Documentation
Bibliographique Commentée

No. 3400

Exchangeable Cations
Cation Exchange Capacity

Analyse des Sols, Des Eaux et des Plantes

Damas

LE CENTRE ARABE
POUR LES ETUDES DES ZONES ARIDES ET DES TERRES SÈCHES
(ACSAD)
Abstracts prepared by Jean-Olivier Job & Touhama Mouheich

Chemist, ORSTOM - ACSAD Cooperation Programme.

Senior Chemist, ACSAD.

Damascus - October 1980
Authors: ABDEL-AAL (S.H) & BERGSETH (H)
Title: Ion Exchange removal of carbonates from saline calcareous soils prior to determination of Cation Exchange Capacity using 89Sr.
Pages/ref: Page 349-353 / 15 ref.

Summary:
A mixed ion exchange resin is used to remove calcium carbonate from soils. CEC is then measured by 89Sr retention. Results are very close to ammonium acetate method, and precipitation of strontium carbonate is avoided. Method is tested on two calcareous profiles.

Method: Removing calcium carbonate:

0.1 gr. soil, grinded to 0.1 m/m, is shaked 24 hours with 0.3 - 0.9 m/m mixed resin. Soil and resin are separated by sieving. CEC is then measured by a 0.2N strontium chloride solution spiked with 0.6 millicurie/1 89Sr.

In the six samples treated, ranging from 5 to 16 mS/cm (electric conductivity of saturated extract) the method gave a sum of exchangeable cation superior to measured CEC and in agreement within 1% with ammonium acetate method as an average of three replicates for each.

In all cases sodium acetate method gave results higher than both other methods.

Application: Cation Exchange Capacity.

Precision: When compared to 1N ammonium acetate PH 7, strontium-mixed-resin method gave CEC results within 1% (range 30-35 meq/100 gr), ammonium acetate gave CEC 10% higher.
- Strontium method without treatment gave CEC in excess of 33 to 100 meq/100 gr depending on calcium carbonate content of samples.

Tables:
- Properties of soils used and mineralogical composition.
- Comparison of CEC determination, sodium acetate, ammonium acetate, strontium chloride and sum of EC.
- CEC with and without resin treatment.

Material: Scintillation counter.

Key Words: CEC / RESIN / CALC. CARBONATE / 89Sr / ABDE
Determination of exchangeable bases in calcareous soils.

Summary:

Three methods are compared for determining exchangeable cations in soil containing 3 to 35% of calcium carbonates, with special mention to exchangeable calcium and magnesium. The morphology of calcium carbonate appears to be an important factor leading to different solubilities in various extractants. Methods based on assumption of constant solubility of carbonates in successive extractions are suspected.

Methods:

Method a) EC are displaced by 1N NaCl solution (up to 500ml) correction for dissolved carbonates is made by titrating carbonates passed into solution.

b) Exchangeable calcium is bound by oxalate ions and calculated from the difference in oxalate concentration before and after saturation. The reagent involved in a mixture of ammonium salts kept at 10°C.

c) Soil is saturated by two times the same volume of 1N NaCl. The first is supposed to contain exchangeable and soluble (Ca, Mg), the second only soluble (Ca, Mg).

All methods gave similar results when calcium carbonate (3%) was in latent, invisible form CEC values differed widely when calcium carbonate was either mycelium or visible crystalline form (5%), method a giving the more reliable results.

Figures:
- Determination of exchangeable calcium by three methods.
- Determination of ECa and E Mg in calcareous Chernozems by three methods.

Chemicals:
Method 1: Sodium chloride. Hydrochloric acid.
Method 3: Sodium chloride.

Key Words: EC - CEC / CALCIUM CARBONATE /
Summary:
Irreversible cation fixation on clay prevents the Ca determination of CEC of clay when less than 30 mg of sample is available and only layer charge may be measured directly.

Method: 30 mg of Ca or Ba-saturated clay is fused with 0.7g NaOH to red heat 10 min. and dissolved in HCL (final conc.: 4%).

Barium: To 5ml of the clay solution, 5ml of glycerol/ethanol mixture and 2.5ml of (1.5M) H₂SO₄ are added, volume is made up to 25ml. Turbidity is measured after 10 minutes.

Calcium: To 5ml of the clay solution add 4.0ml of the glycerol/ethanol mixture, 1.5ml 3M NH₄OH and 4.0ml oxalic acid solution (20 g/l) turbidity is measured after 25 min. Authors suggest that barium may be fixed on surface of clay particles and propose to use Ca saturated samples even if the quantity of available clay is only 5 to 30 mg.

Tables: Comparison of nephelometric and others determination of CEC (on Ba and Ca-saturated clays) for bentonite, montmorillonite and beidellite samples.

Precision: For 30 mg samples having a CEC 70-100 meq/100 gr. duplicate measurements agreed within 10% and comparison with other methods was better than 5%.

Key Words: CEC / MINE / Ba / Ca /
Auteur : xxx / ARIANA.
Titre : Mesure de la capacité d'échange et des cations échangeables d'un sol.
Pages/ref: 11 pages /-

Résumé:
La méthode décrite, utilise la saturation par l'acétate d'ammonium pH 8.2, le rinçage à l'éthanol, et le remplacement par le chlorure de sodium. La méthode est applicable aux sols neutres.
La technique utilisée, est la percolation à niveau constant (vase de Mariotte).
Les cations échangeables sont mesurés par absorption atomique ou photométrie de flamme et la capacité d'échange déterminée par la concentration en ammonium dans le percolat NaCl mesuré par colorimétrie à l'indophenol.
Une correction est faite pour tenir compte des cations solubles lorsque la somme des cations échangeables dépasse la capacité d'échange. Cette correction est pondérée pour le calcium et le magnésium.

Application: Cations échangeables et capacité d'échange.

Matériel : Colorimètre. Photomètre à flamme ou spectrophotomètre d'absorption atomique.

Mots Cles : EC - CEC / ARIA
Summary:

Ion exchange affinities for exchange sites of soils and ion exchange Ca/Mg constant was studied on a natural acid soil (clay 7.5%, organic matter 3.1%, pH 5.2, NH₄Cl extractable cations Ca = 6.8, Mg = 0.7, K = 0.5, Na = 0.11 meq/100 gr, clay was montmorillonite with moderate illite. In the presented study, the soil was equilibrated with solutions having a Mg/(Mg + Ca) concentration ratio ranging from 0.07 to 0.94 in 23 different experiments.

Results: It was shown that except at specific sites Ca and Mg are held with similar attraction by exchange sites, the number of sites available for Ca being however greater than for Mg. The difference between Ca and Mg fixation is therefore pronounced only at low level of activities.

