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ABSTRACT: The aim of this work was to examine whether Vis-NIR airborne spectroscopy could be
used for mapping topsoil properties in a 300 km? Mediterranean cultivated landscape (Lebna catchment,
Tunisia) that includes contrasting pedological patterns and a large proportion of bare soil surfaces. This
work employed AISA-Dual Vis-NIR hyperspectral airborne data acquired with a fine spatial resolution
(5 m) and fine spectral resolution (260 spectral bands from 450 to 2500 nm). Partial Least Square Regres-
sions were applied to model the relations between soil properties and AISA-Dual spectra. The results
showed that four out of the eight soil properties (clay, sand, iron, and cation-exchange capacity) were
satisfactorily mapped with good precisions both for estimating local values and for capturing the spatial
structures. This study highlights the complexity of the North African soil patterns and opens up the pos-
sibility of more extensive use of hyperspectral data for digital soil mapping of the successfully mapped
soil properties.

1 INTRODUCTION The aim of this work was to examine whether
Vis-NIR  hyperspectral  airborne  imaging
Among the large set of possible emerging spectroscopy could be used for mapping eight of
technologies that could be used in Digital Soil  the most common soil properties (clay, sand, silt,
Mapping (DSM), visible and npear infrared calcium carbonate, free iron, cation-exchange
(Vis-NIR, 350-2500 nm) hyperspectral imaging capacity (CEC), organic carbon {(OC)and pH) over
spectroscopy is one of the most promising meth-  a 300 km? Mediterranean area. This work inves-
ods because (i) it is derived from reflectance spec-  tigated the use of the partial least-square regres-
troscopy, a laboratory technique that has been  sion (PLSR) to construct the models necessary to
proven as a good alternative to costly physical and  estimate the soil properties from the Vis-NIR data.
chemical laboratory soil analysis for the estimation ~ The high spatial resolution (5 m) of the imaging
of a large range of soil properties (Ben-Dor &  data used in this research is expected to provide
Banin, 1995); (i) it can benefit from the increas-  detailed pattern recognition of the soil’s heteroge-
ing number of methodologies developed for neity. In addition, the large coverage (300 km?) of
Vis-NIR hyperspectral airborne imaging in soil  the imaging data used in this research is expected
property mapping (e.g., Selige et al., 2006, Gomez  to provide a global view of main soil patterns.
et al., 2008), (iii) it can provide a global view of
the area under study at spatial resolutions appro-
priate for DSM (Gomez et al., under review in 2 MATERIAL AND METHODS
Geoderma); and (iv) it is particularly well adapted
to Mediterranean and semi-arid areas, where bare
soil surfaces are common and where dry periods  The study area is located in the Cap Bon region in
allow for avoiding soil moisture perturbations of  northern Tunisia (36°24’N to 36°53'N; 10°20E to
the spectrum (Lagacherie et al., 2008). 10°58’E), 60 km east of Tunis, Tunisia (Figure 1).

2.1 Study area
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Figure 1. a) Location of the Cap Bon region in the
Northern Tunisia, b) limits of the Lebna Catchment
(in red) and the AISA hyperspectral image (in grey)
plotted over the STRM DEM of the Cap Bon.

This 300 km? area includes the Lebna catchment
(Figure 1b), which is mainly rural (>90%) and
dominated by cereals in addition to legumes, olive
trees, natural vegetation for breeding and vineyards.
It is characterized by relief areas, with an altitude
between 0 and 226 m. The main soil types are
Regosols, Eutric Regosols (9.6%) predominantly
associated with sandstone outcrops, Calcic Cam-
bisol, and Vertisol predominantly formed on marl
outcrops and lowlands. The southeastern region
of the study area represents a more flat landscape
with sandy Pliocene deposits yielding Calcosol and
Rendzina.

