Photo-identification confirms that humpback whales (Megaptera novaeangliae) from eastern Australia migrate past New Zealand but indicates low levels of interchange with breeding grounds of Oceania

WALLY FRANKLIN1,2,3, TRISH FRANKLIN1,2,3, NADINE GIBBS3,4, SIMON CHILDHERHOUSE3,5, CLAIRE GARRIGUE3,6, ROCHELLE CONSTANTINE3,10, LYNDON BROOKS1,3, DANIEL BURNS1,3, DAVID PATON3,8,11, MICHAEL POOLE3,12, NAN HAUSER1,3,13, MICHAEL DONOGHUE3,14, KIRSTY RUSSELL3,10, DAVID M. MATTILA15, JOOKE ROBBINS3,16, MEGAN ANDERSON1,3,8, CARLOS OLAVARRÍA3,10,17, JENNIFER JACKSON3,10, MICHAEL NOAD3,18, PETER HARRISON3,13,8, PETER BAVERSTOCK1,19, RUSSELL LEAPER20, SCOTT BAKER3,6,10 AND PHIL CLAPHAM3,7

Contact e-mail: wally.franklin@oceania.org.au

ABSTRACT

Recent photo-identification and genetic studies have identified at least five discrete breeding populations in Australia and Oceania: western Australia (D), eastern Australia (E (i)), New Caledonia (E (ii)), Tonga (E (iii)), French Polynesia and the Cook Islands (F). Also evident are low levels of intermingling among breeding populations consistent with the degree of genetic differentiation. Photo-identification has confirmed linkages between Area V feeding areas and eastern Australia breeding grounds and one genotype match has been reported between Area V feeding areas and Oceania breeding grounds. Recent abundance estimates show strong increases in the eastern Australian population, and some recovery in the New Caledonia and Tonga populations, but with little evidence of recovery at other known Oceania breeding grounds or New Zealand. Studies to date have provided no conclusive evidence of the migratory destination of humpback whales passing through New Zealand waters en route between Antarctic feeding areas and tropical breeding grounds. Photo-identification comparisons were undertaken between humpback whale fluke catalogues from eastern Australia (EA, 1315), Oceania east (OE, 513), Oceania west (OW, 166) and New Zealand (NZ, 13). Five matches were found between OE/OV, four matches between OW/EV and three matches between NZ/EV. The data are used to investigate and discuss the migratory destination and breeding ground migratory interchange of humpback whales travelling through New Zealand waters. The data confirm that humpback whales with site fidelity to eastern Australia migrate past New Zealand including through the Cook Strait and Foveaux Strait.

KEYWORDS: HUMPBACK WHALES; PHOTO-ID; MIGRATION; SITE FIDELITY; EASTERN AUSTRALIA; NEW ZEALAND; OCEANIA; ANTARCTIC WATERS; BREEDING GROUNDS; FEEDING AREAS

INTRODUCTION

A comprehensive investigation of humpback whales (Megaptera novaeangliae) migrating through New Zealand waters was undertaken during the 1950s (Dawbin, 1956; 1964; 1966; Dawbin and Falla, 1949). After reviewing a range of factors that might influence the migratory routes taken by humpbacks past New Zealand including ocean currents, bottom topography and geography of land masses encountered, Dawbin (1956) concluded that the primary factors determining the migratory route of humpbacks past New Zealand were feeding behaviour in Antarctic waters and the location of breeding grounds in eastern Australia and the islands of the western Pacific further to the east (Dawbin, 1956; 1964; 1966; Dawbin and Falla, 1949). Initially, Dawbin considered the breeding ground destinations of humpback whales migrating from Antarctic feeding areas through New Zealand waters, and up along the eastern coast of Australia, were the eastern Coral Sea including the Chesterfields and New Caledonia, with the Tongan Group of islands being the northern limit of north