Tables:

1: Ion exchange equilibrium between Ca and Mg for (Ca + Mg) = 4.2 meq/l.

2-3: Quantity - Intensity relation for labile and exchangeable Mg and Ca.

Key Words: EC - CEC / Ca - LABIL / Mg - LABIL /
Title: Determination of cation exchange capacity in colloidal soil material by means of radio strontium.

Public: Soil Science 95 - 2 - 1963

Pages/ref: (97 - 100 / 6 ref.)

Summary:

CEC is measured on a suspension of dispersed colloid (less than 1 micron)by flocculation with 0.2M radio-strontium chloride. Excess strontium is washed out until free of chloride. Adsorbed strontium is determined by counting the 89Sr beta emitted by the precipitate.

Method:

To 50 mgr of dispersed colloid, 0.2 ml radio-strontium chloride is added. Flocculation is made overnight, suspension is decanted, saturated again with radio strontium chloride, agitated one hour (two times). Precipitate is washed until free of chloride. Precipitate is dried. A set of radio-strontium standards are prepared and activity of precipitate is compared to standard curve.

Application: Cation Exchange Capacity of Clays.

Tables:
- Centrifuge table assembly with removable aluminium counting dish.
- Self absorption of radio-strontium beta emission in soil sample.
- Effect of adding CaCO₃ to the sample.
- Comparison with flame photometric method.
- Results of CEC from Kaolin (4 meq/100 gr), to Montmorillonite (103 meq/10 gr).
- Effect of addition of calcium carbonate on CEC determination (0 to 30% added CaCO₃).

Precision:
- Self absorption is negligible below 50 mgr/cm² of soil spread in aluminium counting dish.
- Excess of added Sr should be 20 times estimated CEC of the sample.
- Radio-strontium method compares with Sr flame emission within 1% from 4 to 105 meq/100 gr of clay material.

Material: Beta counting equipment (or flame photometer) - centrifuge.

Chemicals: Radio strontium chloride . Silver nitrate . Nitric acid . HCL .

Key Words: CEC / CLAY / AAS /
Authors: BOWER (C.A), REITEMEIER (R.F) & FIREMAN (M)
Title: Exchangeable cation analysis of saline and alkali soils.
Public: Soil Science 73 - 4 - 1952.
Page/ref: 251-261/16 ref.

Summary:

The determination of exchangeable cations (EC), and cation exchange capacity (CEC) is considered with the evaluation of soluble salts (SS) in saturation extract.

EC are determined on 5 gr of soil by three times 33ml of 1N PH7 ammonium acetate. Soluble cations in a saturated paste from 200 gr of soil. For CEC, 5 gr of soil is saturated by four 33 ml portions of 1N PH8.2 sodium acetate, washed with 95% ethanol. Efficiency of washing is controlled by electric conductivity (less than 40 micro S/cm). Replacement step is done by neutral ammonium acetate. CEC is proportional to sodium extracted in this last solution.

The paper details experimental conditions as optimum number of acetate extractions to remove (EC + SS) on saline, calcareous and non saline soil samples. Data indicate that three extractions are sufficient to remove all soluble and exchangeable cations. Four treatments with sodium acetate are sufficient to saturate exchangeable sites with sodium.

Hydrolysis of exchangeable sodium upon washing treatment is investigated.

Tables:
- Amounts of various cations removed by successive ammonium acetate extractions of soils.
- Amounts of Ca plus Mg removed by sodium acetate extraction of soil.
- pH value of successive acetate extracts of soils.
- Removal of excess salts hydrolysis of exchangeable Na upon washing sodium-treated soil with ethanol.
- CEC of soils by Na at various PH values.
- Influence of CaCO3 upon values obtained for the CEC by saturation with normal sodium acetate solution of PH 8,2.

Material: Flame photometer - PH-meter.

Key Words: EC - CEC / SOLUBLE SALTS / BOWE
Summary:

A modification of the Mehlich–Piper procedure is proposed to eliminate solubilization of carbonates as a source of errors in exchangeable cation determination. A soil sample is treated twice with same volume and extracting solution. The first fraction is supposed to contain soluble and exchangeable cations. The second only cations from soluble carbonates. The solution used is barium chloride-triethanolamine 0.2N, pH8.1. The method is applied to dolomitic soils of Spain (pH 7.6 to 8.2; O.M 0.3 to 6%; Clay 5 to 18%). The technique used is percolation on 5 gr sample.

Correction for dissolved carbonates is based on HCO₃⁻ determination, care being taken to prevent CO₂ contamination from air and correction being made for exchanged H⁺ and TEA reaction with acid. The amounts of carbonates dissolved during the second extraction is smaller than in the first one (the rate of dissolution of carbonate is not constant with respect to time).

Tables:
- Analysis scheme. Titration curve for HCO₃⁻.
- Relationship between ex: (Ca + Mg) calculated and true exch. cations.
- Intermediate data used to calculate dissolved carbonates.

Precision: Method is tested for soils containing 5 to 55% CaCO₃ and 5 to 18% clay.

Material: AA Spectrophotometer.

Chemicals: Barium chloride . HCL . TEA . Amonium sulfate . EDTA . Eriochrome black T.

Key Words: EC - CEC / CARBONATES / CALC. CARBONATE /
Summary:

One-step method for measuring EC and CEC of soils, based on the high affinity of silver-thiourea complex for exchange sites. Ag, Ca, Mg, Na, K are measured in a single extract. CEC is related to decrease in Ag concentration before and after saturation. The method is compared with 45Ca isotopic dilution method and NH$_4$OAC-NaCl method, and is tested on 30 podzolic, 15 saline alkali, and 6 calcareous soils (CaCO$_3$ 7 to 65%). Different procedures were tested with or without 1M NH$_4$OAC pH 7 as a buffer. Direct saturation of alkali soils with silver-thiourea being impossible because the instability of the complex at pH above 8. All methods are described into detail.

Results:

Silver-thiourea method and ammonium acetate gave correlation coefficient higher than 0.98 and exhibited a similar dependence on organic matter content of samples. For exchangeable cations the best agreement appeared on Ca determination.

Tables:

Comparison of CEC values as obtained by different methods on podzolic, saline alkali and calcareous soils.

Correlation between silver-thiourea method and NH$_4$OAC percolation method for exchangeable cation (Ca, Mg, K) on podzolic soils and exchangeable + soluble cations on saline alkali soils.

Precision: Reproducibility is better than 5% for 53 duplicate.

Material: AA Spectrophotometer, Centrifuge, End-over-end shaker (optional: scintillation counter).

Chemicals: For Ag-thiourea method only: NH$_4$OAC, AgNO$_3$, Thiourea (optional: Ag gamma tracer).

