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ABSTRACT: The aim of this work was to examine whether Vis-NIR airborne spectroscopy could he
used for mapping topsoil properties in a 300 km2 Mediterranean cultivated landscape (Lebna catchment,
Tunisia) that includes contrasting pedological patterns and a large proportion of bare soil surfaces, This
work employed AISA-Dual Vis-NIR hyperspectral airborne data acquired with a fine spatial resolution
(5 rn) and fine spectral resolution (260 spectral bands from 450 to 2500 nm), Partial Least Square Regres
sions were applied ta model the relations between soil properties and AISA-Dual spectra. The results
showed that four out of the eight sail properties (clay, sand, iron, and cation-exchange capacity) were
satisfactorily mapped with good precisions both for estimating local values and for capturing the spatial
structures. This study highlights the complexity of the North African soil patterns and opens up the pos
sibility of more extensive use of hyperspectral data for digital soi! mapping of the successfully mapped
soil properties,

1 INTRODUCTION

Arnong the large set of possible emerging
technologies that could be used in Digital Soil
Mapping (DSM), visible and near infrared
(Vis-NIR, 350-2500 nm) hyperspectral imaging
spectroscopy is one of the most promising meth
ods because (i) it is derived from reflectance spec
troscopy, a laboratory technique that bas been
proven as a good alternative to costly physical and
chemical laboratory soil analysis for the estimation
of a large range of soil properties (Ben-Dor &
Banin, 1995); (ii) it can benefit from the increas
ing number of methodologies developed for
Vis-NIR hyperspectral airborne imaging in soil
property mapping (e.g., Selige et al., 2006, Gomez
et al., 2008); (iii) it can provide a global view of
the area under study at spatial resolutions appro
priate for DSM (Gomez et al., under review in
Geoderma); and (iv) it is particularly well adapted
to Mediterranean and semi-arid areas, where bare
soil surfaces are common and where dry periods
allow for avoiding soil moi sture perturbations of
the spectrum (Lagacherie et al., 2008).

The aim of this work was to examine whether
Vis-NIR hyperspectral airborne imaging
spectroscopy could be used for mapping eight of
the most common soil properties (clay, sand, silt,
calcium carbonate, free iron, cation-exchange
capacity (CEC), organic carbon (OC) and pH) over
a 300 km2 Mediterranean area. This work inves
tigated the use of the partial least-square regres
sion (PLSR) to construct the models necessary to
estimate the soil properties from the Vis-NIR data.
The high spatial resolution (5 rn) of the imaging
data used in this research is expected to provide
detailed pattern recognition of the soil's heteroge
neity. In addition, the large coverage (300 km') of
the imaging data used in this research is expected
to provide a global view of main soil patterns.

2 MATERIAL AND METHODS

2.1 Study area

The study area is located in the Cap Bon region in
northern Tunisia (36°24'N to 36°53'N; lOo20'E to
I0058'E), 60 km east of Tunis, Tunisia (Figure 1).
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Figure 1. a) Location of the Cap Bon region in the
Northern Tunisia, b) limits of the Lebna Catchrnent
(in red) and the AISA hyperspectraJ image (in grey)
plotted over the STRM DEM of the Cap Bon.

This 300 km' area includes the Lebna catchrnent
(Figure 1b), which is mainly rural (>90%) and
dominated by cereals in addition to legumes, olive
trees, natural vegetation for breeding and vineyards.
Il is characterized by relief areas, with an altitude
between 0 and 226 m. The main soil types are
Regosols, Eutric Regosols (9.6%) pred ominantly
associated with sandstone outcrops, Calcic Cam
bisol, and Vertisol predominantly form ed on mari
outcrops and lowlands. The southeastern region
of the study area represents a more flat landscape
with sandy Pliocene deposits yieldin g Calcosol and
Rendzina.

