Introduction: Successful treatment for HIV infection requires sustained viral suppression (SVS). Patients with undetectable HIV-RNA levels have a significantly lower risk of clinical disease progression. And at community level viral suppression is important to reduce HIV transmission and the emergence of resistant strains. The study aimed to analyze the frequency and duration of viral suppression (VS) in the first cohort of people living with HIV/AIDS (PLWHA) under treatment.

Methods: We retrospectively evaluated data from all PLWHA uninsured adults who initiated HAART through the National Program during 2004–2006 and followed-up until 2012. Patients with complete records in the National Laboratory Reporting System Data Base were included. The duration of VS was analyzed using survival analysis (Kaplan-Meier) in PLWHA who achieved viral suppression (VS) in the first cohort of people living with HIV/AIDS (PLWHA) under treatment. Survival time was measured between the first control with viral load ≤400 copies/ml until the presence of first interruption or failure of viral suppression (FSV) with viral load > 400 copies/ml. Persons lost to follow up and those without FSV were censored. R Software 3.0.3 was used.

Results: During the study period a total of 6289 PLWHA had access to health care settings for initial evaluation and only 5142 received HAART. Of these, 4530 (88%) achieved VS for variable time (responders) and 612 never presented VS (non-responders). Cumulative survival rate was analyzed in responders: 91.1% maintained VS up to one year, 84.6% up to two years, 80.2% to three years, 77.1% to four years, 74.1% to five years and 70.1% to six years. According to survival analysis, Kaplan-Meier curves presented lower duration of VS in young adult patients, females, persons in prisons and those who did not increase their CD4 above baseline. No differences were observed with baseline CD4 and viral load ($p > 0.05$).

Conclusions: This findings suggest that SVS as a programme indicator is feasible and useful for monitoring health care settings and ranking them like a control quality measure. SVS could also be included as another parameter in cascade of treatment measures.

http://dx.doi.org/10.7448/IAS.18.5.20408

WEAD0103

Entry into care following universal home-based HIV testing in rural KwaZulu-Natal, South Africa: the ANRS TasP 12249 cluster-randomized trial

Melanie Plazy1,2; Kamal ElFarouki3,4; Collins Iwuji1,6; Nonhlanhla Okesola2; Joana Orme-Glemann1,2; Joseph Larmarange5,7; Marie-Louise Newell8; Deenan Pillay5,9; François Dabis1,2; Rosemary Dray-Spira4,4 and for the ANRS 12249 TasP Study Group

1INSERM U 897 – Centre Inserm Epidémiologie et Biostatistique, Bordeaux, France. 2Université Bordeaux, Institut de Santé Publique, d’Épidémiologie et de Développement (ISPED), Bordeaux, France.
WEAD0104
Assessing the HIV care continuum in The Caribbean, Central and South America network for HIV epidemiology (CASANet): progress in clinical retention, cART use and viral suppression

Peter F Rebeira; Carina Cesar; Bryan E Shepherd; Raquel B De Bond; Claudia Cortés; Fernanda Rodrigues; Pablo Belaunzarán-Zamudio; Jean W Pape; Denis Padgett; Daniel Hoces; Catherine C McGowan and Pedro Cahn
1School of Medicine, Vanderbilt University, Nashville, United States.
2Fundación Huésped, Buenos Aires, Argentina.
3Instituto Nacional de Infectología Evando ChagasFundación Oswaldo Cruz, Rio de Janeiro, Brazil.
4Fundación Arrixarán, Universidad de Chile, Santiago, Chile.
5Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
6Le Groupe Haltien d’Étude du Sarcome de Kaposi et des Infections Opportunistes in Port-au-Prince (GHESKIO), Port-au-Prince, Haiti.
7Instituto Hondureño de Seguridad Social and Hospital Escuela, Tegucigalpa, Honduras.
8Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.

Introduction: Retention, combination antiretroviral therapy (cART) use and viral suppression are key stages in the HIV Care Continuum associated with delayed disease progression and reduced transmission. We assessed trends in these indicators within the large and diverse CASANet cohort over a decade.