Key Words: CEC, AAS-IND. METH.
Summary:

A modified version of Alexiades' and Jackson's method for estimating vermiculite percentage of soil without size fractionation is presented. The method relies on the ability of K to be strongly fixed on interlayer cation exchange sites of vermiculite. By measuring CEC by Ca saturation, (CaEC) then by K saturation (KEC). The content of vermiculite may be estimated, providing the vermiculite has a constant interlayer exchange capacity of 154 meq/100 gr. The parameters of Alexiades' procedure are reviewed and results compared with X-ray diffraction patterns (see tables). Authors conclude that assumptions on which the method is based are subject to criticism. Namely: 1) 154 meq/100 gr value is an average value only. 2) vermiculite may not fix K if the layers are "propped open by hydroxy islands" in some chlorite-vermiculite types. 3) some other minerals may also fix K (beidellite-beidellite-montmorillonite).

Experiments were made on 0.5 gr samples saturated with 1N pH5 NaOAc at 80°C for 30-60 min. Excess acetate is removed by centrifuging; organic matter is destroyed by overnight heating with 0.5ml H2O2. Soils are saturated on two subsamples by KOA and NaOAc. The volume of excess saturating solution is measured by weighing.

Tables: CaEC, KEC and vermiculite % of 13 soils.
- some properties of particle size fractions of saprolite.
- effect of free iron removal; effect of different drying treatments; effect of coarse versus fine crushing of chlorite and micas-derived vermiculites.
- X-ray diffraction pattern of some vermiculite soils.

Chemicals: KOAc - CaOAc - NaOAc - NH4OAc.

Key Words: CEC / CLAY / FE OXIDES / X-RAYS /
Estimation of components of soil cation exchange capacity from measurements of specific surface and organic matter.

Summary:

CEC was correlated with specific surface using the ethylene glycol monoethyl ether retention method. A simple correlation coefficient with CEC, \(r = 0.81 \). The study was made on 51 samples of 10 profiles with a CEC ranging 6 to 63 me/100 g, clay 0.4 to 55%, organic matter 0.2 to 15% and specific surface (sq. meter/g) 5 to 250.

A multiple regression analysis with two factors gave a value \(r^2(1) = 0.97 \) when specific surface was combined with organic matter and \(r(2) = 0.58 \) when clay percentage was combined with organic matter.

The difference between \(r(1) \) and \(r(2) \) is attributed to the ability of specific surface measurement to count for phyllosilicates in silt and sand fractions.

Tables:

- Summary of laboratory data for the soils and estimates of organic and mineral components of CEC.
- Simple correlation coefficients between CEC and various soil properties.
- Multiple regression equations relating CEC with (i) organic matter (O.M) and clay and (ii) O.M and specific surface.

Precision: CEC was measured at pH 8.2 using barium chloride with triethanolamine without washing step.

Chemicals: (CEC only) barium chloride, Triethanolamine.

Key Words: CEC / CLAY / PHYS. - ANALYSIS / CURT
Auteurs : DEWIS (J) & FREITAS (F)
Titre : Capacité d'échange cationique, saturation par le lithium.
Pages : (112-117), (125-127)

Resume:
La capacité d'échange cationique est mesurée en deux temps:
- Solution saturante: LiOAC 0.1N/LiCl 0.4N, Cl servant d'ion indicateur.
- Solution de déplacement: Ca(OAC)₂ 0.2N.

Le pH des deux solutions est tamponné soit à pH 8.2 (sols calcaires et alcalins) soit à pH 7.0 terre neutres et acides. On dose le lithium entraîné dans l'acétate et le chlore qui mesure l'exces de solution saturante retenue par capilarité.

La méthode et les calculs sont décrits en détail, y compris l'appareillage et le matériel nécessaire. La méthode peut convenir pour doser les cations échangeables dans l'extrait au chlorure-acétate de lithium. Il faut dans ce cas précipiter le Ca sous forme de tungstate et doser Mg seul avec l'EDTA si on veut utiliser la complexométrie.

Materiel : Photomètre à flamme (ou Spectrophotomètre AA).

Produits : LiCl - HOAC - LiOAC·2H₂O - Ca(OAC)₂·H₂O et (pour dosage des chlorures): nitrate mécurique, diphenylcarbazone, ethanol, EDTA, Tungstate de Na.

Mots Cles: ECEC / ECHANGEABLE /
Summary:
The cation selectivity on soil exchange material depends not only on pH temperature, ion size, ion valence, ion hydration, ion concentration of equilibrating solution but also on structural and charge properties of micaeous vermiculites. Cation exchange selectivity was measured for montmorillonite, vermiculite, muscovite, biotite. CES was measured by a modified version of Schachtschakel's method:

- A Na saturated clay sample is equilibrated with a solution having a K/Ca \(\approx 0.10 \) concentration ratio of 0.10 and sorbed K and Ca were displaced by Mg. Excess saturating solution was determined by weighing. The hypothesis that the high K/Ca selectivity of micas as compared to montmorillonite was due to steric hindrance of hydrated divalent cations such as Ca and Sr was tested.

Tables:
1: Mineralogical analysis of samples.
2: Flow sheet for the determination of CEC and EC of fine grained material.
3-4: K/Ca, K/Sr, K/Ba, CES of Na saturated exchange material.
5: Mg/Ca, Sr/Ca, Ba/Ca, CES of Na saturated exchange material.
6: CEC of original samples as given by different saturating cations.
7-8: Diagramatic cross-sections of micaeous vermiculite showing K selectivity mainly in the wedge sites and of muscovite showing K selectivity both in wedge sites and on cleavage surfaces.

Key Words: CLAY MINE. / CEC /
Author: EDWAEDS (A.D)
Title: An ion-exchange resin method for the determination of cation exchange capacity.
Public: Canadian Journal of Soil Science 47 - 140 - 1967
Pages/ref: 140 - 142 / 5 ref.

Summary:
A method using saturation by ammonium ion from a cation exchange resin (ammonium form) instead of ammonium salt is described. It is convenient for micro soil samples. A home-made sieving arrangement made from a side-arm distillation flask is shown.

Method: 0.2 to 0.5 gr of sample is mixed with NH₄-resin in small glass vials (5 ml) and shaked 16 hours. Resin is removed by sieving into a distillation flask with a proper home-made adaptor. Separation of resin and soil is achieved by 25 ml of water if suction is applied to the mixture. Steam distillation is carried out after addition of sodium chloride and magnesium oxide. Titration of distilled ammonia is made by a 5ml microburette and 0.029 N acid.

Tables:
- Sieving arrangement for transferring saturated soil to steam distillation flask while removing the cation exchange resin.
- CEC values by three methods on five soils and soil properties (Ph, Clay, Organic matter).