2.2  AISA-Dual Vis-NIR hyperspectral
airborne data

On November 2, 2010, Vis-NIR AISA-Dual
hyperspectral data were acquired over the study
area (12 x 25 km) with a spatial resolution of
5 m (Figure 2). The AISA-Dual airborne imag-
ing spectrometer measures the reflected radiance
in 359 non-contiguous bands covering the 400- to
2450-nm spectral domain, with 4.6 nm bandwidths
between 400 and 970 nm and 6.5 nm bandwidths
between 970 and 2450 nm. The instantaneous
field of view (IFOV) is 24 degrees. The radiance
units were converted to reflectance units using
ASD spectrometer measurements of uniform sur-
faces (parking lots, asphalt, concrete) that were
collected at the same time during the over flight.
An empirical line correction method was used
to calibrate each flight line to the reflectance.
Topographic corrections were performed using a
30 m digital elevation model built from ASTER
data and ground control points. In this study, we
removed: 1) the spectral bands in the blue part of
the spectral domain (between 400 and 484 nm) due
to noise in these bands and 2) the spectral bands
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Figure 2.
collected over bare soils and the Kamech catchment
(full white square) plotted over the AISA-Dual image
(12 x 25 km). Only the bare soils are represented (water,
urban, vegetation area and mixed pixels are represented
in black).

Location of the 129 soil samples (blue points)

between 1339 and 1464 nm as well as between 1772
and 2004 nm due to vibrational-rotational H20
absorption bands. Consequently, 280 AISA-Dual
spectral bands were retained.

When the image was acquired (November
2010), a minor part of the soil surface was covered
by green vegetation, consisting mainly of olive
trees, native forests, green plants and vineyards.
To isolate the bare soil areas, pixels with normal-
ized difference vegetation index (NDVI) values
over an expert-calibrated threshold were masked:
a value of 0.20 was determined after considering
twenty parcels that had been visually inspected on
the field. Water areas were also masked using an
expert-calibrated threshold: pixels with a reflect-
ance of less than 8% at 1665 nm were removed.
Finally, urban areas were masked using a map of
urban areas.

Based on the AISA-Dual data with a spatial
resolution of 5 m, the bare soils represent 46.3%
of our study area and 5 889 847 AISA-Dual pixels
(Figure 2).

2.3 Field sumpling

129 soil samples were collected on the Lebna catch-
ment: 58 were collected in October 2008, 30 in



October 2009, and 41 in November 2010. All of
these soil samples were collected in fields that were
bare during the hyperspectral data acquisition in
November 2010 (Figure 2). All of the samples were
composed of five sub-samples collected to a depth
of 5 cm at random locations within a 10 x 10 m
square centered on the geographical position of
the sampling plot, as recorded by a Garmin GPS
instrument.

The samples were air-dried and sieved with
a 2 mm sieve. After homogenizing the sam-
ple, approximately 20 g was used for soil property
analysis. The determination of eight soil properties
was performed using classical physico-chemical
soil analysis. These properties were free iron,
cation-exchange capacity (CEC), clay (granulom-
etric fraction <2 pm), silt (granulometric fraction
between 2 and 50 pm), sand (granulometric frac-
tion between 0.05 and 2 mm), calcium carbonate
(CaCO,), pH and organic carbon (OC).

2.4 Prediction models

The Partial Least Square Regression (PLSR) was
used to establish relationships between the soil
variables and the AISA-Dual spectra. Before this
multivariate analysis, the reflectance was converted
into “absorbance” (log [1/reflectance]) and a noise
reduction was achieved through standard pre-
treatments: a Savitzky—Golay filter with second-
order polynomial smoothing and window widths
of 30 nm, mean centering and variance scaling.
The spectroscopic and chemometric analyses
were implemented in R. The maximum number
of latent variables (LV) in the PLSR was defined
as 10. The optimal number of LVs was determined
using prediction residual error sum of squares
(PRESS) analysis, taking care to avoid under—and
over-fitting. A prediction model was built for each
soil property. Because a limited number of sam-
ples was available, a leave-one-out cross-validation
procedure was adopted to verify the prediction
capability of the PLS models. Two types of out-
liers were rejected from the calibration set: (i) con-
centration outlier, when the predicted value has a
residual difference significantly greater (>2.5) than
the mean of the predicted values and (ii) spectral
outlier, when the sample is spectrally different from
the rest of the samples. An H value of 3 based on
the Mahalanobis distance, calculated on PCA-
reduced data, was selected for the identification of
spectral outliers.

2.5 Models evaluation

The prediction models were evaluated using the
root mean squared error of cross-validation
(RMSECYV), the coefficient of determination
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of cross-validation (R%*v) and the ratio of
performance deviation (RPD). The RPD is the
ratio between the standard deviation of the
entire data set against the RMSECV. Chang
and Laird (2002) defined three classes of RPD:
category A (RPD > 2) describes models that
can accurately predict the soil property, cat-
egory B (2 > RPD > 1.4) describes models
with limited predictive power and category C
(RPD < 1.4) describes models that have no pre-
diction ability.

