Valorisation agricole des déchets domestiques et industriels dans les agro-systèmes en Afrique de l'Ouest et à Madagascar.

Masse D¹, Ndiénor M^{7,1}, Hien E², Rafolisy T³, Ndour Y⁴, Bilgo A⁵, Houot S⁶, Aubry C⁷

¹ LMI IESOL-UMR ECO&SOLS-IRD, Dakar Sénégal. dominique.masse@ird.fr
² Université de Ouagadougou, UFR SVT, Ouagadougou, Burkina Faso. Edmond.hien@ird.
³ Université d'Antananarivo, LRI, Antananarivo, Madagascar. Tovonarivo.rafolisy@ird.fr
⁴ ISRA LNRPV, Centre Bel Air, Dakar Sénégal. yacine.ndour@ird.fr
⁵ INERA GRN/SP, Ouagadougou, Burkina Faso. a.bilgo@agrhymet.ne
⁶ INRA UMR EGC AgroParisTech Grignon France. houot@grignon.inra.fr
⁷ INRA UMR SADAPT AgroParisTech Paris France. christine.aubry@agroparistech.fr

Résumé

L'urbanisation croissante des pays du Sud entraîne une place importante des agricultures urbaines ou péri-urbaines, répondant à la demande alimentaire et créatrice de richesse et d'emploi. Ces villes produisent également d'importantes quantités de déchets domestiques ou autres produits résiduaires organiques issues des industries agroalimentaires qui constituent un enjeu environnemental (pollution) et économique (coûts de traitements élevés). Relativement riches en éléments fertilisants pour les sols, ces déchets sont une opportunité pour améliorer durablement la production agricole et la qualité des sols cultivés, notamment aux abords des villes.

Depuis 2006, des équipes pluridisciplinaires en Afrique sub-saharienne mènent des travaux de recherche sur le compostage de déchets urbains et de l'utilisation des criblés de décharge municipale au Sénégal, au Burkina Faso et à Madagascar. Ce chapitre a pour objectif de faire le point sur les connaissances acquises à partir de ces expériences.

A Ouagadougou, différents composts de déchets urbains ont été testés sur des cultures de sorgho. L'apport de compost a significativement augmenté les rendements (de 2 à 5 fois par rapport à un témoin) au cours de deux années culturales. L'analyse par régression linéaire entre les rendements obtenus et les caractéristiques des composts a mis en évidence l'importance de leur teneur en phosphore notamment lorsque les apports de ces intrants organiques sont concentrés au niveau des plantes. En revanche, lorsque les apports sont épandus sur la surface de l'unité expérimentale, le taux de minéralisation (90 jours) mesurés en laboratoire a déterminé le rendement du sorgho.

Les criblés de la décharge municipale constituent des gisements de produits organiques. Des expériences menées à Madagascar, l'une pour la culture de tomate en condition paysanne et l'autre en station ont clairement montré que le terreau issu de l'ancienne décharge d'Andralanitra, malgré son caractère très minéralisé et sa relative pauvreté, était un produit qui pouvait avoir une valeur d'amendement, voire de fertilisant. Il convient cependant de définir les principes d'apport et de s'assurer de l'innocuité totale de ce produit. En revanche, des criblés de la décharge municipale de Dakar testés sur des cultures de tomate n'ont pas permis d'égaler les rendements obtenus avec des apports de fumier de cheval. Les faibles teneurs en matière organique et en azote de ce produit pouvaient expliquer l'absence d'effets pour cet essai mené en périphérie de Dakar.

L'effet des divers intrants organiques sur la production végétale est apparu très variable en fonction des situations. Il semble donc nécessaire de caractériser les propriétés d'un produit organique potentiellement valorisable et de confronter ces propriétés à celles des fertilisants ou amendements organiques utilisés dans les systèmes de culture. Seule cette condition garantira la réussite d'un projet de valorisation agricole des déchets municipaux ou industriels.

Mots-clé : déchets organiques urbains, composts, fertilisation, amendement

Abstract

Urbanization in developing countries leads to prominence of agriculture urban or periurban areas, to meet the demand for food, wealth and employment. These cities also produce large amounts of wastes which constitute a major environmental (pollution) and economic (treatment costs). Relatively rich in nutrients for soil, these wastes could be an opportunity to improve agricultural production particularly around cities.

Since 2006, multidisciplinary teams in sub-Saharan Africa conducting research on municipal wastes recycling in agricultural systems as composting or the use of screened materials from municipal landfills in Senegal, Burkina Faso and Madagascar. This chapter aims to present some results from these experiments.

In Ouagadougou, different composts of municipal wastes were tested on sorghum crops. The addition of compost significantly increased yields (2 to 5 times compared to control) measured on two years of crop. The linear regression between yields and composts characteristics highlighted the importance of the compost phosphorus content when the addition of the organic product was localized near the plant. The 90 days mineralization rate measured in laboratory conditions determined the sorghum grain yields when the same amount of organic products was spread over the experimental unit.

In Madagascar, organic matters extracted from municipal landfills by sieving, locally named "terreau", are sold as fertilizers by local economic operators. The uses of this organic product for the tomato production and for the cultivation of ferralsol on the Highlands of Madagascar were tested. The results showed that this "terreau" had a positive effect on plant production as it was also observed with animal manure use. However, it is necessary to identify the practices to ensure the best efficiency and the total health safety of this product. In contrast, organic products extracted from the municipal landfill of Dakar tested on tomato crops have failed to match the yields obtained with conventional horse manure amendment. This could be explained by the low organic matter and nitrogen contents in these particular organic inputs.

