Digital Soil Assessments and Beyond — Minasny, Malone & McBratney (eds)
© 2012 Taylor & Francis Group, London, ISBN 978-0-415-62155-7

Co-kriging of soil properties with Vis-NIR hyperspectral covariates

in the Cap Bon region (Tunisia)

R. Ciampalini & P. Lagacherie

INRA, Laboratoire d’étude des Interactions Sol Agrosystéeme Hydrosystéme (LISAH ), IRD-INRA-SupAgro,

Montpellier, France

P. Monestiez & E. Walker

INRA, Unité de Biostatistique et Processus Spatiaux ( BioSP), Avignon, France

C. Gomez

IRD, Laboratoire d’étude des Interactions Sol Agrosystéme Hydrosystéme (LISAH ), IRD-INRA-SupAgro,

Montpellier, France

ABSTRACT: Visible and Near Infrared (Vis-NIR) hyperspectral airborne spectroscopy can be used
for predicting soil surface properties but its use is constrained to bare soil surfaces. To extend its use to
larger areas, a co-kriging procedure was applied across a 339 km? area located in the Cap Bon Region
(northern Tunisia). The study used 262 soil surface analysed samples and, as covariates, the bare soil
estimates of four topsoil properties (Clay, Sand, Iron contents and Cation Exchange Capacity) derived
from a 30 meter resolution Vis-NIR AISA-Dual hyperspectral image. The resulting co-regionalisation
models and co-kriged maps allowed to capture the soil pattern of the study area which indicates a prom-
ising opportunity for using Vis-NIR hyperspectral covariates for Digital Soil Mapping. However, the
co-kriging performances were limited by the short-scale soil variations of this lithology-driven Mediter-

ranean study area.

1 INTRODUCTION

In many parts of the world, the available legacy
soil data are too sparse for the Digital Soil Map-
ping (DSM) of soil properties with acceptable pre-
cision (e.g. Ciampalini et al., 2012). It is therefore
necessary to collect new input soil data while main-
taining acceptable costs.

It has been showed recently (Gomez et al., sub-
mitted, Gomez et al., 2012) that Vis-NIR hyper-
spectral airborne spectroscopy could provide
acceptable estimates of some key topsoil proper-
ties. However, prediction of the soil properties is
limited to bare soil surfaces. In recognition of this,
Lagacherie et al. (2012) used co-kriging and block-
cokriging for extending the hyperspectral estimates
to an entire study area.

From the encouraging results of Lagacherie
et al. (2012), Vis-NIR hyperspectral imagery is
expected to be largely used for DSM in the future,
especially in Mediterranean and semi-arid areas
where bare soil surfaces are common and where
dry periods can allow to avoid soil moisture
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perturbations of the spectrum (Lagacherie et al.,
2008). Further Vis-NIR hyperspectral sensors are
planned to be launched on board satellites within
the next two years, PRISMA (Giampaolo et al.,
2008) and EnMap (Stuffler et al., 2007).

In this paper, a cokriging procedure is applied
to map four topsoil properties (Clay, Sand, iron
contents and CEC) in the Cap Bon region (North-
ern Tunisia) using as covariates the accurate but
incomplete estimates derived from an Vis-NIR
hyperspectral image (Gomez et al., 2012).

2 THE CASE STUDY

2.1

The study area is located in the Cap Bon region in
northern Tunisia (36°24’N to 36°53'N; 10°20’E to
10°58’E), 60 km east of Tunis, Tunisia (Figure la).
This 300 km? area includes the Lebna catch-
ment (Figure 1b), which is mainly rural (>90%)
and devoted to cereals in addition to legumes,

Study area



Figure 1. a) Location of the Cap Bon region in the
Northern Tunisia, b) limits of the Lebna Catchment (in
red) and the AISA hyperspectral image (in grey) plotted
over the STRM DEM of the Cap Bon.

olive trees, natural vegetation for breeding and
vineyards. It is characterized by relief areas, with
an altitude between 0 and 226 m. The main soil
types are Regosols, Eutric Regosols (9.6%) prefer-
entially associated with sandstone outcrops, Calcic
Cambisols, and Vertisols preferentially formed on
marl outcrops and lowlands. The southeastern
region of the study area has a flatter landscape
with sandy Pliocene deposits yielding Calcosols
and Rendzina.