2.2 A/SA-Dual Vis-N/R hyperspectral
airborne data

On November 2, 2010, Vis-NIR AISA-Oual
hyperspectral data were acquired over the study
area (12 x 25 km) with a spat ial resolution of
5 m (Figure 2). The AISA-Oual airbo m e imag
ing spectrometer measures the reflected radi ance
in 359 non-contiguous bands covering the 400- to
2450-nm spectral domain, with 4.6 nm bandwidths
between 400 and 970 nm and 6.5 nm bandw idths
between 970 and 2450 nm . The instantane ous
field of view (lFOV) is 24 degrees. The radiance
units were converted to reflectance units using
ASO spectrometer measurements of uniform sur
faces (parking lots , asphalt, concrete) that were
collected at the same time during the over flight.
An empirical line correction meth od was used
to calibrate each flight line to the reflectance.
Top ographie corrections were performed using a
30 m digital elevation model built from ASTER
data and ground control points. ln this study, we
remo ved: 1) the spectral bands in the blue part of
the spectral domain (between 400 and 484 nm) due
to noise in these bands and 2) the spectral bands

Figure 2. Location of the 129 soi! samples (blue points)
collected over bare soi!s and the Kamech catchment
(full white square) plot ted over the AISA-Dua! image
(12 x 25 km). Only the bare soils are represented (water,
urban, vegetation area and mixed pixels are represented
in black).

between 1339 and 1464 nm as weil as between 1772
and 2004 nm due to vibrat ional-rot ational H20
absorption bands. Consequently, 280 AISA-Oual
spectral bands were retained.

When the image was acquired (November
2010), a minor part of the soil surface was covered
by green vegeta tio n, co nsisting mainl y of olive
trees, nat ive forests, green plan ts and vineyards.
To isolate the bare soil areas, pixels with normal
ized difference veget ation index (N OVI) values
over an expert-calibrated threshold were ma sked :
a value of 0.20 was det ermined after considering
twenty parcels that had been visually inspected on
the field. Water areas were also masked using an
expert-calibrated threshold: pixels with a reflect
ance of less than 8% at 1665 nm were removed.
Finally, urban areas were masked using a map of
urban areas.

Based on the AlSA-Oual data with a spatial
resolution of 5 m, the bare soils represent 46.3%
of our study are a and 5 889 847 AISA-Oual pixels
(Figure 2).

2.3 Field sampling

129 soil samples were collected on the Lebna catch
ment: 58 were collected in Oct ober 2008, 30 in
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3 RESULTS

Table 2. Correlation coefficient between the soil
properties, calculated from the 129 soil samples.

of cross-validation (R2CV) and the ratio of
performance deviation (RPD). The RPD is the
ratio between the standard deviation of the
entire data set against the RMSECV. Chang
and Laird (2002) defined three classes of RPD:
category A (RPD > 2) describes models that
can accurately predict the soil property, cat
egory B (2 > RPD > lA) describes models
with limited predictive power and category C
(RPD < lA) describes models that have no pre
diction ability.

3.1 Soil samples study

The soil properties exhibited contrasting vari
ations over the study area (Table 1). The clay,
sand, CEC and iron were very variable, whereas
silt, CaCO), pH and carbon exhibited much
smaller variations with sometimes asymmet
rie distributions (pH and CaCO). Most of the
soil properties of these 129 soil samples were
not correlated to each other, with the exception
of: (i) high positive correlation between the clay
content and CEC (R2 = 0.9), (ii) high negative
correlation between the clay and sand contents

0,71

Clay Silt Sand OC pH CaCO) CEC

0,31
-0,96 -0,56
0,14 0,21 -0,18
0,34 0,23 -0,37 -0, Il
-0,10 0,00 0,09 0,22 0,26
0,96 0,37 -0,94 0,22 0,34 -0,09
0,77 0,31 -0,76 0,07 0,08 -0,25

Table 1. Statistica1 parameters of soils properties for
the 129 soi1s samp1es.

Min Max Mean SD·

Iron (g!1()() g) 0,3 3,3 1,6 0,5
CEC (emol + /kg) 2,8 34,1 19,5 6,6
Clay (gIkg) 46 772 463,7 175,9
Sand (gIkg) 32 896 326 202,3
Silt (gIkg) 58 429 210,2 58,7
CaCO) (gIkg) 1 346 36,9 52,3
pH 5,8 8,8 8,2 0,5
OC (gIkg) 2,7 21,8 8,9 2,8

•Szandard devia/ion.

Silt
Sand
OC
pH
CaCO)
CEC
Fer

October 2009, and 41 in November 2010. AlI of
these soil samples were collected in fields that were
bare during the hyperspectral data acquisition in
November 2010 (Figure 2). AlI of the samples were
composed of five sub-samples collected to a depth
of 5 cm at random locations within a 10 x 10 m
square centered on the geographical position of
the sampling plot, as recorded by a Garmin GPS
instrument.