The effect of various organic inputs, from recycling waste, crop production tested in these studies appeared highly variable depending on local circumstances. It therefore seems necessary to accurately characterize the properties of an organic product potentially recyclable and compare these properties to those of fertilizers or organic amendments used in cropping systems. Only this condition will ensure the success of agricultural projects of recycling municipal or industrial waste.

Keywords Organic wastes, composting, soils fertilization and amendment

1 Introduction

Dans les pays du Sud, l'agriculture demeure une activité primordiale pourvoyeuse de biens alimentaires mais également de richesse et d'emploi (Cour, 2001; Dixon et al., 2001). Confrontés à une augmentation de leur population, et dans un contexte de changements climatiques, ces pays devront pouvoir augmenter leur production agricole de 70% (FAO, 2006; Agrimonde, 2009). Gérer la fertilité des sols dans ce contexte est un enjeu essentiel pour pouvoir intensifier la production tout en préservant leur qualité et les services écosystémiques qu'ils assurent.

L'essai à long terme de la station de Saria au Burkina Faso démontre l'importance des apports organiques dans la gestion de la fertilité des sols tropicaux. Même si l'utilisation d'engrais minéraux permet d'augmenter la production, il n'en demeure pas moins que les rendements ne restent constants au cours temps qu'avec l'apport régulier de fumier (Hien, 2004; Mando et al., 2005; Hien et al., 2008). Par ailleurs, il a été démontré que la viabilité et la productivité des terroirs agricoles au Sud du Sahara sont déterminées par l'organisation des flux organiques et de nutriments à l'échelle de ces agrosystèmes (Manlay et al., 2002; Manlay et al., 2004).

La démographie des pays du Sud se caractérise non seulement par des taux élevés mais également par une urbanisation exceptionnelle. Les agricultures urbaines ou péri-urbaines, prennent une place de plus en plus importante. Les systèmes de production agricole bénéficient dans ce contexte de la proximité des marchés et des capitaux pour leur développement. Par ailleurs, les villes produisent également d'importantes quantités de déchets domestiques et des produits résiduaires organiques issus des industries agroalimentaires. La littérature révèle pour quelques villes africaines une production de déchets urbains solides comprise entre 0,3 kg/personne/jour et 1,4 kg/personne/jour en Afrique sub-saharienne. Ainsi, en 2003 on estimait à environ 750 t/jour la quantité de déchets urbains ménagers collectés à Antananarivo, Madagascar (Pierrat, 2006). La part organique de ces déchets urbains récoltés à Antananarivo s'élevait à 65 à 85 % de la matière sèche totale, constitué de 80 % de matières organiques fermentescibles (déchets de cuisine et de jardinage, bois), 11 % de vieux papiers, cartons et plastiques. 9 % de déchets autres (métaux, textiles, verres, déchets toxiques produits en petite quantité). Toujours à Madagascar, la croissance de la population, ainsi que le développement économique a amené les experts à estimer une augmentation d'ici 2023 de 30 % dans la production de déchets soit une quantité de déchets urbains estimés à 975 t/jour dont 60 % composés de matières organiques. Sur une année, un gisement de 213 525 tonnes de matières organiques est potentiellement recyclable.

La gestion de ces déchets constitue un enjeu environnemental (pollution) et économique (coûts de traitements élevés). Relativement riches en éléments fertilisants pour les sols, ces déchets sont une opportunité pour améliorer durablement la production agricole et la qualité des sols cultivées, notamment aux abords des villes. En zone péri-urbaine est apparue ces dernières décennies une intensification de l'utilisation de déchets bruts sur les champs cultivés tels qu'il a été observé dans la périphérie de Ouagadougou (Hien et al., 2010; Kabore et al., 2011). D'autres projets locaux ont mise en avant l'exploitation de ces déchets à travers des programmes de compostage de déchets municipaux ou autres déchets provenant de l'industrie agro-alimentaire. Il est apparu nécessaire de consolider ou d'acquérir des connaissances scientifiques sur la qualité de ces produits résiduaires organiques utilisés comme fertilisant ou amendement dans les systèmes de production agricole.

Depuis 2006, des équipes pluridisciplinaires en Afrique de l'Ouest et à Madagascar mènent des travaux de recherche sur la valorisation de produits organiques issus des déchets domestiques. A partir de trois études menées à Ouagadougou (Burkina Faso), à Dakar (Sénégal) et à Antananarivo (Madagascar), il sera discuté des potentialités de recyclage des déchets urbains dans les systèmes de culture en zone péri-urbaine.

2 Effet de composts des déchets urbains sur le rendement du sorgho et les propriétés des sols.

La fraction organique regroupe divers produits : restes alimentaires, déchets verts (feuilles et résidus d'élagage des arbres, pelouses), les déchets de cuisine (épluchures et restes de fruits et légumes), les déchets des marchés et centres commerciaux (invendus alimentaires, résidus de fruits et légumes), les effluents organiques provenant des élevages urbains ou péri-urbains. S'ajoutent à ces résidus organiques, des déchets de l'industrie de la transformation alimentaire, par exemple les déchets d'abattoir, mais également les vidanges séchées de fosses d'aisance (dans les quartiers populaires), de la sciure de bois des ateliers de menuiserie, etc.