2.2 Field data

262 soil samples were collected between October
2008 and November 2010 (Figure 2). 129 of these
soil samples were collected within the hyperspec-
tral image perimeter in fields that were bare during
the hyperspectral data acquisition in November
2010. The remaining 133 samples were located
either outside this image perimeter (73 samples)
or in vegetated areas (60 samples). The former 129
were used in Gomez et al. (2012) for calibrating
the hyperspectral estimation functions. The sam-
ples were composed of five sub-samples collected
to a depth of 5 cm at random locations within
a 10 x 10 m square centered on the geographi-
cal position of the sampling plot, as recorded by
a Garmin GPS instrument. Soil properties were
measured using classical physico-chemical soil
analysis. In this study only the four soil proper-
ties successfully predicted from hyperspectral data
(R?>0.6) were considered: clay, sand, free iron and
cation exchange capacity (CEC).

2.3 Hyperspectral covariates

The covariates used in this study, called hereon
“hyperspectral covariates”, were the maps of top-
soil properties derived from Vis-NIR AISA-Dual
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Figure 2. Locations of the samples and delimitation
of computing zones for the co-kriging.

hyperspectral data which were acquired on 2nd
November 2010 over the study area with a spatial
resolution of 5 m and 359 non-contiguous bands
covering the 400 to 2500 nm spectral domain.
For computational efliciency, a pixel aggregation
resampling method was used to provide Vis-NIR
hyperspectral image at 30 m of spatial resolution.
It must be noted that 30 meters is the resolution of
the Vis-NIR hyperspectral sensors that are planned
to be launched on board satellites (Giampaolo
et al., 2008, Stuffler et al., 2007). After artifact fil-
tering, it comprised 280 spectral bands covering
the 450 to 2450 nm spectral domain. Vegetated
surfaces, urban areas and water areas were masked
to consider only bare soil surfaces for further soil
predictions. The methodology for obtaining maps
of predicted topsoil properties is fully detailed in
(Gomezetal., 2012). Only a short summary is pro-
vided here.

The Partial Least Square Regression (PLSR)
was used to establish relationships between the
topsoil properties and the AISA-Dual spectra.
PLSR-based prediction models were built using
the 129 AISA-Dual spectra corresponding to the
location of the soil samples collected over bare
soils. Correct prediction models, with R> and RPD
values greater than 0.6 and 1.4 respectively, were
obtained for four soil properties: free iron, CEC,
clay and sand content.

Figure 3 shows an example of the resulting
30 meter resolution images of soil properties that
covered 41.6% of the studied area.



Figure 3. Clay content predicted over bare sotls from
AISA—Dual spectra (black areas correspond to non-
predicted surfaces).

3 METHOD

The set of measured soil samplzs and the images of
estimated soil properties were co-kriged to obtain
new images that covered the whole study area.
We applied a procedure that was recently devel-
oped for mapping topsoil properties from hyper-
spectral data in southern France (Lagacherie et al.,
2012). In this study however; block-cokriging was
replaced by punctual co-kriging.

All the analyses in this study were performed
using R (R Development Core Team, 2007).