1 Southern Cross University Whale Research Centre, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
2 The Oceania Project, PO Box 646 Byron Bay, NSW 2481, Australia.
3 South Pacific Whale Research Consortium, PO Box 3069, Avarua Rarotonga, Cook Islands.
4 Department of Conservation. PO Box 5086, Wellington, New Zealand.
5 University of Otago, PO Box 56, Dunedin, New Zealand.
6 Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA.
7 U.S. National Marine Mammal Laboratory, Alaska Fisheries Science Centre, Seattle WA 98115, USA.
8 Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
9 Opération Cétacés BP 12827 98802 Nouméa, New Caledonia.
10 School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
11 Blue Planet Marine, PO Box 5353 Kingston, ACT 2604, Australia.
12 Marine Mammal Research BP698 98728 Maharepa, Moorea.
13 Cook Islands Whale Research Takuvaine Valley PO Box 3069, Avarua Rarotonga, The Cook Islands.
14 Department of Conservation, PO Box 10-420, Wellington, New Zealand.
15 Hawaiian Islands Humpback Whale National Marine Sanctuary, 726 S. Kihei Road, Kihei, HI 96753 USA.
16 Provincetown Center for Coastal Studies, 5 Holway Avenue, Provincetown, 02657 USA.
17 Centro de Estudios del Cuaternario (CEQUA), Plaza Muños Gamero 1055, Ponta Aretas, Chile.
18 School of Veterinary Science, University of Queensland, Brisbane QLD 4072 Australia.
19 Centre for Animal Conservation Genetics, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia.
20 International Fund for Animal Welfare (IFAW), 87-90 Albert Embankment, London, SE1 7UD, UK.
bound humpbacks passing New Zealand (Dawbin and Falla, 1949). However, Dawbin subsequently noted that the ‘great length of the eastern Australian coastline situated in the tropics should however provide a much more extended area of coastal conditions suitable for breeding than is available at near Pacific Islands’ (Dawbin, 1956).

Geographic separation and isolation of discrete breeding groups was considered to occur and to influence breeding ground destinations of migrating humpback whales (Chittleborough, 1965; Dawbin, 1964; 1966; Mackintosh, 1942). The ‘Discovery’ marking programme provided the first direct evidence of linkages between polar feeding areas and temperate breeding grounds and intermingling among discrete breeding groups (Chittleborough, 1965; Dawbin, 1959; 1964; 1966; Mackintosh, 1942; Rayner, 1940). This evidence supported the hypothesis that western Australia, eastern Australia and Oceania were discrete breeding grounds with little interchange among individuals and no evidence for permanent exchange of individuals (Chittleborough, 1965; Dawbin, 1964). Dawbin reported links between eastern Australia and Area V with occasional interchange between eastern Australia and New Zealand and significant segregation between eastern Australia and the New Zealand/Oceania region (Dawbin, 1959; 1964; 1966).

Members of the South Pacific Whale Research Consortium and the Southern Cross University Whale Research Centre have been undertaking long-term photo-identification, genetic and satellite tagging studies on humpback whales in the Pacific basin and eastern Australia. The studies have substantiated that western Australia (Breeding Stock D) and eastern Australia (Breeding Stock E (i)) are discrete breeding populations (Anderson and Brasseur, 2007; Anderson et al., 2010; Olavarria et al., 2006a; 2006b). The data also substantiated that the IWC Breeding Stock E, which included eastern Australia, New Caledonia and Tonga, should be considered to be three discrete breeding sub-populations; eastern Australia (E (i)), New Caledonia (E (ii)) and Tonga (E (iii)) (Garrigue et al., 2006; Olavarria et al., 2007). The observed limited movements of individual humpback whales between eastern Australia and Oceania (Garrigue et al., 2000; Garrigue et al., 2011) and within Oceania (Garrigue et al., 2002; Garrigue et al., 2010; Hauser et al., 2010; South Pacific Whale Research Consortium et al., 2007) are consistent with the reported levels of genetic differentiation between Breeding Stock(s) E (i), E (ii) and E (iii). Similarly acoustic evidence substantiates low levels of intermingling between Breeding Stock D and E (i) (Noad et al., 2000). Only six movements of humpback whales have been documented, by photo-identification, between Area V feeding grounds and eastern Australia (Franklin et al., 2008a; Kaufman et al., 1990; Rock et al., 2006). Satellite tagging has documented a movement from the Cook Islands to Area VI (Hauser et al., 2010). One recent genotype match was reported between New Caledonia and the Area V feeding area, and also a small number of genotype matches have been reported between Oceania breeding grounds and Area V, VI and I feeding areas (Steel et al., 2008).