Precision: Relative standard deviation of 6 replicates is around 1% from 18 to 62 me/100 gr of CEC and 3% at 3 me/100 gr.

Material: Distillation flask fitted with filter funnel and 80 mesh stainless steel screen (removable).

Chemicals: Sodium chloride, Magnesium oxide, Cation exchange resin (40 mesh minimum size).

Key Words: CEC / RESIN / EDWA
The CEC of artificial clay-sand mixture was related to dielectric dispersion (i.e., the difference between the dielectric constant of a soil sample at 3 and 75 megahertz respectively). Different regression equations were found for kaolinite, illite and montmorillonite-enriched samples. The relationships found were tested on natural soils and linear equation was found though the slope was different, the difference being attributed to organic matter, iron oxides and carbonates which cement colloid particles decreasing the dielectric dispersion.

Summary:

Key Words: ELEC / CEC / SOL /
Summary:
The method relies on saturation of exchange sites by barium at pH 8.1. Barium is exchanged with magnesium using a standard magnesium sulfate solution. The CEC is determined by calculating the loss of magnesium from the added standard solution of magnesium sulfate. The method is appreciable for soil containing up to 70% of gypsum providing some precautions:

1. A great excess of barium ions is used in saturation step.
2. EDTA titration of magnesium is corrected for calcium.

It was demonstrated that 1): even an excess of barium chloride does not dissolve all gypsum when present in quantities superior to 3% (overnight treatment). 2): pH 5.5 MgSO₄ treatment removes barium sulfate coating and an appreciable amount of remaining gypsum is dissolved during the second step of the procedure.

Tables:
- CEC (me/100 g soil) of gypsic soil using the original and a modified version of the Bascomb's method.
- Calcium content of final magnesium sulfate extract of soils during determination of CEC by Bascomb's method.

Chemicals: Barium chloride, Magnesium sulfate, Solochrome dark blue.

Key Words: GYPSUM / CEC / CaCO₃/
Summary:
A one step method for CEC consists in saturating the soil with \((OAc)_2M\) and measuring the difference in concentration of \(M\) before and after saturation. The washing step is not necessary providing the soil sample is weighed before and after saturation to estimate salt retention by capillarity in the sample. The precision of the method is usually poor since only 1 to 5% of the original concentration of \(M\) cation is adsorbed on exchange sites.

The author proposes to improve the precision by precipitating an equal amount of \(M\) cation in both solutions before measuring \(M\).

Method:

1. Calcium acetate:

Mix 1g soil with 5g silica sand, leach with 90 ml 0.0375 M calcium acetate. Collect the leachate in a 100 ml volumetric flask. Run a blank with sand only.

To a 15 ml aliquot precipitate calcium by adding 15 ml of 0.035 M calcium oxalate, centrifuge. Ca is determined in this solution by flame emission at 422 nm.

2. Barium acetate:

The same method may be used with barium acetate (precipitated by urea-dichromate). Ba is measured by Fe at 487 nm.

3. A third method using barium acetate / barium chloride mixture is also detailed, but was found unacceptable.

Table:
1. Some properties (PH, C%, clay %, clay mineralogy), of seven soil samples used. (All of them being acid soils).

2. Results of cation exchange measurements by four different methods (ammonium acetate and the three proposed).

Precision:
The precision is limited by the reproducibility of the volumes of precipitating solution. The standard error for the CEC by barium and calcium methods is 0.8 mmol/100 g corresponding to a coefficient of variation of about 5% as on soils ranging from 5 to 70 me/100 g CEC.

Chemicals:

Method 1:
- Calcium acetate
- Amonium oxalate
- Strontium chloride

Method 2:
- Barium acetate
- Urea dichromate
- Strontium chloride

Key Words: EC = CEC /
Summary:

Methods using (1) sodium as saturating ion (with washing by 95% ethanol and replacing by ammonium acetate), and (2) barium as saturating ion are presented. The sodium method is the conventional batch-centrifuge one. The barium method is the following:

Method:

To 1g soil add 20 ml 1N barium chloride (buffered to pH 8.1 by the same vol. of TEA. Shake, centrifuge. Wash quickly with 40 ml water, centrifuge. Add 20.0 ml magnesium sulfate (6.2 gr/l) shake two hours, centrifuge. Titrate Ca in the supernatant by EDTA with eriocrome black T as indicator and (Ca + Mg) on another aliquot. Calculate CEC from loss of Mg during saturation.

Chemicals: (Barium method only)

Summary:

The test for rapid measurement of base saturation uses two syringes. The first contains 1g soil sample the second KCL-TEA leaching solution. Extractable acidity (1) is first measured, then exchangeable calcium, plus magnesium (2). Percent base saturation is given by \((2) \times 100 / (1 + 2)\).

Results: The KCL-TEA extracted acidity is lower than the \(\text{BaCl}_2\)-TEA laboratory procedure; The CEC given by the field procedure closely approximates the N pH7 ammonium acetate values except for the spodic samples. The critical points for applying correctly the method is the measuring of buffer solution volume and the acid titration volume. The method allows separation of Alfisols and Ultisols orders of the Soil Taxonomy.

Tables: Figure of saturating device (syringe-bottle)
- Field and lab. exchangeable cations and base saturation data.

Precision: Correlation of the percent base saturation by the proposed method and \(\text{NH}_4\text{OAC}\) laboratory method was: \(r = 0.99\) slope 1.13 for 25 samples.

Material: Syringes - Field burette.

Chemicals: KCL - Triethanolamine - HCL - NaOH - EDTA - Bromocresol green - Ethanol - Eriochrome black T - \(\text{NH}_4\text{Cl} - \text{NH}_4\text{OH}\).

Key Words: CEC
Three methods are tested on 16 B horizons—samples of Ultisols and Alfisols from West Africa (pH 1/1: 4.5 to 6, clay%: 32 to 74, NH₄OAc - CEC: 4 to 30). The three methods gave different values of CEC: KCl - CEC, BaCl₂ - CEC, NH₄OAc - CEC (in increasing order).

The surface-charge properties of these highly weathered soils containing Fe and Al oxides and hydroxides, depend on pH and concentration of displacing solution. Authors suggest to use the value of effective CEC i.e: Sum of exchangeable cation (N NH₄OAc) and exchangeable acidity (N KCl). This value is more significant and reproducible. The differences between the methods of CEC is due to different pH of extracting solution to washing technique and to acetate anion on oxide surface.

Summary:

Tables:
- CEC of B horizon of 16 soils as determined by three methods.
- Effect on anion on CEC / Exchange acidity determined by three different methods / Observed and predicted values of base saturation of soils.