3.1

In this study, the measured soil properties and
their hyperspectral covariates are denoted as Z,
and Z,, respectively. Suppose that « is a location
in two-dimensional space and Z, (#) and Z, (1) are
spatial random {unctions. Assuming that the soil
property (Z,) is spatially cross-correlated with the
hyperspectral covariate (Z,), the spatial cross cor-
relation between Z, and Z, can be quantified by a
cross-variogram (Wackernagel, 1995). In univari-
ate or bivariate frameworks, the covariance and
variogram functions can be estimated as follows:

Modelling multivariate spatial correlations

N(h)

= ZN—(h) ‘Z’l (z;(ug +h)—z,(u,))

x(z;(ug +h) = z;(uy))
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In Equation (1) iand j belong to {/, 2}. When i=},
Equations (1) denotes the variogram estimates.
When i #j, Equations (1) denotes the cross variog-
gram estimates. 4 is the separation vector between
the data locations u, and u,+ A (the translated of
h from u,) Z(u,) and Z(u, + h) are observations
of the variable z; and z; at spatial locations u, and
u, + h, respectively, and N(h) is the number of
distinct pairs of observations at distance h.

To undertake the co-kriging, a variogram matrix
in which the diagonal entries are variograms and
the off-diagonal entries are cross variograms
must be strictly conditionally negative definite.
To ensure this condition, one can use intrinsic or
linear co-regionalisation models. The formulation
of the latter in the bivariate case with two nested
spatial structures is (Wackernagel, 1995).

@

where g (h) and g,(h) are two normalized vari-
ograms, one for each spatial structure, and B, and
B, are positive semi-definite 2 x 2 matrices.

1Th) = B,g,(h) + Byg,(h)

3.2 Co-kriging

The co-kriging estimator is a best linear unbiased
estimator (BLUE) and has minimum estimation
error variance (Wackernagel, 1995). In the two
variables case, the ordinary co-kriging estimator 1s
a linear combination of weights w!, and w?, with
data from the two variables Z, and Z, located at
sample points in the neighborhood of a spatial
location u,. Each variable is defined on a set of
samples of possibly different sizes », and n,, and
the estimator is defined as:

R nl n2
Z(ug) = X waZi () + X, W Zy () (3)
a=1 a=l

where the weights w), and w2 are solutions of a co-
kriging system and sum to 1 and 0, respectively.

The co-kriging variance of the estimation error
of Z, in the two variables case can be estimated
from the variogram %,,, and the crossvariogram
Y..» (Wackernagel, 1995) by using the following
expression:

nl

Th )= Y Watyoi ity — )
a:lnz i (4)
+ Z Wa}/zlzz(ua/ - u()) '+'/Uzl

a=|

where g, is the lagrange multiplier of the co-
kriging system and u, — u, denotes the distance
between u, and u, locations.



3.3 Co-kriging with large datasets

The large number of sites with hyperspectral
covariates made it difficult to co-krige from the
whole set of these sites at every prediction location.
Subsets were therefore considered at the neighbor-
hood of the prediction locations by randomly
selecting at most 500 sites within a 300 m x 300 m
area centered on the prediction location and at most
1000 additional sites within a 1000 m x 1000 m area
centered on the prediction location.

3.4 Validation

The validation of the co-kriging outputs was done
on the 189 soil samples located in the image perim-
eter by comparing the true measurements with the
predicted values obtained from a leave-one-out
cross-validation. To evaluate the prediction qual-
ity, the classical indicators R? and RMSE were
calculated. To match GlobalSoilMap.net specifi-
cations, we also calculated the observed fractions
A of the true values falling into the estimated
95%-probability interval (Ply) bounded by 0.025
and 0.975 quantiles. It was expected that the com-
puted fractions A were close to 95% and that the
PI,; were as narrow as possible.

4 RESULTS

4.1  Co-regionalisation models

Linear co-regionalisation models were built for
the pairs “soil properties-hyperspectral covari-
ates” from the set of 129 sites at which these two
variables were available. The two direct vario-
grams were first modeled as linear combinations
of two selected basic structures. The same basic
structures were then fitted to the cross-semi-vario-
grams under the positive semi-definite constraints
(Goovaerts, 1997).

Figures 4a-c show the fitted co-regionalisation
models for clay content, CEC, and iron content as
well as their analytical expressions. In general the
models fitted adequately to the data. None of the
models had a nugget effect. The ranges were very
similar across the soil properties with a short range
of 250 and Jarge range between 1500 and 2000 m.
Short range semi-variances were clearly larger than
the large range ones.

