
This grouping corresponds in part with the location of the fisheries (i.e., the large western Atlantic areas for 
group 1 and the northeastern tropical region for group 2). The first group, which is constituted by fisheries using 
3 different gears, contributes mainly to the first trend (left part of Figure 1) as depicted by the representation of 
the fitted CPUEs (Figure 3). The first common trend is important for longlines from Brazil and the United States 
(factor loadings of 0.21 and 0.20, respectively) and in decreasing magnitude for Venezuelan purse seiners and 
Brazilian baitboats (factor loadings of 0.19 and 0.17, respectively). The second group is characterized by the 
dome-shaped curve observed in the eastern baitboat CPUEs and is clearly related to the second trend (right part 
of Figure 1), with a similar factor loading of 0.23 for both fleets (Figure 2). Whatever the link of proportionality 
between catch rates and the relative abundance of yellowfin in this geographic region, one can admit that these 
two time series behave similarly over time. A residual plot for the best DFA model fit is given in Figure 4. 
Relative large residuals, and may be some outliers, can be observed for the Canary Islands baitboats and the 
Brazilian baitboats.  
  
For eastern Atlantic skipjack, the best DFA fits was obtained for two common trends and a symmetric, non-
diagonal matrix (AIC = 187.51; Table 1). However this model with the smallest AIC gives an exact fit for one of 
the response variables (the first time series of the Dakar-based baitboats) which means that the CPUEs are too 
noisy, and therefore DFA, which is basically a smoothing technique, might be inappropriate (Zuur et al. 2003). 
As a consequence, we solve this problem by using a non-diagonal matrix for R, and we decided to select the 
DFA model with only one common trend (AIC = 202.26; Figure 5). The plots of the observed and fitted CPUEs 
by fisheries indicated, except the Canary Islands and Ghanaian baitboats, good model fit (Figure 6). It must be 
kept in mind that DFA Dynamic factor analysis is a dimension reduction technique, so it is unlikely that every 
CPUE is fitted well if a small number of common trends is used. 

 
The factor loadings for the eastern Atlantic skipjack are positive for the Azorean baitboats (0.14) and for the EC 
purse seine fishery on FADs (0.11) but are negative (-0.15) for the baitboats operating off Senegal since the 
adoption of the new fishing tactic (Figure 7). This might suggest that these CPUEs are driven by the same 
process, but behave in an opposite way. In contrast to the situation described previously for the yellowfin, there 
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is not a clear discrimination between CPUEs, based on their geographical location. As expected, the plot of the 
residual values highlights some variability for the Azorean and Canary Islands baitboats (Figure 8). These two 
peripheral fisheries are affected by year-to-year variation in environmental factors which influence the local 
catchability of skipjack.  
 
 
4. Discussion  
 
Our findings suggest some similarities in yellowfin CPUEs between some geographically adjacent fisheries. The 
existence of regional common trends could be related to environmental factors acting over spatial scales but also 
to sub-population responses to local exploitation rates (suggesting a relative viscosity of the yellowfin stock). 
The fact that the three fishing gears concerned (pole and line, purse seine and longline) operate at different depth 
levels, and consequently are upon the influence of different environmental conditions, might give more support 
to the second assumption. It must be stressed however than the results could have been different if we have 
compared different species caught by different gears. Rouyer at al. (2008) stated that at a regional scale, the 
CPUE of different species of tunas caught with the same gear displayed more common fluctuations than the 
CPUE of a given species fished with different gears.  

 
In light of the present results, (1) the four indices depicting the first group, in one hand, and (2) the two eastern 
baitboat catch rates, on the other hand, should be combined respectively in two regional indices before 
performing a unique combined index. The two extracted common trends indicate a decrease in catch rates from 
1970 to the early 1990s and from the late 1980s to the late 1990s for the first and second group, respectively. 
With respect to the second group, composed by baitboat fleets, since they have adopted a new fishing strategy, 
which consists in using the boat itself as a FAD, in the early 1980s in Dakar and the early 1990s in the Canary 
islands (Fonteneau and Diouf, 1994; Hallier and Delgado de Molina, 2000), caution must be taken in the 
interpretation of these patterns in terms of fluctuation of abundance. It must be stressed, however, that the 
stabilization and the slow recovery depicted by the two common trends since the early 2000s is in agreement 
with the knowledge on the situation for this stock (Anon. 2009). For future study, it seems important to redo the 
DFA analysis after incorporating an apparent abundance index from large yellowfin caught in free school by the 
EC and associated purse seiners in the eastern Atlantic. 
 