Genetic evidence in a recent study suggested that the humpback whales passing New Zealand may be closely related to the New Caledonia (E (ii)) population (Olavarria et al., 2006b) and a recent photo-identification matching of the New Zealand Catalogue with the Oceania catalogues produced only 3 matches: two matches with New Caledonia and one with Vava’u, Tonga (Constantine et al., 2006). These studies have demonstrated links between New Zealand and tropical breeding grounds in Oceania but the relationship between New Zealand and Australia has yet to be carefully investigated. Some photo-identification data (Franklin et al. 2008b) and limited telemetry data (Gales et al., 2009; Garrigue et al., 2010) have indicated that whales from eastern Australia migrated past southern New Zealand and that whales from New Caledonia pass near northern New Zealand, respectively. However, there remains considerable uncertainty about the destination of humpback whales migrating past New Zealand from Area V feeding areas.

This paper examines photo-identification data collected from 1999–2004 to investigate movements of individual humpback whales between eastern Australia and Oceania and within Oceania and discuss the breeding ground migratory interchange and migratory destinations of humpback whales travelling through New Zealand waters.

METHODS

Photo-identification data

Vessel-based photo-identification of humpback whale pods in Hervey Bay, Queensland (25°S, 153°E) was undertaken between 1992 and 2005 as part of a long-term study of social behaviour. Photo-identification was also utilised in a study of humpback whales on the northern migration at Byron Bay (28°38’S, 153°38’E) and on the southern migration at Ballina (28°52’S, 153°36’E) between 2003 and 2004. The combined reconciled eastern Australian fluke catalogue for the years 1999–2004, after reconciliation within and between the catalogues and rejection of photographs of unsuitable quality, consists of 1,315 individuals.

Dedicated surveys of humpback whales in Oceania were conducted between 1999–2004 during the austral winter, in four primary sampling sites: New Caledonia; Tonga; the Cook Islands and French Polynesia. Surveys were conducted in only one or two seasons in other adjacent sampling sites: Vanuatu, Fiji, Samoa, and Niue. Sampling at American Samoa began in 2003. The combined Oceania fluke catalogue for 1999–2004, after reconciliation within and between the catalogues and rejection of photographs of unsuitable quality, consists of 692 individuals.

A comprehensive description of site sampling effort and the method used to compare the Oceania and eastern Australian catalogues, within and between regions, are fully reported in South Pacific Whale Research Consortium (2007) and Garrigue et al. (2011). Although some local site samples, e.g. Vanuatu, Fiji, Samoa and Niue are small, when combined with other sampling sites to create the sites of...
‘Oceania West’ and ‘Oceania East’ for analysis (Table 1, below), the combined site samples can be considered random samples from the E (ii) and E (iii) plus F populations, for the purposes of these analyses.

The eastern Australian and Oceania catalogues selected for inclusion in this study were the most recent, fully reconciled, photo-identification catalogues from each of the sample sites at the time of writing and are summarised in Table 1. Photo-identification survey work is still underway in most sites. Sampling site locations are shown in Fig 1.

Statistical analysis

For the analyses, fluke data from New Caledonia and Vanuatu were combined into an Oceania west (OW) catalogue (166) while Tonga, Fiji, American Samoa, Samoa, Niue, Cook Islands and French Polynesia were combined into an Oceania east (OE) catalogue (513). The eastern Australian (EA) catalogue (1,315) and New Zealand (NZ) catalogue (13) were treated as separate population catalogues (Table 1).

Several analyses were conducted investigating the number of matches found between sample site (SITE) and population

<table>
<thead>
<tr>
<th>Site</th>
<th>Flukes (n)</th>
<th>Site</th>
<th>Flukes (n)</th>
<th>Site</th>
<th>Flukes (n)</th>
<th>Site</th>
<th>Flukes (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hervey Bay</td>
<td>871</td>
<td>New Caledonia</td>
<td>160</td>
<td>Fiji</td>
<td>2</td>
<td>New Zealand</td>
<td>13</td>
</tr>
<tr>
<td>Byron Bay</td>
<td>415</td>
<td>Vanuatu</td>
<td>6</td>
<td>Tonga</td>
<td>282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballina</td>
<td>29</td>
<td></td>
<td></td>
<td>Samoa</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>American Samoa</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Niue</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cook Islands</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>French Polynesia</td>
<td>159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total EA</td>
<td>1,315</td>
<td>Total OW</td>
<td>166</td>
<td>Total OE</td>
<td>513</td>
<td>Total NZ</td>
<td>13</td>
</tr>
</tbody>
</table>

1The pooling of sample site catalogues into the population catalogue groupings of EA, OW, and OE population is based on: Olavarría et al. (2006a; 2006b); Anderson and Brasseur (2007) and Anderson et al. (2010).