De nombreux projets de compostage de déchets urbains ont été réalisés dans les pays en développement depuis plusieurs décennies, mais se sont généralement terminés par un échec. Dreschel and Kunze (2001) ont mis en cause une inadaptation des produits organiques obtenus par rapport aux besoins des agriculteurs, horticulteurs ou pépiniéristes dans leurs systèmes de culture; inadaptation en terme de coût mais également en terme de qualité agronomique. Selon ces auteurs, il était nécessaire de mieux définir les besoins des agriculteurs pour adapter les techniques de compostage.

2.1 Expérimentation au champ d'apports de composts de déchets urbains

Au Burkina Faso, à proximité de Ouagadougou (site de Gampéla 12°24' N; 1°21' O), a été menée entre 2007 et 2008 une étude sur l'effet de différents produits issus du compostage de déchets domestiques et urbains sur la production d'une céréale et sur les propriétés du sol. Différents composts associant dans des proportions différentes des déchets de cuisine, d'abattoirs et des déchets verts ont été testés dans un essai factoriel en station. En plus d'un facteur sur la composition des composts était testé un facteur sur le mode d'apport : localisé au niveau de la plante ou épandu sur l'ensemble de la surface. Six composts ont été confectionnés sur la plateforme de compostage du centre de traitement et de valorisation des déchets urbains de Ouagadougou. Ces composts âgés de 16 semaines ont été produits en 2007 en fosse et en 2008 en tas à partir de déchets d'abattoir (DA), déchets de cuisine (DC), de déchets verts (DV pour l'essentiel des feuilles de Kaya senegalensis), et du papier (P), incorporés dans les mélanges initiaux selon des proportions variables (Tableau 1). Le dispositif expérimental était un plan factoriel à deux facteurs, les composts (six composts et un témoin sans apport de compost) et le mode d'apport (localisé ou épandu), et un facteur répétition en blocs (3). 42 parcelles élémentaires (12.25 m²) ont été disposées selon un plan en split plot : le traitement principal étant le facteur « mode d'apport » et le traitement secondaire le facteur « compost ». La quantité de matière sèche apportée au sol a été fixée à 3 t/ha/an. Le sol était un sol ferrugineux lessivé induré profond selon la classification CPCS (1967). La variété de sorgho (Sorghum bicolor L. Moench) était une variété améliorée SARIASO14 (INERA). Les poquets de semis étaient distants de 0,8 m entre les lignes de semis et de 0,4 m sur la ligne. Les semis ont été réalisés en juillet et la récolte en novembre. Quatre sarclages manuels ont permis de contrôler les adventices en cours de saison de culture.

Tableau 1 : Composition et caractéristiques des composts testés sur une culture de sorgho à Gampéla en 2007 et 2008 et quantité d'éléments apportés.

Composts. DA+DC DC DV DA+DC DA+DC Paramètres DA Proportions initiales (%) 37.5 DΑ DV 12.5 DC Propriétés du compost C (g.kg⁻¹) C/N ratio 8.3 8.5 8.2 8.6 8.7 8.8 8.5 8.1 8.7 8.4 8.4 8.9 pH H₂O TM (g.kg⁻¹) Apports chimiques initiaux (kg.ha⁻¹) Carbone

Azote	40	79	41	91	41	55	42	53	57	54	47	33
Calcium	74	85	66	105	69	85	69	131	100	103	83	91
Potassium	20	31	19	36	19	22	19	31	24	24	17	19
Magnesium	9	9	8	11	8	8	6	11	8	8	8	8
Phosphore	23	20	17	19	14	14	17	11	11	11	6	6

DA: déchets d'abattoirs (contenus des panses d'animaux); DC déchets de cuisine (résidus de légumes); DV déchets verts (feuilles des arbres d'espaces verts de la ville); P déchets de papier (bureaux, emballage, etc). TM taux de minéralisation du carbone organique mesuré par incubation en condition contrôlée pendant 90 jours.

2.2 Résultats

Les rendements du sorgho et ses composantes (densité des pieds à la récolte, densité des pieds épiés, nombre de panicules, nombre de panicules remplies, poids de 1000 grains, rendements grain et paille) ont été mesurés. Des prélèvements de sol (0-20 cm) avant la mise en place, et après chaque récolte ont été effectués. Les teneurs en carbone et azote total ainsi que le pH ont été mesurés. Pour le traitement apport localisé, des échantillonnages à proximité de la plante et à distance moyenne entre deux plantes ont été réalisés.

L'apport de compost a augmenté significativement les rendements (Figure 1), excepté le compost constitué à l'origine de déchets verts (DV). En 2007, l'augmentation était de 51% à 130% par rapport au rendement obtenu sur les parcelles sans apport. Les analyses de variance (Kaboré, 2011) indiquaient que la qualité des composts interagissait significativement avec le mode d'apport sur les rendements. Ainsi, en 2007, en épandage, les meilleurs rendements ont été obtenus avec les composts les moins stabilisés et/ou avec une faible disponibilité de l'azote minéral. En revanche, en apport local, les meilleurs rendements ont été mesurés pour les composts les plus stabilisés et caractérisés par des teneurs en azote disponible relativement élevés (Figure 1). En 2008, les rendements du sorgho baissaient dans tous les traitements compost relativement à ceux mesurés en 2007, et ce quel que soit le mode d'apport. Cette baisse des rendements en 2008 a été probablement liée à une forte variabilité pluviométrique et/ou à une baisse de fertilité suite aux exportations d'azote en 2007, supérieures aux apports azotés de la même année. En dépit de cette baisse, l'apport des composts a permis d'augmenter par 2 à 5 fois le rendement grain du sorgho comparativement au témoin.