The samples were air-dried and sieved with
a 2 mm sieve. After homogenizing the sam
ple, approximately 20 g was used for soil pro perty
analysis. The determination of eight soil properties
was performed using c1assical physico-chemical
soil analysis, These properties were free iron,
cation-exchange capacity (CEC), clay (granulom
etric fraction <2 um), silt (granulometric fraction
between 2 and 50 um), sand (granulometric frac
tion between 0.05 and 2 mm), calcium carbonate
(CaCO), pH and organic carbon (OC).

2.4 Prediction models

The Partial Least Square Regression (PLSR) was
used to establish relationships between the soil
variables and the AISA-Dual spectra. Before this
multivariate analysis, the reflectance was converted
into "absorbance" (log [lIreOectance]) and a noise
reduction was achieved through standard pre
treatments: a Savitzky-Golay filter with second
order polynomial smoothing and window widths
of 30 nrn, mean centering and variance scaling.
The spectroscopie and chemometric analyses
were implemented in R. The maximum number
of latent variables (LV) in the PLSR was defined
as 10. The optimal number of LVs was determined
using prediction residual error sum of squares
(PRESS) analysis, taking care to avoid under-and
over-fitting. A prediction model was built for each
soil property. Because a limited number of sam
ples was available, a leave-one-out cross-validation
procedure was adopted to verify the prediction
capability of the PLS models. Two types of out
liers were rejected from the calibration set: (i) con
centration outlier, when the predicted value has a
residual difTerence significantly greater (>2.5) than
the mean of the predicted values and (ii) spectral
outlier, when the sample is spectrally difTerent from
the rest of the samples. An H value of 3 based on
the Mahalanobis distance, calculated on PCA
reduced data, was selected for the identification of
spectral outliers,

205 Models evaluation

The prediction models were evaluated using the
root mean squared error of cross-validation
(RMSECV), the coefficient of determination
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Figure 3. Plots of observed versus predicted soil prop
erties obtained by PLSR using AISA-Dual spectra of the
129 soi! samples location.

(R2 = 0.9) and (iii) positive correlation between
iron and sand contents as weil as between iron
and clay contents (R2= 0.6) (Table 2). The ranges
of clay, sand, and iron contents and CEC are
large (Table 1) and exhibit a centered normal dis
tribution. Whereas the ranges of the four other
properties were quite small (Table 1) and exhib
ited Poisson distribution.

3.2 Prediction models results

PLSR-based prediction models were built using
the 129 AISA-Dual spectra corresponding to the
location of the soil samples colIected over bare
soils (Figure 2). Two spectral outliers were identi
fied and removed, and the number of concentra
tion outliers depended on the soil property and
varied between 0 and 7. The elimination of out
liers from the soil database modified significantly
the concentration range of the soil properties for
CaCO], silt, pH and OC (Table 3).

Correct prediction models (category B), with
R2 and RPD values greater than 0.6 and 1.4
respectively, were obtained for four soil proper
ties: iron, CEC, clay and sand contents (Figure 3).
The prediction models were inaccurate for silt,
CaCO], pH and OC, with R2 values less than 0.35
(Figure 3).

3.3 Predicted maps

The prediction of soil properties was performed for
all the bare soils of the AISA-Dual image. Only the
soil properties, for which correct local predictions
(Figure 3) were obtained, were mapped. Thus we
created digital maps for four soil properties: free
iron, CEC, clay and sand.

The predicted clay map of the entire study
area showed a complex regional soil pattern
(Figure 4), with predominant variations in

Table 3. Statistical parameters of soils properties for
the soil sampi es used in the PLSR models after outlier
removal.

Outlier" Min Max Mean SD*

Iron (g/IOO g) 7 0,26 2,62 1,5 0,48
CEC (cmol + /kg) 0 2,8 34,1 19,5 6,6
Clay (g!kg) 1 46 772 467 176
Sand (g!kg) 3 32 896 327 204
Silt (g!kg) 3 58 321 206 51,3
CaCO] (g!kg) 5 1 135 29,3 31
pH 6 6,9 8,8 8,3 0,3
OC (g/kg) 2 2,7 14,6 8,6 2,2

• Number of concentration outliers.