4.2 Validation results

Table | shows the summary of the performance
parameters of the cross validation procedure.
RMSE and R? values showed moderate accura-
cies with clear decreases at the sites located in the
gaps of the hyperspectral image (digits between

brackets in table 1). At such sites, the distances
from any available data were often greater than
the shortest ranges at which most of the variances
were observed, especially for iron.

This result was fairly well anticipated by the
model by estimating 95%-probability interval
widths. These widths were however slightly under-
estimated as shown by the fractions of the true
values falling in the PI-95 that were less than the
expected 0.95 values.
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Table . Validations results.

Soil PI95***
property RMSEcv* RZcv width*  A¥k**
Sand 163 (207)  0.51 (0.32) 464 0.86
CEC 49(6.2) 0.54(0.32) 142 0.88
Iron 0.39(0.47) 0.41(0.31) 13 0.87

*in g/kg for clay and sand, in meq/100 g for CEC and
g'kg for iron.

** between brakets: results for validation points located
in the gaps of the hyperspectral image.

***PI95 is the estimated 95%-probability interval (Pl,,)
bounded by 0.025 and 0.975 quantiles.

*¥%% A is the fraction of the true values of soil property
falling in 95% PIL.

4.3  Mapping results

Figures 5 show the estimated maps of the four
studied soil properties and their associated uncer-
tainty maps that were obtained from co-kriging
with the hyperspectral covariates.

The soil property maps exhibit short scaled and
striped patterns that are similar across the set of
studied properties. Areas with high clay and iron
contents, low sand contents and high CEC con-
trasted with areas with moderate clay and iron
contents, high sand contents and moderate CEC.
These patterns strongly resemble those of the
hyperspectral covariate (Figure 3) with the notice-
able exception of the south-east area where the low
extreme values of clay contents disappeared in the
co-kriged maps (Figure 5a).

The uncertainty maps show variations that were
influenced by the locations of the measured sites
around which the predicted uncertainties were

minimal—and by the presence of hyperspectral
covariates—as shown by the north-south increase
of uncertainty with the decrease of hyperspectral
covariate availability. The maximal uncertainty
was predicted for a small area located at the east of
the study area due to the distance from measured
sites and hyperspectral covariate data (Figure 2).

5 DISCUSSION & CONCLUSION

5.1 Modelling a Mediterranean soil pattern

The motivation of this study was to deal with
soil variations within a sample area of the North
Alrica region which is poor in available legacy soil
data. However, throught the use of Vis-Nir hyper-
spectral imagery that covers the study area (Gomez
et al., 2012), the complex soil pattern of this region
could be quantitatively modeled in great detail
(30 meter resolution). The co-regionalization mod-
els (Figures 4) and the co-kriging maps (Figures 5)
of four correlated soil properties (clay, sand, iron
and CEC) respectively revealed a multi-scaled and
anisotropic soil pattern that we interpret as mainly
driven by successions of tectonised marl and sand-
stone outcrops with a decrease of the distances
between these successive outcrops from East to
West. This lithology driven soil pattern is expected
to frequently occur within Mediterranean and
semi-arid regions having a geology as complex as
the one of the Cap Bon Region.

5.2 Handling incomplete spatial covariates

Spatially incomplete landscape covariates have
been rarely handled in DSM studies. Yet it may
be of great interest to mask the covariate layers
in locations where the local conditions weaken the
correlation with a soil property as e.g. vegetated
areas for hyperspectral covariates. In such situa-
tions, we confirmed after Lagacherie et al. (2012)
that co-kriging is a suitable DSM procedure pro-
vided that a co-regionalization model can be fitted
to the data. We observed however that the co-
kriging accuracy could rapidly decrease for sites
located in the gaps of a covariate layer if short
scale soil variations predominate. Co-kriging may
also introduce a bias if the soil of the masked areas
differ significantly from the not-masked ones. This
may occur if soil properties are correlated with the
local conditions that are considered for masking
the landscape covariates.
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