2Although the sample size at some sites is small the combined site effort and samples are consistent with these being random samples from the populations and are considered such for this analysis.

3New Zealand is not considered a discrete population, however for the purposes of this analysis it was treated as such.
catalogues (POP), \(m_{\text{SITE-POP}} \): NZ-EA, OW-EA, OE-EA, OW-OE, NZ-OE. In each case, if the whales sighted at the sample site (SITE) were all members of the population catalogue (POP), the proportion of the SITE catalogue that would be expected to be matched to the POP catalogue should be equal to the proportion of the estimated population that was in the POP catalogue. Alternatively, if the whales sighted at the sample site (SITE) were not all members of the population, the proportion of the SITE catalogue that would be expected to be matched to the POP catalogue would be lower than the proportion of the estimated population in the POP catalogue.

This provides a means of estimating the expected number of matches under a null hypothesis that the whales identified at the SITE were all members of the POP catalogue for testing against the alternative hypothesis that they were not. The analysis is based on a test of association in a 2×2 cross-table of frequencies constructed as ‘not seen’ or ‘seen’ at the sample site by ‘not seen’ or ‘seen’ in the proposed population (Table 2).

Given these data and estimates, the expected numbers of matches, \(m_{\text{POP-SITE}} \), may be derived from expected equality of proportions, \(\frac{n_{\text{POP-SITE}}}{n_{\text{SITE}}} = \frac{n_{\text{POP}}}{N_{\text{POP}}} \) and calculated as \(\frac{n_{\text{POP}}n_{\text{SITE}}}{N_{\text{POP}}^2} \). This is both the standard way of calculating the expected frequencies under a null hypothesis of independence in a cross-table (row total by column total over grand total) and a simple transformation of the estimator, \(\frac{(n_{1}n_{2})}{m_{2}} \). The expected frequencies for each of the other cells were obtained in the standard way.

A one-tailed test of association is appropriate because the alternative hypothesis is that the observed frequency of whales seen at both locations will be lower than the expected frequency under the null hypothesis. We used one-tailed p-values from Fisher’s Exact Test. This test is preferred over the asymptotic Pearson Chi-Square test when expected frequencies are small.

The sizes of sampling site catalogues (\(n_{\text{SITE}} \)), the sizes of population catalogues (\(n_{\text{POP}} \)), the estimated 2004 population sizes (\(N_{\text{POP}} \)) and the numbers of matches between the sampling site catalogues and the population catalogues (\(m_{\text{POP-SITE}} \)), except for the Ballina catalogue (Dan Burns, unpublished data), were derived from Garrigue et al. (2011), South Pacific Whale Research Consortium (2006) and Paton et al. (2011) and are reported in Table 3.

RESULTS

Matching between the eastern Australian and the Oceania catalogues, after reconciliation within and between the catalogues and rejection of photographs of unsuitable quality, resulted in: 3 matches between eastern Australia and New Zealand; 4 matches between eastern Australia and Oceania west (New Caledonia, Vanuatu) and 5 matches between...
Oceania west and Oceania east (Tonga, Fiji, American Samoa, Samoa, Niue, Cook Islands and French Polynesia). No matches were found between New Zealand and any other of the Oceania catalogues in this comparison (but see Constantine et al., 2006).

The frequencies of whales in sampling sites by whales in proposed populations with the expected frequencies for site to population matches and Fisher’s one-tailed p-values are reported in Table 4.

Of the 13 whales sighted in New Zealand, three were matched to the eastern Australian catalogue. This is consistent with the 2.4 expected if the New Zealand whales were all members of the eastern Australian population. With the data falling in the wrong tail of the test distribution this result is entirely consistent with that hypothesis. Of the 166 whales sighted in Oceania west, four were matched to the eastern Australian catalogue. This is considerably and significantly fewer than the 30.8 expected if they were all members of the eastern Australian population. Of the 513 whales sighted in Oceania east, none were matched to the eastern Australian catalogue. This is significantly fewer than the 95.1 expected if they were all members of the eastern Australian population. Of the 166 whales sighted in Oceania west, five were matched to the Oceania east catalogue. This is significantly fewer than the 25.3 expected if they were members of the Oceania east population.