Methods: Adults from CASANet clinical cohorts in Argentina, Brazil, Chile, Haiti, Honduras, Mexico and Peru contributed data from first visit between 2003 and 2012 until final visit, death, or the end of 2012. Retention was ≥2 HIV care visits in a year, >90 days apart. cART use was prescription of a regimen of ≥3 active antiretroviral agents in a year. Viral suppression was HIV-1 RNA <200 copies/mL at last measurement in the year. cART use and viral suppression denominators were subjects with ≥1 visit in the year. Multivariable modified Poisson regression models were used to assess temporal trends and predict percentages meeting each indicator in each year, adjusting for age, sex, HIV transmission mode, cohort, calendar year and total time in care.

Results: Among 18,799 individuals contributing to retention analyses, 14,380 to cART use analyses and 13,330 to viral suppression

Abstract WEAD0104 - Table 1. Person-years contributed and characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Not Retaineda</th>
<th>Retainedb</th>
<th>p*</th>
<th>Not on cARTb</th>
<th>On cARTb</th>
<th>p*</th>
<th>Not virally suppressedc</th>
<th>Virally suppressedc</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>22,386</td>
<td>67,171</td>
<td><0.01</td>
<td>11,565</td>
<td>57,312</td>
<td><0.01</td>
<td>19,369</td>
<td>41,271</td>
<td><0.01</td>
</tr>
<tr>
<td>Age (years)</td>
<td>33.9 (28.2, 40.6)</td>
<td>36.4 (30.0, 43.9)</td>
<td><0.01</td>
<td>32.5 (27.1, 39.3)</td>
<td>35.5 (29.6, 42.4)</td>
<td><0.01</td>
<td>33.5 (27.7, 40.4)</td>
<td>36.0 (30.1, 42.9)</td>
<td><0.01</td>
</tr>
<tr>
<td>Male sex</td>
<td>14,238 (25.1)</td>
<td>42,487 (74.9)</td>
<td>0.35</td>
<td>8119 (16.5)</td>
<td>40,982 (83.5)</td>
<td><0.01</td>
<td>13,493 (31.0)</td>
<td>29,981 (69.0)</td>
<td><0.01</td>
</tr>
<tr>
<td>Female sex</td>
<td>8148 (24.8)</td>
<td>24,684 (75.2)</td>
<td>0.34</td>
<td>3446 (17.4)</td>
<td>16,330 (82.6)</td>
<td>0.01</td>
<td>5876 (34.2)</td>
<td>11,290 (65.8)</td>
<td><0.01</td>
</tr>
<tr>
<td>MSM HIV risk</td>
<td>7050 (27.6)</td>
<td>18,503 (72.4)</td>
<td><0.01</td>
<td>5079 (18.6)</td>
<td>22,225 (81.4)</td>
<td><0.01</td>
<td>7537 (31.4)</td>
<td>16,489 (68.6)</td>
<td><0.01</td>
</tr>
<tr>
<td>IDU HIV risk</td>
<td>820 (52.7)</td>
<td>735 (47.3)</td>
<td>0.01</td>
<td>203 (15.1)</td>
<td>1141 (84.9)</td>
<td>0.01</td>
<td>349 (29.3)</td>
<td>842 (70.7)</td>
<td><0.01</td>
</tr>
<tr>
<td>Hetero HIV risk</td>
<td>8442 (29.2)</td>
<td>20,495 (70.8)</td>
<td>0.01</td>
<td>4800 (16.1)</td>
<td>24,945 (83.9)</td>
<td>0.01</td>
<td>8921 (34.4)</td>
<td>17,044 (65.6)</td>
<td><0.01</td>
</tr>
<tr>
<td>Other/unk.</td>
<td>6073 (18.1)</td>
<td>27,438 (81.9)</td>
<td>0.01</td>
<td>1483 (14.2)</td>
<td>9001 (85.9)</td>
<td>0.01</td>
<td>2562 (27.1)</td>
<td>6896 (72.9)</td>
<td><0.01</td>
</tr>
<tr>
<td>HIV risk</td>
<td>7 (4, 9)</td>
<td>7 (4, 9)</td>
<td><0.01</td>
<td>6 (3, 8)</td>
<td>8 (5, 10)</td>
<td><0.01</td>
<td>6 (4, 9)</td>
<td>8 (5, 10)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Innovative interventions should be considered to ensure the success of a UTT strategy.

http://dx.doi.org/10.7448/IAS.18.5.20409