3 RESULTS
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The soil properties exhibited contrasting vari-
ations over the study area (Table 1). The clay,
sand, CEC and iron were very variable, whereas
silt, CaCO,, pH and carbon exhibited much
smaller variations with sometimes asymmet-
ric distributions (pH and CaCO,). Most of the
soil properties of these 129 soil samples were
not correlated to each other, with the exception
of: (i) high positive correlation between the clay
content and CEC (R? = 0.9), (ii) high negative
correlation between the clay and sand contents

Soil samples study

Table 1. Statistical parameters of soils properties for
the 129 soils samples.

Min Max Mean SD*
Iron (g/100 g) 0,3 33 1,6 0,5
CEC (cmol + /kg) 2,8 34,1 19,5 6,6
Clay (g/kg) 46 772 463,7 175,9
Sand (g/kg) 32 896 326 202,3
Silt (g/kg) 58 429 210,2 58,7
CaCoO, (g/kg) 1 346 36,9 52,3
pH 5,8 8,8 8,2 0,5
OC (g/kg) 2,7 21,8 89 2,8
* Standard deviation.
Table 2. Correlation coefficient between the soil

properties, calculated from the 129 soil samples.

Clay Silt Sand OC pH CaCO, CEC
Silt 0,31
Sand  -0,96 -0,56
oC 0,14 021 -0,18
pH 0,34 0,23 -0,37 -0,11
CaCO,; 0,10 0,00 0,09 0,22 0,26
CEC 096 037 -094 0,22 0,34 —0,09
Fer 0,77 0,31 -0,76 0,07 0,08 —0,25 0,71




(R? = 0.9) and (iii) positive correlation between
iron and sand contents as well as between iron
and clay contents (R?= 0.6) (Table 2). The ranges
of clay, sand, and iron contents and CEC are
large (Table 1) and exhibit a centered normal dis-
tribution. Whereas the ranges of the four other
properties were quite small (Table 1) and exhib-
ited Poisson distribution.

3.2 Prediction models results

PLSR-based prediction models were built using
the 129 AISA-Dual spectra corresponding to the
location of the soil samples collected over bare
soils (Figure 2). Two spectral outliers were identi-
fied and removed, and the number of concentra-
tion outliers depended on the soil property and
varied between 0 and 7. The elimination of out-
liers from the soil database modified significantly
the concentration range of the soil properties for
CaCO,, silt, pH and OC (Table 3).

Correct prediction models (category B), with
R? and RPD values greater than 0.6 and 1.4
respectively, were obtained for four soil proper-
ties: iron, CEC, clay and sand contents (Figure 3).
The prediction models were inaccurate for silt,
CaCO,, pH and OC, with R? values less than 0.35
(Figure 3).

3.3 Predicted maps

The prediction of soil properties was performed for
all the bare soils of the AISA-Dual image. Only the
soil properties, for which correct local predictions
(Figure 3) were obtained, were mapped. Thus we
created digital maps for four soil properties: free
iron, CEC, clay and sand.

The predicted clay map of the entire study
area showed a complex regional soil pattern
(Figure 4), with predominant variations in

Table 3. Statistical parameters of soils properties for
the soil samples used in the PLSR models after outlier
removal.

Outlier Min Max Mean SD*
Iron (g/100 g) 7 0,26 2,62 1,5 0,48
CEC (cmol + /kg) 0 2,8 341 19,5 6,6
Clay (g/kg) 1 46 772 467 176
Sand (g/kg) 3 32 896 327 204
Silt (g/kg) 3 58 321 206 51,3
CaCo, (g/kg) S 1 135 29,3 31
pH 6 69 88 83 0,3
OC (g/kg) 2 2,7 146 86 2,2
# Number of concentration outliers.
* Standard deviation.
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Figure 3. Plots of observed versus predicted soil prop-
erties obtained by PLSR using AISA-Dual spectra of the
129 soil samples location.