In the case of the eastern Atlantic skipjack, due to the absence of contrasting series, the results are less clear. One 
of the major challenges with CPUEs of skipjack is due to the fact that this species is seldom targeted (with 
exception of some baitboat fisheries, as in Brazil in the western Atlantic, or in the Maldives in the Indian Ocean). 
Consequently, without additional information (e.g., price differential between yellowfin and skipjack) it is not 
possible to improve our understanding of the response of skipjack population to exploitation solely from 
observed trends in catch rates.  

 
Among the potential biases associated with the use of commercial data, the needs to account for the increase in 
fishing power over the years has been widely highlighted (Fonteneau et al., 1999). Notice that in some 
circumstances, analyzing indices from fishing gears for which the species under study is caught as a by-catch 
should be considered, since one can reasonably assume that changes in technology affect less indices of by-catch 
than on the targeted species. For instance, yellowfin can be considered as a secondary species for the Brazilian 
baitboats which target skipjack.  
 
CPUE is related to relative abundance, that is to say to the proportion of fish, at one particular time and place, 
vulnerable to the fishing gear (i.e., a sort of “fish at-risk”), and not to the absolute number of fish in the 
population. It is widely admitted by fishery scientists that CPUE is seldom proportional to abundance over a 
whole exploitation history and an entire geographic range. Even if CPUE is standardized appropriately, the 
resulting index of relative abundance, in isolation, provides limited information for management advice or about 
the effect of fishing (Maunder et al. 2006). In the same lines, the calculation of a weighted combined index does 
not ensure an automatic success of the procedure. Often different data sets contain contradictory information, so 
changing the weighting factors can lead to different results (Maunder, 2003). For instance, at first sight it makes 
sense to give more importance to indices obtained from fisheries covering the major part of the spatial 
distribution of the species considered than to indices depicting only local fisheries. However, area-weighted 
CPUEs may overweight fisheries which target only few age classes (e.g., for longline which targets only large 
yellowfin and capture skipjack incidentally), and conversely may downweight catch rates from small fishing 
grounds even if these local fisheries are effective in terms of catch or exploit the whole age components of the 
stock. After performing a sensitivity analysis on the different weights attributed to each CPUE, the calculation of 
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a combined weight, integrating multiple criteria (fishing area, catch, number of age classes, etc) should be 
explored.  
 
As mentioned in the introduction section hyperstability and hyperdepletion were evidenced in numerous 
commercial fisheries. In general, the operational characteristics of fishing will tend to cause hyperstability, 
whereas the distributional characteristics will tend to cause hyperdepletion. Hyperdepletion is characteristic of 
longlines, which deplete the “yellowfins-at-risk” during the initial phase of the exploitation. This phenomenon is 
seen when the abundance index declines substantially faster than the true population abundance (Harley et al. 
2001). It was showed that analyzing longline CPUEs without keeping in mind such an effect may provide a 
misleading picture of the status of large predatory pelagic fishes (Polacheck, 2006). Hyperstability is commonly 
observed in small pelagic fisheries and/or schooling fish. This is defined as the index of abundance remaining 
high when the true population abundance decreases (e.g., some purse seine indices). Among the components that 
contribute to hyperstability, Hilborn and Walters (1992) mentioned non-random search, but it was showed by 
simulation study that information sharing between vessels reinforces this situation (Gaertner and Dreyfus, 2004). 
To prevent the effects of hyperstability and hyperdepletion in indices, Walters (2003) suggests the use of gap-
filling spatial catch rate approaches. However, in the case of longline fisheries there is evidence of severe hyper-
depletion even in the spatially corrected CPUE time series (Ahrens and Walters, 2005). In some circumstances, 
integrated assessment models, which use many types of information, may be used to show that CPUEs are not 
consistent with population dynamic for the early years (Maunder et al. 2006).  
 