•Standard deviation.

lithology. Differences both in values and soil pat
terns appeared between the Pliocene area, located
in the southeast corner of the image, and the
Miocene area, covering the rest of the image.
Pliocene area exhibits low and weakly variable
topsoil clay contents, whereas the Miocene area
shows a large range of clay content values. Varia
tions within the Miocene area are also visible.They
folIow the geological pattern formed by the alter
nating sandstone and mari outcrops, yielding low
(blue) and high (red) values of clay content, respec
tively (Figure 4). The soil patterns vary across the
southeast/northwest direction, with a decreasing
distance between successive sandstone outcrops
and the occurrence of a large sandstone outcrop in
the middle. The deposition of sandy material from
the erosion of sandstone areas in the valleys that
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Figure 4. Clay content predicted over bare soils
from AISA-Dual spectra (black areas correspond to
mixed surfaces). The white square delimits the Kamech
catchment.
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Figure 5. Zoom on predicted clay content map over
bare soils of the Kamech catch ment (grey areas corre
spond to mixed surfaces). Black arrows represent clay
rich areas. Coordinates are in UTM WGS 84.

are perpendicular to the outcrops add to the com
plexity of the regional soil pattern.

The predicted clay map over the Kamech
catchment (Figure 5) is representative of
the alternating sandstone and marI outcrops
(highlighted by arrows in Figure 5). Sorne mixed
areas also appear in transition areas between these
outcrops and in shoal areas. In the Northeast
corner of the study area (Figure 4) similar suc
cessions of Mari and sandstone ou tcrops were
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observed with larger distances between successive
outcrops.

4 DISCUSSION

The local soil property prediction rnodels, built
l'rom AISA-Dual Vis-NIR spectra using the
129 soil samples, allowed the estimation of four
out of the eight soil properties with respect to
common q uality indicators (Figure 3). The accu
racy of the prediction model of clay contents
(R ' cV = 0.8, Figure 3) is in agreement with that
presented by Selige et al. (2006) and Gomez et al.
(2008). The accuracy of the prediction model of
sand contents (R'cv = 0.7, Figure 3) is in agree
ment with that reported by Selige et al. (2006) . The
inaccuracy of the prediction models of CaCO,
contents (R 'cv = 0.1, Figure 3) differs l'rom that
of Gomez et al. (2008) . Our lower accuracy may
be due to the low CaCO) contents in the calibra
tion data set (between 1 to 135 g/kg al'ter remov
ing the outliers, Table 3) as compared to CaCO)
contents of Gomez et al. (2008) (between 0.26
to 472 g/kg) . The inaccurate results obtained for
the prediction of OC contents differ l'rom those
reported by Stevens et al. (2010) . Our lower accu
racy may be due to the low variability in OC con
tent (between 2 and 14.6 g/kg after removing the
outliers, Table 3) in the calibration data set com
pared to the OC contents of Stevens et al. (2010)
(between 5 to 50 g/kg). These poorest results can
also be explained by the lower number of sam
ples used to calibrate our modcl (129) compared
to Stevens et al . (2010) (306 samples) . Finally, no
predictions based on hyperspectral data for free
iron, CEC, pH and silt contents are available in
the literature, so literature references cannot be
used to compare and evaluate our results for these
soil properties.

The large coverage (300 km-) of our AISA
Dual imaging data provides a global view of
the main soil patterns (Figure 4) . Successions
of sandstone outcrops and marI outcrops are
mapped, with a decrease of the distance between
these successive ou tcrops l'rom East to West.
A sandy area is mapped in the Southeast part of
the study area , which corresponds to Pliocene. At
a local scale , the high spatial resolution (5 m) of
our AISA-Oual imaging data provides detailed
pattern recognition of the soil's heterogeneity,
in particular for the alternance of sandstone and
mari outcrops.

As correlations exist between clay, CEe. iron
and sand properties (Table 2), predicted maps of
these four soil properties are highly correlated as
weIl. Nevertheless, in addition to these soil prop
erties maps. a map of the texturai class could be



obtained from the synthesis of the predicted clay
and sand maps .

5 CONCLUSION

This stud y demonstrated tbat Vis-NIR hyper
spectral imaging data can he used to map several
key topsoil properties over large areas of bare
soil. In the future, this new spatial information
on topsoil properties should be used in Digital
Soil Mapping both for generating complete maps
of soil properties (Ciampalini et al., Submitted
in DSM2012) and for improving the digital soil
mapping of related subsoil properties. Moreover,
diverse surface conditions including partially veg
etated surfaces should be considered and treated to
increase the surface of key soil properties mapping.
A first way could be to use source separation meth
ods as shown by Ouerghemmi et al. (2011). Finally
the development of Vis-NIR hyperspectral sensors
which are planned to be launched on board satel
lites within the next two years, such as PRISMA
and EnMap, will extend the use of Vis-NIR hyper
spectral imaging data in Digital Soil Mapping.
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