lithology. Differences both in values and soil pat-
terns appeared between the Pliocene area, located
in the southeast corner of the image, and the
Miocene area, covering the rest of the image.
Pliocene area exhibits low and weakly variable
topsoil clay contents, whereas the Miocene area
shows a large range of clay content values. Varia-
tions within the Miocene area are also visible. They
follow the geological pattern formed by the alter-
nating sandstone and marl outcrops, yielding low
(blue) and high (red) values of clay content, respec-
tively (Figure 4). The soil patterns vary across the
southeast/northwest direction, with a decreasing
distance between successive sandstone outcrops
and the occurrence of a large sandstone outcrop in
the middle. The deposition of sandy material from
the erosion of sandstone areas in the valleys that
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Figure 4. Clay content predicted over bare soils
from AISA—Dual spectra (black areas correspond to
mixed surfaces). The white square delimits the Kamech
catchment.
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Figure 5. Zoom on predicted clay content map over

bare soils of the Kamech catchment (grey areas corre-
spond to mixed surfaces). Black arrows represent clay-
rich areas. Coordinates are in UTM WGS 84.

are perpendicular to the outcrops add to the com-
plexity of the regional soil pattern.

The predicted clay map over the Kamech
catchment (Figure 5) is representative of
the alternating sandstone and marl outcrops
(highlighted by arrows in Figure 5). Some mixed
areas also appear in transition areas between these
outcrops and in shoal areas. In the Northeast
corner of the study area (Figure 4) similar suc-
cessions of Marl and sandstone outcrops were
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observed with larger distances between successive
outcrops.

4 DISCUSSION

The Jocal soil property prediction models, built
from AISA-Dual Vis-NIR spectra using the
129 soil samples, allowed the estimation of four
out of the eight soil properties with respect to
common quality indicators (Figure 3). The accu-
racy of the prediction model of clay contents
(R%, = 0.8, Figure 3) is in agreement with that
presented by Selige et al. (2006) and Gomez et al.
(2008). The accuracy of the prediction model of
sand contents (R2., = 0.7, Figure 3) is in agree-
ment with that reported by Selige et al. (2006). The
inaccuracy of the prediction models of CaCO,
contents (R, = 0.1, Figure 3) differs from that
of Gomez et al. (2008). Our lower accuracy may
be due to the low CaCO, contents in the calibra-
tion data set (between 1 to 135 g/kg after remov-
ing the outliers, Table 3) as compared to CaCO,
contents of Gomez et al. (2008) (between 0.26
to 472 g/kg). The inaccurate results obtained for
the prediction of OC contents differ from those
reported by Stevens et al. (2010). Our lower accu-
racy may be due to the low variability in OC con-
tent (between 2 and 14.6 g/kg after removing the
outliers, Table 3) in the calibration data set com-
pared to the OC contents of Stevens et al. (2010)
(between 5 to 50 g/kg). These poorest results can
also be explained by the lower number of sam-
ples used to calibrate our model (129) compared
to Stevens et al. (2010) (306 samples). Finally, no
predictions based on hyperspectral data for free
iron, CEC, pH and silt contents are available in
the literature, so literature references cannot be
used to compare and evaluate our results for these
soll properties.

The large coverage (300 km?) of our AISA-
Dual imaging data provides a global view of
the main soil patterns (Figure 4). Successions
of sandstone outcrops and mar] outcrops are
mapped, with a decrease of the distance between
these successive outcrops from East to West.
A sandy area is mapped in the Southeast part of
the study area, which corresponds to Pliocene. At
a local scale, the high spatial resolution (5 m) of
our AISA-Dual imaging data provides detailed
pattern recognition of the soil’s heterogeneity,
in particular for the alternance of sandstone and
marl outcrops.

As correlations exist between clay, CEC, iron
and sand properties (Table 2), predicted maps of
these four soil properties are highly correlated as
well. Nevertheless, in addition to these soil prop-
erties maps, a map of the textural class could be



obtained from the synthesis of the predicted clay
and sand maps.

5 CONCLUSION

This study demonstrated that Vis-NIR hyper-
spectral imaging data can be used to map several
key topsoil properties over large areas of bare
soil. In the future, this new spatial information
on topsoil properties should be used in Digital
Soil Mapping both for generating complete maps
of soil properties (Ciampalini et al., Submitted
in DSM2012) and for improving the digital soil
mapping of related subsoil properties. Moreover,
diverse surface conditions including partially veg-
etated surfaces should be considered and treated to
increase the surface of key soil properties mapping.
A first way could be to use source separation meth-
ods as shown by Ouerghemmi et al. (2011). Finally
the development of Vis-NIR hyperspectral sensors
which are planned to be launched on board satel-
lites within the next two years, such as PRISMA
and EnMap, will extend the use of Vis-NIR hyper-
spectral imaging data in Digital Soil Mapping.
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