Selon les paramètres de la régression linéaire (tableau 2), une corrélation positive apparaissait entre la teneur en phosphore des composts et les rendements des cultures avec un apport localisé. En revanche, pour les apports épandus, le taux de minéralisation des composts agissait positivement sur les rendements obtenus. Les composts de déchets urbains apparaissent comme des alternatives prometteuses et intéressantes pour l'augmentation de la croissance et des rendements des cultures. Cependant tout compost n'est pas forcément adapté à tout système de culture. Les composts produits dans cette étude présentaient des teneurs faibles en azote et en phosphore. Ce dernier élément, le phosphore, était un élément limitant le rendement si l'apport était réalisé en forte concentration autour de la plante (Tableau 2). De même, selon la technique d'application d'un produit organique, la propriété déterminante le rendement peut varier (par exemple, pour des matières épandues, donc en concentration plus faible par unité de surface), plus la matière organique apportée était stable plus l'effet sur le rendement est positif (Tableau 2).

Il apparait ainsi clairement qu'il est important d'adapter la qualité du produit organique utilisé comme amendement ou fertilisant au système de culture et à l'itinéraire cultural pour lesquels ce produit est utilisé. Il pourra être nécessaire de combiner les produits résiduaires à recycler pour obtenir la valeur agronomique en adéquation avec son usage.

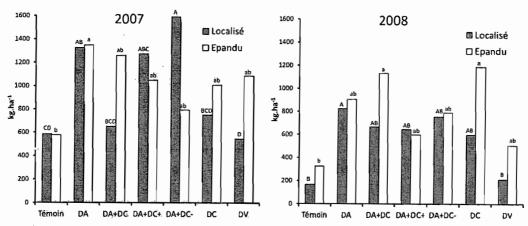


Figure 1: Rendement moyen (n=3) en grain (culture de sorgho) sur des parcelles expérimentales avec apport de composts de composition variées (voir texte) selon deux modes d'apport localisé au niveau de la plante, et épandu sur l'ensemble de la parcelle, en 2007 et 2008 à Gampéla, Burkina Faso.

DA: déchets d'abattoirs (contenus des panses d'animaux); DC déchets de cuisine (résidus de légumes); DV déchets verts (feuilles des arbres d'espaces verts de la ville); P déchets de papier (bureaux, emballage, etc). Les moyennes ayant la même lettre indiquée sur chaque histogramme appartiennent à un groupe de valeur non significativement différentes (LSD, α =0,05). Les lettres minuscules concernent les comparaisons pour le traitement « épandu » et les lettres majuscules pour le traitement localisé.

Tableau 2 : Paramètres de la régression linéaire entre les rendements obtenus (2007 et 2008) et les caractéristiques des composts apportées en début de cycle cultural selon deux modes d'apports, localement ou en épandage.

Le modèle testé était : Rendement = Constante + α Propriétés + ϵ . Les propriétés des composts sont celles indiquées dans le tableau 1. Le modèle retenu est le meilleure modèle maximisant la valeur R^2 .

Rendement (mode d'apport)	R²	Probabilité Test F	Constante (kg.ha ⁻¹)	Variables retenues	α	Probabilité test t : α=0
Localisé	0,383	0.046	730	Phosphore	51	0.019
				Potassium	-16	0.123
Epandu	0.550	0.011	1330	C/N	-30	0.008
				TM	1.6	0.015

3 Les décharges municipales: un « gisement » de matière organique à exploiter

La gestion des déchets urbains solides est un problème majeur dans les villes au Sud du Sahara. Ces villes dont la croissance est très rapide doivent gérer des quantités de déchets de plus en plus importantes. La voie empruntée par ces villes a été et demeure la mise en dépôt dans des décharges plus ou moins contrôlées. Actuellement, ces décharges sont en général saturées, voire rattrapées par les zones bâties. Elles posent alors d'énormes problèmes environnementaux (pollution de l'air, des eaux, des sols, etc.). A Antananarivo, les déchets urbains solides ont été mis en décharge brute dans le site d'Andralanitra depuis 1966. Ce site d'une superficie de 15 hectares continue d'accueillir de nos jours les déchets de la Commune Urbaine d'Antananarivo. La décharge de Mbeubeuss d'une superficie de

125 à 175 ha reçoit les déchets de l'agglomération dakaroise. On estime une quantité de matière fermentescible transformable en criblé de décharge à 5 millions de m³.

Au cours du temps, ces matières organiques se sont minéralisées subissant ainsi une forme de compostage naturel. Des opérateurs informels, voire des associations caritatives exploitent ce gisement de produits résiduaires organiques pour fabriquer à partir d'un criblage des parties les plus anciennes de la décharge, un terreau vendus essentiellement pour la fertilisation des sols des espaces verts publics ou privés de la ville. Des tests agronomiques ont été menés à Anatananarivo et à Dakar pour évaluer la qualité de ces « terreaux » qui constituent un gisement non négligeable de matières organiques fertilisantes ou pour l'amendement des sols.