Precision:
NaOAc - NH₄OAc method gave a CEC: 4 to 20 meq/100 gr.
Effective CEC as proposed gave CEC range: 2 to 13 meq/100 gr.
(BaCl₂-TEA acidity + NH₄OAc exch.cations gave: 4 to 31 meq/100 gr.

Chemicals:
Method 1: NaOAc - ETOL - NH₄OAc
Method 2: NH₄OAc - BaCl₂ - Triethanolamine
Method 3: KCl - NH₄OAc - Chemicals for Al titration

Key Words: CEC
Auteurs : MARCCSN (J.M) & LACROIX (J.P)
Titre : Mesure de la capacité d'échange cationique de la fraction argileuse des sols par 85 Sr.
Pages/ref: 277-281/6 ref.

Resume:
La CEC des argiles est mesurée par scintillation liquide et par spectrométrie gamma de radiostrontium. La méthode par analyse d'amplitude permet de mesurer la radioactivité du strontium directement sur le sol.

Mode opératoire:
- 15 à 75 mg d'argiles sont saturées par 7 ml de chlorure de strontium, 0.1N (deux fois quatre heures d'agitation) doperé a 85 Sr, on centrifuge.
- on lave avec 3 ml de méthanol.

On mesure la radioactivité soit sur les surnageants de centrifugation successifs et sur les lavages (par scintillateur liquide) soit a l'aide d'un analyseur d'amplitude multicanaux équipé d'une sonde NaI de 8x8 cms.

Figures : Activité du radiostrontium au cours des différentes phases d'équilibre avec la solution saturante.

Precision: La technique s'applique à des échantillons de 15 mg à 8 g.
- La CEC d'une montmorillonite est mesurée à 10% près à 85 me/100 g.

Materiel : Analyseur d'amplitude NaI.

Produits : Chlorure de strontium, Chlorure de strontium radioactif.

Mots Cles: CEC / MINERALOGIE / RADIO / MARC
Authors: MAC LEOD (S) & ZARCINAS (B)

Title: The determination of ammonium and chloride by an autoanalyser for the measurement of cation exchange capacity of soils.

Publication: Communication in Soil Science and Plant Analysis 7-8-1976.

Pages/Ref: 743-750/8 ref.

Summary:
A continuous flow colorimetric method is developed for the simultaneous determination of ammonium and chloride from ammonium chloride used to saturate the exchangeable complex of soils.

Method:
- Salts are removed by a glycol-ethanol wash.
- Soil is saturated with 1N ammonium chloride pH 8.5 in 60% ethanol. Amonium adsorbed is replaced by a mixture of calcium nitrate/potassium nitrate (0.25 M / 1.5 M).

Colorimetry: Amonium is determined by Berthelot's sodium phenate-hypochlorite reaction and chloride by mercury (II) thiocyanate, ferric ions being provided by a ferric nitrate solution.

Diagrams (shown here separately) are:

1. Sample (1.6) / air (3.4) / water (1.6) / single mixing coil / iron (III) nitrate 20 g/l in nitric acid (1.6) / single mixing coil / (II) thiocyanate 0.8 g/l (1.6) / single mixing coil / colorimeter 480 nm / repump to waste, 2.9 / .

2. Sample (1.2) / air (3.9) / EDTA (disodium) M/60 (3.9) / sodium phenate (2.0) / single mixing coil / sodium hypochlorite (3% free chlorine) (2.0) / single mixing coil / bath 95°C (20 min) / cooling coil / colorimeter 520 nm / repump to waste (2.9) / .

Correction for free ammonia used to adjust the pH of saturating solution to 8.5 is made by applying a constant correction factor to ammonium results when high retention of saturating solution is suspected (swelling clays). Analysis of variance was made on 23 soil samples. The results for manual and automatic determination of chloride was the same. Standard deviation of ammonium determination was higher than in manual titrimetric method.

Precision: R.s.d is 2% at 48 me/100 g ammonium level and 0.7% at 15 me/100 g level of chloride.

Key Words: CHLORIDE / AMONIUM / AUTOANALYSE / CEC /
Summary:
It is proposed to determine exchangeable cations of saline soils, especially those with sulfate and chloride salinization after dissolving the salts in water (20 to 40% water/soil ratio) and washing them out by 70% ethanol; up to 10% by weight of soluble salts in soil may be eliminated. Data are presented on 15 samples with 0.6 to 3% water soluble salts, 0 to 30% p.s. and 5 to 12% carboantes.

Method: Wet 5 gr of soil to field capacity, leave overnight. Add 10-15 ml 70% ethanol mix, centrifuge. Repeat until no sulfate is detected in washings. Add 25 ml of 0.1N NH₄Cl in 70% alcohol, mix, allow to stand 1 hour, centrifuge. Repeat three times, collect supernatant in a porcelain dish, evaporate, dissolve in water. Determine Ca, Mg, K and Na.

The method is tested on a chloridic-sulfatic solonchak and a sierozem with sulfate salinization. In none of the soil samples soluble calcium was found in the 70% alcohol extracts. Sulfate of sodium and magnesium were not removed by washing out with alcohol alone.

Tables:
- Composition of adsorbed bases in meq/100g after removal of soluble salts with water alone, with alcohol alone according to the proposed method.
- Content of ions in 70% alcohol solutions and composition of exchangeable cations as a function of the degree of wetting before analysis (for 20% and 40% water/soil ratio).
- Sodium content in various extracts and soil solutions.
- Content of ions in extracts and soil solution (1/5 water extracts: 70% alcohol extract after wetting; soil solution).

Chemicals: Ethanol - Ammonium chloride.

Key Words: EC-CEC / SALINITY / SODIUM /...
Authors: OKAZAKI, SMITH (H.V) & MOODIE (C.D)
Title: Some problems in interpreting cation exchange capacity data.
Pages/ref: 202 - 208/9 ref.

Summary:

The effect of washing step during CEC measurement is discussed. The effect of washing out excess saturating cation is found to be the most important source of error, without regard to change of index cation used in saturating solution.

The value of CEC is not affected by the choice of divalent (Ba in a mixture barium acetate, barium chloride) or monovalent (Na in a mixture of acetate and chloride also) saturating ion.

It is also demonstrated that the number of washings necessary to remove excess saturating solution without loss by hydrolysis varies from sample to sample.

The batch technique, which involve mixing sample with saturating solution and centrifuging is reconsidered as far as washing step, which necessitates complete resuspension of soil material is concerned. Difficulties were encountered with Ba saturated sample. Resuspension problems may lead to results differing from those obtained by leaching.

Control of washing step by use of a tracer anion, as chloride (in nonsaline samples) is not free of errors, and control by limiting the number of washings is not applicable to all samples.