Of the 13 whales sighted in New Zealand, none were matched to the Oceania west catalogue. Although these catalogues were relatively small, this is significantly fewer than the 4.6 expected if they were members of the Oceania west population. However, if it is assumed that the New Zealand ‘population’ is in fact the eastern Australian population, it would be expected that approximately the same proportion, \(p_{NZ-OW} \), of the whales sighted in New Zealand to have been seen in Oceania west as the proportion of the Oceania west whales that were seen in eastern Australia; i.e. \(p_{NZ-OW} = 4/166 = \frac{\text{POP-SITE}}{13} \). On this basis, 0.3 matches would be expected between the NZ and OW catalogues. That no matches were found is consistent with this.

Of the 13 whales sighted in New Zealand, none were matched to the Oceania east catalogue. This is fewer but not significantly fewer than the 2 expected if they were members of the Oceania east population.

DISCUSSION

The result of the comparison between the New Zealand and eastern Australian populations, is consistent with the hypothesis that the whales observed in New Zealand are from the eastern Australian population.

While there is evidently appreciable interchange between the eastern Australian and the Oceania west populations and between the Oceania east and Oceania west populations, the results presented herein support that these are discrete populations. While there may be some interchange between the eastern Australian and the Oceania east populations, the evidence from these data suggests that these populations are discrete.

While there may be some interchange between the Oceania west and New Zealand populations the evidence from these data suggests that these populations are discrete. The failure to find significance in the comparison between New Zealand and Oceania east (Table 4), may be largely due to the small size of the New Zealand catalogue and the relative small proportion of the Oceania east population in the Oceania east catalogue. However, there is weak evidence in these data indicating that New Zealand and Oceania east are discrete populations.

Movements of humpback whales through New Zealand waters

Dawbin (1956) reported that northbound humpback whales travelling from Antarctic feeding areas approached New Zealand from various directions suggesting widespread lateral dispersion whilst in the Antarctic waters. The northward migration followed three main pathways through New Zealand waters (see Fig. 2). One stream moved along the eastern coastline and was deflected to the northeast, before rounding the northeastern tip and resuming their northerly migration. Another stream passed to the southwest of the South Island through Foveaux Strait and a separate but significant stream passed through Cook Strait between the North and South Island (Dawbin, 1956; 1966).

We speculate that northbound migrating humpback whales travelling from the eastern region of the Area V feeding areas, with site fidelity to the eastern Australian (E (i)) breeding grounds, are likely to pass to the south of the South Island of New Zealand and/or through the Foveaux and Cook Strait from east to west, rather than travel up along the

![Fig. 2. The migratory pathways and migratory destinations described in (Dawbin, 1956) and the hypothesised migratory pathways and migratory destinations described in this study are shown in solid and broken lines respectively. The additional proposed photo-id sampling sites are shown as diamond shapes. The square symbol marked (g), (h) and (i) are the Cook Straits samples reported in South Pacific Whale Research Consortium (2007).](image-url)
northeastern coastline of New Zealand. This is supported by the telemetry information in Gales et al. (2009).

In contrast, humpback whales with site-fidelity to the New Caledonia (E (ii)) and Tonga (E (iii)) breeding grounds are likely to pass northwards along the eastern coastline of the North Island of New Zealand and after clearing the northern tip of New Zealand, before resuming their migration to New Caledonia (E (iii)) on a northerly track, or to the Tongan Islands (E (iii)) on a northeasterly track along the Tongan trench. Two humpback whales sighted in Kaikoura during the northward migration, were also photographed in New Caledonia and Tonga, which suggests this may be the case (Constantine et al., 2006). This is supported by the telemetry data in Garrigue et al. (2010).

Dawbin (1956) reported that southbound migrating humpback whales approached New Zealand from the north in narrowly focused pathways. The major proportion of the migration arrived along the western coastline of the North and South Islands, were deflected to the southwest until they rounded the southern tip of the South Island and continued their southern migration to Antarctic waters. Some southbound humpback whales passed around the northeastern tip of the North Island (Dawbin, 1956; 1966). This was the case with a humpback whale sighted in New Caledonia, which was also sighted in New Zealand at the Bay of Islands (NE of North Island) during the southern migration (Constantine et al., 2006). An even smaller proportion of the migration, move from west to east through the Cook Strait and Foveaux Strait (Dawbin, 1956).