3.1 Propriétés chimiques des criblés de décharge municipale

Les criblés de décharge sont relativement pauvres en matière organique notamment en azote total comparativement à des valeurs standard de composts (Tableau 3). Pour un compost, le rapport MO/N et la teneur minimale de MO du criblé de décharge, sont généralement fixés respectivement à 40 et à 20 % du produit sec (Mustin, 1987). Dans le terreau d'Andralanitra, le rapport MO/N est de 40,8 par contre la teneur maximale de MO est à 15,8%, soit des valeurs inférieures aux normes généralement admises. Si on se réfère aux teneurs en matière organiques dans les déchets urbains bruts de 65 à 85 %, la faible teneur en MO de ce produit indiquerait un fort processus de minéralisation. Cependant, reconnaissons également que les pratiques de criblage telles qu'elles sont observées sur les décharges ne garantissent pas une séparation totale de la matière organique contenu dans ces matériaux. De nombreuses matières minérales qui vont des sables à des matières plastiques, ferreuses ou autres, peuvent se retrouver dans ces terreaux sous forme de particules fines. Ainsi, par exemple la silice serait estimée de l'ordre de 50-60 % de la matière totale (communication personnelle). De même, le brûlis est une pratique courante sur les décharges au Sud et peuvent augmenter la part de cendres et de charbon de bois dans ces matières. Il serait nécessaire d'approfondir la caractérisation précise du contenu de ce matériau.

En comparaison à des fumiers bovins utilisés par les agriculteurs (Ndienor, 2006; N'Dienor et al., 2011), le terreau présentait des teneurs plus élevées que le fumier en P₂O₅, MgO et en CaO (Tableau 3). Ces teneurs sont intéressantes dans des sols généralement pauvres en phosphore bio-disponible et confèrent aux terreaux de décharge municipale un intérêt comparatif en tant qu'amendement calcique dans les sols acides généralement rencontrés dans les sols tropicaux. Le rapport C/N indiquait un produit relativement stable non susceptible d'induire une immobilisation d'une trop grande quantité d'azote mais également non sujet à une minéralisation rapide avec un risque de perte d'éléments fertilisants par lessivage et/ou lixiviation.

Tableau 3 : Propriétés chimiques des fumiers de bovin ou de cheval et des criblés de

décharges municipales à Madagascar et au Sénégal.

Paramètres	Fumier de	Fumier de cheval	Criblé de	Criblé de
,	bovin	(Sénégal)	décharge	décharge de
	(Madagascar)	(00090.)	d'Andralanitra	Mbeubeuss
	(**************************************		(Madagascar)	(Sénégal)
MS (g.kg ⁻¹)	901-908	Nm	918 – 930	978-995
MO (g.kg ⁻¹)	55-63,31	162,2-181,1	147 – 158	24,7-68,8
C organique (g.kg ⁻¹)	32-36,8	168-207	82,1 - 102,0	14-40
N total (g.kg ⁻¹)	13,6-16,8	19,5-26,4	3,6 - 4,1	1,9-6,4
C/N	20,8-25	11	20,9 - 25	9-26
P_2O_5 (g.kg ⁻¹)	6,2-8	6,0-14,96	7,9 – 11	3,6-58,1
K₂O (g.kg ⁻¹)	25-28,2	Nm	2,9 - 12,9	3,78
CaO (g.kg ⁻¹)	7-19,3	Nm	21,5 - 31,4	61,6
$MgO (g.kg^{-1})$	4-4,5	Nm	3,1-6,5	4,41
pH ,	9,22	7,19	7,68	7,56
Cd (mg.kg ⁻¹)	nm	Nm	0,76	2,66
Cr (mg.kg ⁻¹)	nm	Nm	57,3	56,4
Cu(mg.kg ⁻¹)	nm	Nm	41,2	172
Hg (mg.kg ⁻¹)	nm	Nm	2,87	0,12
Ni (mg.kg ⁻¹)	nm	Nm	26,6	25
Pb (mg.kg ⁻¹)	nm	· Nm	121	119
Zn (mg.kg ⁻¹)	<u>nm</u>	nm	309	997

MS matière sèche ; MO matière organique ; nm non mesuré.

3.2 Expérimentation de l'apport de criblés de décharge sur des sols cultivés en zone péri-urbaine d'Antananarivo

L'agriculture à l'intérieur et autour de la ville d'Antananarivo est très présente. Les bas fonds sont largement, voire totalement, occupés pour la riziculture et les cultures maraichères. Le développement de cette agriculture passe par la conquête des terres en pentes (appelées localement « tanety »). Ces terres sont couvertes par des sols ferralitiques. Que ce soit en culture maraîchère ou pour une mise en culture de terres nouvelles, les apports organiques sont nécessaires. Les criblés de la décharge d'Andralanitra sont vendus sous la dénomination de terreau. Généralement orientés vers les jardins résidentiels ou les espaces de la ville, ces criblés ont été testés sur des cultures de tomate, et sur une culture de céréale (maïs) sur des parcelles non cultivées depuis de nombreuses années et mises en culture.

3.2.1 Apport sur des cultures maraîchères en zone péri-urbaine d'Antananarivo.

La figure 3 résume les résultats en terme de rendement (Rdt) obtenus sur une expérimentation où sont comparés des apports de criblés de décharge à des apports organiques conventionnels sur une culture de tomate. Quatre traitements ont été testés sur 10 champs d'agriculteurs de la périphérie d'Antananarivo. Les traitements étaient : T1 un apport de fumier d'élevage bovin (1kg par poquet) et 3 apports d'engrais minéral (80g par poquet), T2 : trois apports d'engrais minéral (80g par poquet), T3 un apport de criblé de décharge (2.5kg par poquet) et 3 apports d'engrais (80g par poquet), T4 : un apport de fumier d'élevage bovin (1kg par poquet) et 2 apports de terreau (1,2kg par apport et par poquet).