Tables:
- Identification of four samples (mineralogy) choosed for experiment.
- Effect of washing number on apparent CEC of samples.
- Effect of centrifuging and leaching techniques on apparent CEC as measured by Ba and Na saturating cations respectively.
- Effect of extent of shaking during washing for achieving resuspension of samples (batch technique) used for experiment, mostly kaolnic.

Material: Clay type had a CEC varying from 4 to 15 me/100 g (four soil samples).
Equipment: Centrifuge. Leaching columns.
Products: Sodium and Barium salts as chloride and acetate. Ethanol.
Key Words: CEC
Authors: OSTER (J.D) & SHAÍNBERG (I)
Title: Exchangeable cation hydrolysis and soil weathering as affected by exchangeable sodium.
Pages/ref: 70–75 / 14 ref.

Summary:
Exchangeable and crystalline cations are released from soil minerals as a result of hydrolysis and weathering. Rates of hydrolysis and the resultant changes in the cation exchange composition of three lime free arid zones soils as affected by different values of exchangeable Na are studied.

Methods:
Lime was removed by 1N NaCl/HCl at constant pH4 to 5; (Contact time 24 to 72 hours). Then soils were equilibrated with solutions having a S.A.R. of 5, 20 and "infinite" (chloride of Na, Mg, Ca). PH and Electric Conductivity were measured during the equilibration period (7 to 14 days). The initial CEC was measured by Na-NH4OAC method and EC by NH4OAC pH7.

Results:
The conductance of aqueous suspensions plotted versus the square root of time exhibited two linear segments. Authors conclude that the release of Ca, Mg, K from silicate minerals is more rapid than the hydrolysis of exchangeable Na and Ca for the three soils considered. The removal of CaCO3 was suspected to produce intermediate products controlling release of Ca, Mg, K. The rate of exchangeable Ca hydrolysis and release from silicate materials was sufficient to saturate the solution with respect to lime for the calcic haploxeralf soil.

Tables:
- EC composition before and after the treatments.
- Relation between specific conductance and time for aqueous suspensions of three soils.
- Total initial and final EC and changes in exchange ion composition.

Key Words: CEC / SALINITY / SODIUM / LABIL /
Auteur : PELLOUX (P)
Titre : Methodes de determination des cations echangeables, de la
capacite d'echange dans les sols courants calcaires ou non,
mais ni sales, ni gypseux.
Pages/ref: 55 pages / 7 ref.

Resume:
Une methode permettant la determination de la capacit de
l'echange des sols peu calcaires utilisant le calcium comme
ion saturant et le chlore comme ion traceur est decrite. Les
risques d'hydrolyse sont evites en eliminant l'etape de lavage.

Methodo:
Percoler 10 g de terre par 500 ml de chlorure de calcium
tamponne a PH 7 par de la triethanolamine, puis par 150 ml de
chlorure de calcium N/10. On deplace le calcium par 500 ml de
nitrate de potassium N. On dose dans le percolat Ca et l'anion
Cl qui permet d'evaluer l'exces de chlorure de calcium retenu
par capillarite. On titre les carbonates et bicarbonates par
acidimetrie pour connaitre la quantte de calcium dissoute par
le reactif utilise. On peut egalement doser dans l'extrait au
chlorure de calcium, le sodium et le potassium echangeable.

Le calcium est dose par colorimetrie en flux continu (BRION)
par le montage:

(Echantillon (0.23) / Air (0.32) /) // (Tampon diethylamine
(1.2) / Cresolphtaleine 0.05% dans HCL 0.25N (0.32) / Agita-
teur magnetique // Bobine mélange 10 tours / Colorimetrie
15 mm , 570 nm .

Figures:- Schema de montage des colonnes de percolation.
- Systeme de percolation automatique.

Helianthine acide chlorhydrique . Diethylamine . Gamme de
potassium.

Mots Cles: EC-CEC / CALCIUM / AUTOANALYSE /
Summary:

Soil is saturated by CaCl₂ solution using mixing-centrifuging technique. Adsorbed Ca is removed, with excess calcium chloride by sodium or potassium nitrate (eight times). Cation exchange capacity is expressed as total (Ca + Mg) minus total (chloride + carbonate + bicarbonate). Hydrolysis of adsorbed calcium is limited by choosing a washing solution 5 meq/l and washing only once.

Chloride of Na, K, Cs used as replacing solution instead of sodium nitrate gives the same results, though the benefit of having chloride as index ion is lost.

The paper investigates also the percent base saturation which is difficult to determine in calcareous soils.

- Exchangeable Ca, Mg are measured in various extractants (chlorides of lithium, sodium, potassium, ammonium) correction is made for dissolved carbonates and bicarbonates.
 Lithium chloride and ammonium chloride are found unsuitable as replacing solutions, the first because it does not achieve complete replacement, the second because it instables carbonates.

- Exchangeable K and Na are determined in 1N PH 7 ammonium acetate.

Tables:

- CEC of calcareous soil samples using saturation by calcium chloride and removal by chlorides of Na, K, Ca, and nitrates of K, Na, Mg. Comparison with isotopic dilution 133Ba, and ammonium acetate saturation is also included in the same table.

- Effect of various extractants and different numbers of leachings in carbonate dissolution.

Chemicals: Calcium chloride. Sodium or potassium nitrate. Sodium and potassium nitrate.

Key Words: CEC / CALC. CARBONATE /
Summary:
A two steps method for CEC is presented:
- First step: 4-5 gm of soil is treated by successive equilibra­tions with 33 ml increments of 0.4N NaOAC - 0.1N NaCl solution (at pH8.2 in 60% ethanol) to obtain saturation of cation exchange sites.
- The second step is the saturation with three 33 ml increments of 1N MgNO₃ (pH7). Chloride is used as index cation so that the soluble sodium may be counted for. Lower CEC values were obtained with the developed method, as compared with ammonium acetate method (Bower).

As there is no absolute reference method for CEC, the values were correlated with saturation percentage and air-dry water content. The method is proposed for calcareous and gypsiferous soils, though it necessitates a preliminary washing out of soluble chlorides.

Tables:
- Properties of soils and CEC as determined by the Bower & Al (1952) and the newly developed method.
- Relation between CEC and air-dry water content of soils.
- Comparison of CEC of soils as determined by the new and Bower methods.

Material:
AA Spectrophotometer - Centrifuge.

Chemicals:
Ethanol . NaOAC . NaCl . MgNO₃.