Humpback whales travelling directly from eastern Australia are likely to approach the western coastline of New Zealand from the east, whereas those migrating from New Caledonia and Tonga would be travelling from the north. Consequently humpback whales from eastern Australia would more likely arrive at, or towards the southern end of, the western coastline of the South Island of New Zealand.

Photo-identification sampling on the southeastern coast of New Zealand and in Cook Strait may therefore represent a sampling bias. Selecting at least three additional sampling sites for systematic photo-identification of humpback whales in New Zealand waters could provide data to determine the destinations of humpback whales passing through the northern waters of New Zealand. These sampling sites could include a site within the Foveaux Strait, a site on the northeastern coast of the North Island, a site on the northwestern coast of the North Island, and a site on the southeastern coast of the South Island, while continuing concurrent sampling in the Cook Strait.

Migration to breeding grounds north of New Zealand

Dawbin (1964) found Discovery mark matches between eastern Australia and Foveaux Strait, at the southern tip of New Zealand and Cook Strait located between the North and South Islands of New Zealand. He stated that the recapture rates of humpbacks marked off eastern Australia and in waters near New Zealand and Norfolk Island indicated that there was significant segregation between groups that migrated along the eastern coast of Australia and those that migrate past islands further east.

Differentiation between eastern Australian (E (i)), New Caledonia (E (ii)) and Tonga (E (iii)) animals has been substantiated by recent genetic and photo-identification studies (Anderson and Brasseur, 2007; Anderson et al., 2010; Garrigue et al., 2011; Garrigue et al., 2006; Olavarria et al., 2006a; Olavarria et al., 2007; Olavarria et al., 2006b; South Pacific Whale Research Consortium et al., 2007). Over 800 sightings of humpback whales have been reported in New Zealand waters between 1970 and 2007 (Nadine Gibbs, pers. comm.). The majority of sightings were made on the southeast coast of New Zealand off Kaikoura and during systematic surveys conducted in Cook Strait (Constantine et al., 2006; Gibbs and Childerhouse, 2000).

Comparisons of the New Zealand and eastern Australian catalogues for the period 1999–2004, reported herein, resulted in three matches with eastern Australia. All three matches were sighted in the Cook Strait during the early northbound migration and in Hervey Bay during the late southbound migration, two of the matches occurred within the same season (Garrigue et al., 2011). Previous matches between New Caledonia, eastern Australia and New Zealand have been reported (Garrigue et al., 2002; Garrigue et al., 2000) and more recent comparisons of the New Zealand and Oceania catalogues have reported matches between New Caledonia, Tonga and New Zealand (Constantine et al., 2006).

The results reported in this paper confirm that many humpback whales are migrating from Antarctic feeding areas through New Zealand waters to the eastern Australian (E (i)) breeding grounds. Whilst there is some evidence of humpback whales travelling through New Zealand waters to the New Caledonia (E (ii)) breeding grounds to the northwest, and the Tongan (E (iii)) breeding grounds to the northeast of New Zealand, further systematic sampling, at different locations around the northern coastline of New Zealand, is required to fully substantiate the destinations of humpbacks whales travelling through New Zealand waters.

Effect of exploitation and recovery on Pacific migratory destinations

Commercial whaling including some illegal post-war whaling is estimated to have reduced the Area V humpback whale population to 500 individuals or less by the early sixties (Chittleborough, 1965; Clapham et al., 2009). Dawbin (1964) noted that the great decline in humpback numbers between 1959 and 1962 paralleled simultaneous decreases of humpback whales observed in many other South Pacific localities, such as the Chesterfields, Vanuatu and Fiji. Jackson et al. (2008) estimated that the humpback whale pre-exploitation abundance for eastern Australia and Oceania ranged from around 26,400–31,400 and 16,000–23,000 respectively. These results are similar to the most recent modelling exercise undertaken by the Scientific Committee who estimated pre-exploitation abundance at around 21,600–29,000 (90% credibility interval) for Breeding Stock E(i) and 11,000–19,600 (90% credibility interval) for Breeding Stock O (IWC, In press).

The humpback population from the eastern Australian (E (i)) breeding grounds has increased over the last fifty years was independently estimated to be around 7,000–8,000 in 2004 (Noad et al., 2011; Paton et al., 2011). The IWC Scientific Committee estimated the 2012 population to be
14,700–18,000 (90% credibility interval) during the modelling exercise referred to above (IWC, In press).