 
5. Conclusion 
 
The use of DFA models for reducing multiple CPUEs to a lower number of common trends appears as a 
promising tool but further studies are required. One of the limitations of this method is the instability of the 
results when applying DFA models with an R symmetric non-diagonal matrix to CPUEs including a large 
proportion of missing values. In such a situation the adoption of the R diagonal covariance matrix is relevant 
(Azevedo at al. 2008). In some circumstances, as seen for the Atlantic eastern skipjack, a common trend may 
produce an exact fit for one of the response variables. This behavior may also occur in conventional factor 
analysis and is called a Heywood case. This means that the amount of smoothing is too small, which is an 
indication that the underlying model is inappropriate. The authors of Brodgar point out that switching to a 
symmetric, non-diagonal matrix for R solves this problem but it is unclear how to combine this choice with 
information theoretic criterion approaches in model selection. 
 
With respect to the two species of tropical tunas considered in this paper, it was showed that further studies with 
explanatory factors, such as price differential between large yellowfin and small size commercial category of 
tunas, are required to account for the fact that skipjack is seldom targeted by surface tuna fisheries. In the case of 
yellowfin, statistical analysis such as DFA might give insight on a reduced number of regional common trends 
which could be used later to perform a combined index of abundance. It is unclear however how to integrate 
CPUEs which depict non-proportionality phenomena to evaluate the status of a fishery and how to calculate 
weighting factors which lead to an accurate estimate of the relative importance of each CPUE.   
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Table 1. Values of Akaike’s information criterion (AIC) for DFA models with a variable number of common 
trends (M) for the CPUEs of Atlantic yellowfin (YFT) and of eastern Atlantic skipjack (SKJ). 
____________________________________________________________________ 
Species Covariance           M common trends 
 matrix 1 2 3 4 
____________________________________________________________________ 
 
YFT Diagonal 420.10 408.58 408.18 417.12 
 Symmetric, non-diagonal 415.71 401.10  424.95 433.51 
 
SKJ Diagonal 191.09 187.51 197.78 206.87 
 Symmetric, non-diagonal 202.26 213.92 213.66 211.53 
____________________________________________________________________ 
 
 
 
 
 

 
Figure 1. First and second common trends detected by the best DFA model and 95% confidence interval for the 
CPUEs of the Atlantic yellowfin. 
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Figure 2. Factor loadings corresponding to the first two common trends detected by the best DFA model for the 
CPUEs of the Atlantic yellowfin. 
 

 
 
Figure 3. Fitted values obtained by the DFA model containing two common trends and a symmetric non-
diagonal matrix R for the Atlantic yellowfin. The lines represent the fitted CPUEs obtained by the Kalman 
smoothing algorithm and the solid circles represent the observed CPUEs. The heading in each graph refers to the 
fishery. Fitted values are unitless. 
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Figure 4. Residual plots for the DFA model fit containing two common trends and a symmetric non-diagonal 
matrix R for the Atlantic yellowfin. Smoothed residuals are represented by the lines. The heading in each graph 
refers to the fishery. 
 
 

 
Figure 5. First common trend detected by the best DFA model and 95% confidence interval for the CPUEs of 
the eastern Atlantic skipjack. 
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Figure 6. Fitted values obtained by the DFA model containing one common trend and a diagonal matrix R for 
the eastern Atlantic skipjack. The lines represent the fitted CPUEs obtained by the Kalman smoothing algorithm 
and the solid circles represent the observed CPUEs. The heading in each graph refers to the fishery. Fitted values 
are unitless. 
 

 
 
Figure 7. Factor loadings corresponding to the first common trend detected by the selected DFA model for the 
CPUEs of the eastern Atlantic skipjack. 
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Figure 8. Residual plots for the DFA model fit containing one common trend and a diagonal matrix R for the 
eastern Atlantic skipjack. Smoothed residuals are represented by the lines. The heading in each graph refers to 
the fishery. 
 
 