Key Words: CEC / CALC. CARBONATE / GYPSUM / POLE
The cation exchange equilibria, Na - Ca, Li - Ca, Mg - Ca, ions pairs was studied on 10 slightly acid soils in relation to clay type (mostly montmorillonite and illite with always some kaolinite) but also amorphous material. The purpose was to find agreement between the double-layer equation and experimental data through a correction factor to be applied to surface charge density.

Correction factor are given as well as ratio of Na adsorbed to Ca adsorbed when soils were equilibrated with solutions having a \((\text{Na})/\text{(Ca)}^2\) ratio equal to 100, (concentrations expressed in millimoles). Soil were equilibrated with solutions buffered at \(\text{pH} 7\). At this SAR organic matter free soils with montmorillonite and illite as dominant clays had ratio \(\text{Na}/\text{Ca}\) (adsorbed) of 1,66 to 1,94. Equation relating exchangeable sodium percentage and SAR fit better soils poor in organic matter. Two different regression equations may be calculated (i) for montmorillonite - illite and (ii) for kaolinite and / or amorphous clays soils.

Tables:
- CEC, dominant minerals in the fine clay, clay content, and parent material for 10 soil samples used in cation exchange equilibria measurements.
- Relation between ratio of mono to divalent cation adsorption in the solid phase and in the liquid phase 3 ion pairs for each of 4 soils.
- Relation between \(M^+/K^{++}\) adsorbed and surface change density for 10 soils for each of 3 ion pairs.
- Na / Ca adsorbed ratio form solutions having a SAR equal to 100.
- Relation between Na / Ca (adsorbed) and Na / (Ca)^2 in solution for soil treated and untreated with sodium peroxide.

Chemicals: Not mentioned.

Key Words: EC - CEC / CLAY MINERALS /
Summary:

The release of Ca, Mg, Na by silicate minerals during the process of EC determination by 1N, neutral, ammonium acetate was investigated on 15 standard minerals commonly found in arid zones. The CEC was determined by three methods namely: 1): NaOAC-ethanol-NH₄OAC. 2): NaOAC-ETOH-Mg(OAC)₂. 3): radioactive Na. The samples being contaminated by carbonate, correction for dissolved calcite and/or magnesite is presented. The extent of cation extraction for the mineral type was: ortho-silicate, pyroxene, feldspathoid, amphiboles, plagioclase feldspars, K feldspars and the proportion of extracted cations was Ca, Mg, Na, K (both sequences in decreasing order of importance).

Conclusions: Determination of exchangeable sodium may be subject to errors under special condition (zeolitic, containing soils, pH above 9...). The problem of exchangeable Ca and Mg is more general and the release of these cations from minerals is a constant problem in the analysis of soils of arid zones.

Tables:

1-2: Contamination of samples with carbonate (type, amount)
3-4-5: Cations extracted in neutral NH₄OAC and in neutral NaOAC (with and without correction for dissolved carbonates), and water.
6-7: Apparent exchangeable cations and apparent CEC of the silicate minerals.

Key Words: ECEC / LABIL / CALC. SOILS / SALINITY /
Authors: ROUTSON (R.C), WILDUNG (R.E) & SERNE (R.J)
Title: A column cation exchange capacity procedure for low exchange capacity sands.
Pages/ref: 107-112/11 ref.

Summary:

The procedure consists of saturating 0.5 to 2.5 gr of soil with a mixture of strontium chloride and acetate (5% in Sr), then by 0.01N/0.04N of the same mixture, traced with 5000 cpm/ml of radio strontium. Excess solution is removed by vacuum, the sample is washed by methanol-polyelectrolyte mixture. Concentration of Sr is measured in the final equilibration solution by AAS at 460.7 nm and 85-strontium activity is determined by a gamma-analyzer fitted with a 8 cm NaI well crystal into which the soil column may be fitted directly.

The procedure is tested on calcareous sandy samples (1 to 26% calcium carbonate; 1 to 5% clay) with CEC averaging 4 me/100 gr.

Application: CEC for sandy soils around 4 me/100 gr.

Tables:
- Properties of four soil samples used in experiments (pH - clay - silt - calcium carbonate).
- Illustration of column system.
- Measured gamma activity in leaching column.
- Equilibration of soil with 85 Sr as related to leaching volume for sands, bentonite, kaolin and humic acid (50 micrograms each).
- Measured CEC as a function of the volume of wash solution.
- Comparison of proposed procedure with non washing procedure.

Material: AA Spectrophotometer. Gamma counting equipment.

Key Words: CEC / CARBONATES / RADIO /
Auteurs : RUELLAN (A) & DELETANG (J)
Titre : Les phénomènes d'échange de cations et d'anions dans les sols.
Pages/ref: 123 pages / 330 ref.

Resume:

Outre toutes les techniques qui sont passées en revue, l'article contient quelques remarques relatives aux choix d'une méthode de mesure de la capacité d'échange qui prennent en compte différents paramètres du sol: le pH à utiliser, la valence des ions saturants en fonction de la nature de l'argile dominante, la matière organique, les sols à allophanes; la bibliographie comprend 330 références.

Figures : 37 figures touchant tous les aspects du problème.

Mots Cles: EC–CEC / ARGILES /
Authors: SAYEGH (A.H), KHAN (N.A), KHAN (P) & RYAN (J)
Title: Factor affecting gypsum and cation exchange capacity determination in gypsiferous soils.
Pages/ref: 294 - 300 / 15 ref.

Summary:

The effect of soil fineness, and soil/water ratio on gypsum and soluble salts determinations was investigated in a first part of the paper. In a second part, pretreatment of soil sample prior to determination of cation exchange capacity by sodium acetate/ammonium acetate method is shown and a procedure for CEC determination in soils containing gypsum is proposed.

Results: Dissolution of gypsum increased with soil fineness from 5% to 12% at 1/500 soil/water ratio and for particle size 2 mm down to 50 microns. At fixed soil water ratio (1/100) solubility increased from 4% to 7% with soil fineness.

For cation exchange capacity satisfactory results were obtained only when gypsum was removed or complexed. Prior to CEC procedure, without regard to procedure used. When the soil (100 microns) was pretreated by shaking with a solution of sodium oxalate during two days, an acceptable value of CEC was found by the conventional sodium acetate/isopropanol/ammonium acetate method.

Tables:
- Distribution of total gypsum in soil profiles.
- Effect of soil/water ratio and particle size on total gypsum and soluble (Ca+Mg).
- CEC values as determined by various procedures with and without pretreatment (1 day of shaking).
- CEC as affected by variable time of pretreatment with different reagents (1 to 6 days treatment).

Chemicals: (For the recommended method only)

Key Words: CEC / GYPSUM / SOIL-SALTS / PRETREATMENT / ECHANGEABLE / SAYEGH
Summary:
The clay-sized carbonate of soil is calculated by measuring the loss of CO$_2$ from an aliquot of the clay suspension.