In contrast population levels in Oceania are relatively low. An overall estimate of the humpback population in Oceania by 2004 was 3,827 (CV, 0.12) individuals, with 472 in New Caledonia (E (ii)) and 2,311 in Tonga (E (iii)) (South Pacific Whale Research Consortium et al., 2006). The IWC Scientific Committee estimated the 2012 population to be 4,500–6,000 (90% credibility interval) during the modelling exercise referred to above (IWC, In press). However, it noted that the complexities of eastern Oceania with respect to stock structure and trend information required further investigation.

There is little evidence of humpback whale population recovery in Vanuatu, Fiji and Norfolk Island, and no evidence of recovery at the Chesterfields in the Coral Sea (Jackson et al., 2008; South Pacific Whale Research Consortium et al., 2006). Whilst numbers of humpback whales have been observed in New Zealand waters in recent years, no abundance estimate is available for the humpback whales migrating past New Zealand (Constantine et al., 2006; Gibbs and Childerhouse, 2000).

Clapham and Zerbini (2006) have suggested that social aggregation among the surviving Oceania humpback whales (i.e. that whales that once went to now-depleted breeding grounds changed their migratory destination to eastern Australia) may provide an explanation of why the eastern Australian (E (ii)) group has recorded relatively earlier and stronger population increase than has been seen in New Caledonia (E (iii)) and Tonga (E (iii)) and why little recovery has been observed in Fiji and no recovery observed in the Chesterfields (see Clapham and Zerbini, 2006) for a discussion of the humpback ‘Social Aggregation’ Hypothesis).

Further research
Accumulation and comparison of photo-identification data, together with genetic and satellite tagging data obtained across the breadth of the Area V feeding area, would greatly improve our understanding of the level and rate of intermingling among humpback whales from different breeding groups while in Antarctic waters. Data on individual humpback whales, passing through New Zealand waters to breeding grounds in eastern Australia and the western Pacific, offers the opportunity to document and quantify temporary and/or permanent immigration between existing breeding grounds and to monitor and assess recovery of humpback whales in formerly occupied breeding grounds in Oceania.

Conclusions
The data herein supports earlier research that, although low levels of intermingling occur between eastern Australia (E (i)) and Oceania west (E (ii)) breeding ground populations and, Oceania west (E (ii)) and Oceania east (E (iii) and F) breeding ground populations, these populations are discrete breeding populations.

Although based on a small sample size from New Zealand, the results presented here confirm that eastern Australian humpback whales are travelling through southern New Zealand waters en-route from Antarctic feeding areas.

ACKNOWLEDGEMENTS
All authors acknowledge the remarkable contribution of Dr Bill Dawbin and Dr Graham Chittleborough to our understanding of Humpback Whales. We acknowledge Fond Pacifique for funding through Opération Cétacés and the South Pacific Whale Research Consortium for the project of matching the catalogues of east Australia and Oceania. The study of humpbacks undertaken in Oceania by the SPWRC is partly supported by the International Fund for Animal Welfare (IFAW). The long-term study of humpbacks in Hervey Bay being conducted by Trish and Wally Franklin is supported by The Oceania Project and in part by an Australian Research Council Linkage grant with the International Fund for Animal Welfare (IFAW) and the Southern Cross University Whale Research Centre (SCUWRC). We also thank participants in The Oceania Project’s Internship program for their financial contribution and assistance to the Hervey Bay study. Research undertaken in Hervey Bay was conducted under research permits issued by the Queensland Parks and Wildlife Service (permit numbers MP2006/020 and WISP03749806). The research undertaken off Ballina and Byron Bay was funded by the Southern Cross University Whale Research Centre and conducted under Scientific Research Permits issued by the Department of the Environment, Water, Arts and Heritage under the EPBC Act 1999 (permit number E2001/0005) and the New South Whales National Parks and Wildlife Service (permit number S10403). We thank Greg Luker of Southern Cross University for providing assistance with figures. The Cook Strait Project acknowledges the Department of Conservation, Dolphin Watch Ecotours, Picton and WWF for their support. We thank John Calambokidis and two anonymous reviewers for their comments, which contributed to the manuscript.

REFERENCES