Les différences de rendements moyens n'étaient pas significativement différentes (Figure 3). En revanche, le gain moyen de rendement lié à l'apport du criblé de décharge par rapport une fertilisation minérale seule, mesuré par le ratio (Rdt_{T3} – Rdt T2)/Rdt_{T2}, était significativement positif et de 25,7% (p=0.04). Le gain moyen du fumier d'élevage de bovin, mesuré par le ratio (Rdt_{T1} – Rdt T2)/Rdt_{T2}, n'était que de 10,5% mais non significativement différent de zéro (p=0,240). Par ailleurs, lorsque le

fertilisant minéral était remplacé par du terreau (traitement T4), le gain moyen en rendement par rapport au traitement conventionne (T1), mesuré par le ratio (Rdt_{T4} – Rdt_{T1})/Rdt_{T1}, était nul (figure 3). Ces résultats indiquaient que, dans ces conditions expérimentales, le terreau pouvait avoir une valeur équivalente sinon supérieure à un fumier de bovin. Il est toutefois à noter que cet effet a été obtenu avec des apports en matière sèche supérieure par rapport au fumier. Par ailleurs, il est à remarquer qu'en moyenne les rendements n'étaient pas significativement moins élevés lorsque l'on remplace l'engrais minéral azoté par un criblé de décharge. Dans cette situation, ces matières appelées terreau pourraient donc également substituer des engrais minéraux sans effet déprécif en terme de rendement. Il reste cependant à contrôler l'innocuité de ces matières dans un système de culture maraîchère.

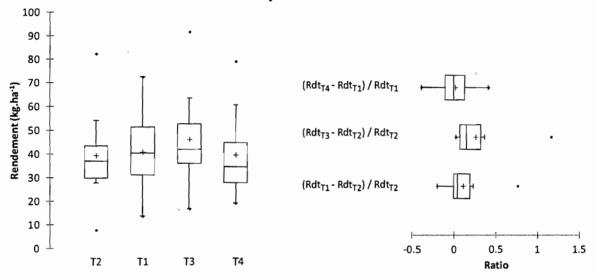


Figure 3: Expérimentation de différents modes de fertilisation d'une culture de tomate. T1 apport de fumier (1kg par poquet) et 3 apports d'engrais minéral (80g par poquet), T2: 3 apports d'engrais minéral (80g par poquet), T3 un apport de terreau (criblé de décharge d'Andralanitra, 2.5kg par poquet et 3 apports d'engrais (80g par poquet), T4: un apport de fumier (1kg par poquet) et 2 apports de terreau (1,2kg par apport et par poquet). A droite: représentation en 'box plot' des rendements mesurés sur 10 champs pour les différents traitements. A gauche représentation en « box plot » des ratios de comparaison des rendements entre traitements.

3.2.2 Mise en culture des sols ferralitiques des « tanety » en zone péri-urbaine d'Antananarivo

A Lazaina, situé à 20 km d'Antananarivo, sur une parcelle en jachère depuis plus de 20 ans, trois doses d'apport de criblé de décharge (teneur moyenne en C organique 124 g.kg⁻¹) ont été testées. Les trois niveaux de quantité apporté au sol sur les trois années étaient de : A1=3,1 tMS.ha⁻¹, A2=15,5 tMS.ha⁻¹, et A3=32,3 tMS.ha⁻¹. Ces apports étaient comparés à un traitement fumier d'élevage de bovins (apport de 10,3 tMS.ha⁻¹ sur 3 ans, teneur moyenne en C organique 257 g.kg⁻¹), et un traitement sans aucun apport organique. Selon un plan factoriel en blocs (4), le facteur apport organique était croisé avec un apport d'engrais minéral complet (300 kg.ha-1; 11 N 22 P 16 K). Les rendements en grain ont été mesurés au cours de 3 cycles culturaux. La plante cultivée était le maïs. Le sol était un sol ferralitique dont les propriétés physico-chimiques de l'horizon A était : argile 250-460 g.kg⁻¹, carbone total 11.2 – 14.2 g.kg⁻¹, azote 0.51-0.79 g.kg⁻¹, phosphore total 600-829 mg.kg⁻¹, pHeau 4,3-5,0.

Les rendements en grain mesurés au cours des 3 cycles culturaux indiquaient un

effet significatif de l'apport d'engrais minéral complet, ainsi que des apports organiques (figure 4). En l'absence d'engrais minéral, les rendements étaient significativement supérieurs dans les parcelles avec fumier d'élevage de bovins. Dans ce cas, même les apports les plus élevés de criblés de décharge n'ont pas permis d'atteindre les rendements obtenus avec un fumier. En présence d'engrais minéral, l'effet des apports de criblés de décharge était proportionnel à la quantité de matières apportées, avec un minimum requis pour avoir un effet significatif par rapport à une parcelle sans apport organique (figure 4). En conclusion, sans complément d'engrais minéral, les apports de criblés de décharge doivent être supérieur à 10 t.ha⁻¹ par an. Avec un apport d'engrais, les quantités apportées pourraient être limitées à 5 t.ha⁻¹ par an pour obtenir un effet significatif en production de maïs.