Method: To an aliquot of clay suspension 6N HCL is added. The loss of weight is measured. The values obtained may be corrected for any Na$_2$CO$_3$ present in the dispersing solution. Eighty four samples were studied, six of them only had a clay-sized carbonate exceeding two-third of the total. Five kinds of possible clay percentage calculations for calcareous materials were discussed: 1) total clay calculated percentage. 2) clay-sized carbonate. 3-4) true clay as a percentage of total soil and carbonate free soil. 5) measured true clay as a percentage of soil after removal of carbonates by NaOAC treatment.

CEC of 28 samples (CaCO$_3$% 10 to 25), as measured after removal of carbonates by NaOAc pH5 and CEC calculated on a carbonate-free soil basis were nearly equal showing that clay-sized carbonate has no exchange capacity.

Tables/Figures:
1 : Tot. carbonate vs clay-sized carbonate for 84 soil samples.
2-3-4: Clay depth distribution curve for total clay and non carbonate clay/different kinds of clay percentages/CEC and carbonate values of a profiles containing 8 horizons/.

Key Words: CaCO$_3$ / CLAY / CEC / PARTICLE SIZE /
Summary:

Comparison of two procedures for the determination of chloride ions. The first method was electrometric titration using a quinhydrone silver-silver chloride electrodes and silver nitrate as titrant. The second method used an Cl selective ion electrode connected to a pH-ion meter calibrated against standards of known chloride ion concentration (1, 10 and mM in equimolar sodium chloride, sodium sulfate solution 0.5M solution).

The possibility of applying the method to measurement of CEC in soils using ammonium chloride was investigated.

Method: For CEC determination, soil was leached with 1N ammonium chloride, fixed ammonium was displaced by 0.5M sodium sulfate. CEC is proportional to ammonium ion in sodium sulfate provided excess ammonium is corrected for by measuring chloride as index ion the method is not suitable for saline soils. Soil samples investigated had pH5 to 6.6. Interference of ammonia was shown. Calibration of electrode with ammonium chloride instead of sodium chloride reduced ammonia interference to 5% at ammonium concentration less than 20 millimoles. Application of systematic activity coefficient (0.75) for index chloride ion in extracts gave results within ±7% in all cases.

Tables: Comparison of Ion Selective Electrode and titration method for 12 CEC leaches.

Material:

1. Titration method: Quinhydrone electrode, Silver-silver chloride electrode. Null point galvanometer (or potentiometric recorder).

2. Selective electrode: Chloride selective electrode, PH-ionmeter.

Chemicals: Ethanol, Ammonium chloride, Ammonia, Sodium sulfate, Sodium chloride, Silver nitrate.

Key Words: CHLORIDE / AMONIUM / CEC / SOILS / ELEC / SMART
Authors: SMITH (H.W), MOODIE (C.D), OKAZAKI (Rose) & ELLSWORTH Norma
Title: Hydrolysis and salt retention errors in conventional cation exchange capacity procedures: II.

Summary:
Salt removal and index-cation hydrolysis during CEC measurement were studied with emphasis upon the effect of washing liquid. The reference method chosen was the measure of the net charge (extractable index cation minus extractable anion) which is equal to CEC for the sample studies. Four index cations (Na, Ca, NH₄, Ba) were used and gave good agreement as for CEC values. Effect of washing was studied with ETOH, 95% MEOH, isopropanol, and distilled water. For the sample studied, salt retention was the most difficult problem to control, index cation hydrolysis was not serious and loss of sample by dispersion was eliminated by high speed centrifuging. Removal of NH₄OAc, isopropanol was inadequate, methanol and ethanol were less efficient than water. Two of the studied samples contained amorphous material as major clay component, the third one was montmorillonitic. All of them were neutral samples.

Tables: 1-2: Properties of samples. CEC (net charge) determined with different index cations on three soils (CEC 10, 14, 99 meq/100 gr respectively).
3-4-5: Apparent CEC of samples vs extent and technique of washing.
6: CEC determined by several washing procedure vs reference CEC.
7-8-9: Effects of isopropanol washing.

Chemicals: NaOAC, NH₄OAC, NH₄Cl, isopropanol, ethanol, methanol.

Key Words: CEC

SMIT
Summary:

Three procedures for cation exchange capacity (CEC) are described: a) NH₄OAc pH7, washing with 95% ETOH direct distillation of ammonia; this method is suitable for exchangeable cations (EC) and CEC. b) NaOAc pH8.2, washing with 95% ETOH, replacement by NH₄OAc. CEC is directly calculated from the quantity of Na replaced. c) BaCl₂ – triethanolamine pH8.2, washing with methanol, replacement by Mg(NO₃)₂ solution. This method gives extractable acidity and CEC. Extractable bases are presumed to be equal to the exchangeable bases if the sample does not contain soluble salts. If it does, the amount of soluble salts is calculated from the saturation extract; except in the case of soils containing carbonates.

Chemicals: Method a) Ammonia • Acetic acid • ETOH Nessler's reag. • Boric acid • Methylene blue • Bromocresol green • H₂SO₄.
Method b) ETOH • Acetic acid • Sodium hydroxide • Ammonia.
Method c) MeOH • Barium chloride • Triethanolamine • Magnesium nitrate.

Key Words: EC – CEC /
Summary:

The paper gives full details on EC extraction and CEC estimation after removal of soluble salts. The procedure is essentially the following:

- Soluble salts are removed by an ethylene-glycol/ethanol mixture (previously passed through mixed-bed resin to remove ions).
- Basic exchangeable cations are extracted by pH 8.5 NH₄Cl/60% ETOH.
- CEC replacement step is made by a 15% KNO₃, 6% Ca(NO₃)₂·4H₂O solution.

Equipment is reviewed for leaching procedure and extraction-centrifuge method as well. A so-called flaming solution is used in AAS to eliminate interferences in Ca and Mg determination. Removal of soluble ions, alternative reagent for displacing ammonium and AAS interferences are reviewed.

Tables:
- 14 tables covering results of each analytical parameter involved in the described procedures.
- Description of extracting machine and leaching device.

Material:
- AA Spectrophotometer
- Leaching equipment
- Soil shaker
- Extractor

Chemicals:
- 1-2 ethanediol
- ETOH
- Mixed-bed ion exchange resin
- NH₄Cl
- KNO₃
- Ca(NO₃)₂·4H₂O
- Formaldehyde
- Methanol
- Acetone
- Flaming solution: LiCl
- Tween 80
- Isopropanol
- Perchloric acid
- Urea

Key Words:
- CEC
- SALINITY
- AAS-PRECISION