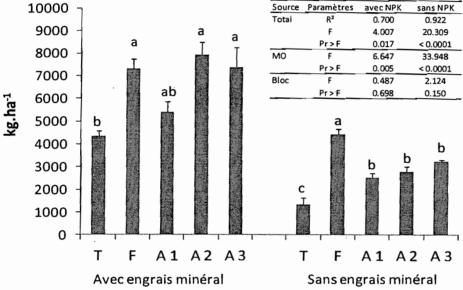


Figure 4: Rendement cumulé de trois années de culture de maïs sur sol ferralitique amendé annuellement avec du terreau d'Andralanitra (criblé de décharge municipale) à doses croissantes d'apport cumulé sur 3 ans (A1=3,1 tMS.ha⁻¹ A2=15,5 tMS.ha⁻¹ et A3=32,3 tMS.ha⁻¹) comparé à des apports de fumier d'élevage de bovins (apport de 10,3 tMS.ha⁻¹ sur 3 ans), et à un témoin sans apport de matière organique, avec apport d'engrais minéral ou non (300 kg.ha⁻¹; 11 N 22 P 16 K). Anova (α =0,05) : modèle mixte à deux facteurs MO (apports organiques, facteur fixe) et blocs (facteur aléatoire).

Ces deux expérimentations l'une dans un environnement d'exploitations agricoles et l'autre en station montrent clairement que le terreau issu de l'ancienne décharge d'Andralanitra, malgré son caractère très minéral et sa relative pauvreté, était un produit qui pouvait avoir une valeur d'amendement voire de fertilisation. Il convient cependant de définir les principes d'apport et de s'assurer de l'innocuité totale de ce produit.

3.3 Expérimentation de l'utilisation de criblés de décharge à Dakar en culture maraîchère

La décharge de Mbeubeuss reçoit la plupart des déchets domestiques, municipaux voir industriels de la ville de Dakar et de sa banlieue depuis 1978. Les criblés de cette décharge municipale font l'objet d'une exploitation commerciale par des opérateurs informels. La vente de ces matières, sous le nom de terreau comme à Madagascar, se fait pour l'essentiel auprès des pépiniéristes et pour les jardins privés ou publics ainsi que les terrains sportifs. Son utilisation par les agriculteurs,

producteurs de légumes ou autre, est plus rare.

En 2010, a été menée à Rufisque une expérimentation pour tester l'effet sur le rendement de parcelles expérimentales cultivées pour la production de tomates. Un apport organique conventionnel (fumier de cheval) était comparé à des apports de terreau selon deux doses 15 t.ha⁻¹ et 30 t.ha⁻¹. Un traitement sans apport organique était également testé. De l'engrais minéral (azote) a été apporté en 3 apports (81 N kg.ha⁻¹).

Les résultats indiquaient que le rendement en tomate était le plus élevé pour le traitement dit conventionnel avec apport de fumier de cheval (Figure 5). Par rapport à un témoin sans apport organique, le rendement avait doublé. L'apport de terreau ne permettait pas d'atteindre les rendements obtenus dans les parcelles avec apport de fumier de cheval. Seule la dose élevée (30 t.ha⁻¹) a permis une légère augmentation de rendement par rapport à un témoin sans apport. Cet absence d'effet positif s'expliquait par des propriétés chimiques nettement différentes entre le fumier de cheval traditionnellement utilisé et le criblé de la décharge de Mbeubeuss. Pour ce dernier, Il est à noter les faibles teneurs en matière organique du à une richesse relative en matière minérale (pour l'essentiel des sables), ainsi qu'en azote total (Tableau 2).

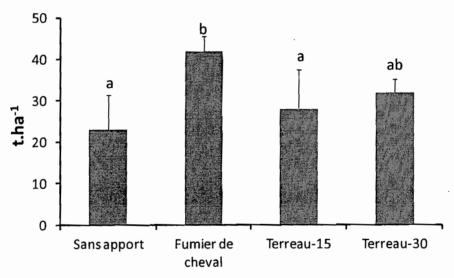


Figure 5: Rendement en tomate sur des parcelles expérimentales avec ou sans apport de matières organiques. Les matières organiques testées étaient le fumier de cheval (15t.ha-1), le criblé de la décharge de Mbeubeuss (ou terreau) aux doses de 15t.ha-1 (Terreau-15) ou 30 t.ha-1 (Terreau-30). Les traitements avec apport de matière organique comportaient également un apport d'azote minéral de 81 kgN.ha-1 en trois apports. Les lettres indiquent les résultats d'une anova et un test de comparaison de moyenne (test Newman & Keuls). Les moyennes non significativement différentes portent la même lettre. Les barres d'erreur représentent l'écart type (n=3).

4 Discussion et conclusion

Les résultats de ces différentes études ont montré qu'en termes de production agricole, les matières organiques issus de ces déchets pouvaient avoir des effets significatifs sur des rendements de plantes cultivées. Les effets positifs de l'utilisation des matières organiques en général, et en particulier des composts des déchets urbains ménagers sur la production végétale et l'amélioration de la fertilité du sol sont très souvent soulignés (Aguilar et al., 1997; Houot et al., 2002; Soumaré et al., 2003; Mkhabela & Warman, 2005; Montemurro et al., 2005).

Les effets positifs de l'apport de compost ou des criblés de décharge peuvent être attribués à leur propriété chimique. Comme tout produit organique, ils contiennent une richesse relative en éléments chimiques directement disponibles pour la plante, ou disponible après minéralisation. Ces matières organiques ont bien entendu également les effets généralement attribués aux matières organiques dans les sols : amélioration de la structure des sols, augmentation du pH, de l'activité biologique. D'autres rôles plus complexes peuvent intervenir comme l'augmentation de la capacité de rétention en eau.

Toutefois, ces effets étaient variables selon la nature des produits organiques résiduaires. Les criblés de la décharge de Mbeubeuss sont nettement moins riches en matière organique comparativement à ceux de la décharge municipale d'Antananarivo. La nature des déchets compostés jouent un rôle sur la composition finale du compost. Ainsi une des conclusions des travaux au Burkina Faso était la relative pauvreté en azote des composts de déchets urbains renvoyant à la faiblesse des teneurs en azote des composés initiaux. La recherche d'une ressource azotée sera donc nécessaire pour améliorer ces composts de déchets urbains. De même, le phosphore contenu dans les sols tropicaux est soit en très faible quantité comme dans les sols ferrugineux du Burkina Faso (Nziguheba et al., 2009; Reed et al., 2011), ou très peu disponible comme dans les sols ferralitiques de Madagascar (Chapuis-Lardy et al., 2009). Les résultats observés au Burkina Faso indiquent clairement que les teneurs en phosphore des composts peuvent déterminer le rendement. Il est alors nécessaire d'améliorer les composts en phosphore ce qui pourrait être envisagé en y ajoutant des phosphates d'origine minière disponible par exemple au Burkina Faso. La disponibilité du phosphore pour les plantes pourrait être améliorée par une stimulation des symbioses mycorhiziennes (Duponnois et al., 2005). Des études sur le rôle de produits organiques sur le potentiel de mycorhizogène des sols devront être menées dans les conditions des agrosystèmes tropicaux.

Il convient également de prendre en compte les systèmes de culture ainsi que les conditions environnementales notamment les types de sol. Ainsi, au-delà de la qualité agronomique des matières, les conditions pédoclimatiques locales où sont utilisées ces matières constituent un facteur important. Leur effet peut être exprimé ou masqué. En Europe, les expérimentations sur la valorisation agricole des déchets urbains, de diverse nature, sont certes plus avancées mais concernent des déchets urbains compostés généralement par voie industrielle, avec des expérimentations sur leur usage dans les conditions des agricultures industrielles. Ainsi la notion d'apport localisé n'est généralement pas considérée. Or nos résultats indiquent que la qualité du produit organique résiduaire apporté au sol interagit avec son mode d'application. Il est à noter que les normes disponibles d'homologation des produits organiques à usage agricole sont établies sur des critères d'agriculture type industriel. Ces normes de valeur agronomique devraient être vérifiées dans les conditions des systèmes de culture des pays du Sud prenant en compte leur spécificité.

Des travaux menés en Afrique indiquent que les agriculteurs sont peu incités à utiliser des composts pour des raisons liées au prix, au temps alloué à la fabrication, à la distance séparant le lieu de compostage et les champs, etc. (Drechsel & Kunze, 2001; Danso et al., 2006; Seh Ngoun et al., 2010). La variabilité des propriétés des matières organiques testés et de leur impact sur la production végétale montrent qu'il est nécessaire d'identifier au plus précis les besoins des agriculteurs en termes non seulement économique mais également en terme agronomique. Seule cette condition permettra de garantir la réussite d'un projet de valorisation agricole des

déchets municipaux ou industriels. Enfin, les risques sanitaires devront être pris en compte. Même si ils sont peu prégnants jusqu'à maintenant du fait d'une relative faiblesse des sources de pollution liée à la nature initiale des déchets domestiques, la convergence des modes de consommation entre les pays du Sud et du Nord amènera à une augmentation des risques sanitaires liés au recyclage de déchets dans les villes au Sud.

5 Bibliographie

- Agrimonde 2009. Agricultures et alimentations du monde en 2050 : scénarios et défis pour un développement durable. In., INRA-CIRAD, France.
- Aguilar, F. J., Gonzalez, P., Revilla, J., de Leon, J.-J. & Porcel, O. 1997. Agricultural Use of Municipal Solid Waste on Tree and Bush Crops. *Journal of Agricultural Engineering Research*, **67**, 73-79.
- Chapuis-Lardy, L., Ramiandrisoa, R. S., Randriamanantsoa, L., Morel, C., Rabeharisoa, L. & Blanchart, E. 2009. Modification of P availability by endogeic earthworms (Glossoscolecidae) in Ferralsols of the Malagasy Highlands. *Biology and Fertility of Soils*, **45**, 415-422.
- Cour, J. M. 2001. The Sahel in West Africa: countries in transition to a full market economy. *Global Environmental Change*, **11**, 31-47.
- CPCS 1967. Classification des sols. In. (ed C. P. d. C. d. Sols), Ecole Nationale Supérieure d'Agronomie, , Grignon, France, pp. 96.
- Danso, G., Drechsel, P., Fialor, S. & Giordano, M. 2006. Estimating the demand for municipal waste compost via farmers' willingness-to-pay in Ghana. *Waste Management*, **26**, 1400-1409.
- Dixon, J., Gulliver, A. & Gibbon, D. 2001. Farming Systems and Poverty: Improving Farmers' Livelihoods in a Changing World, FAO, Rome, Italie.
- Drechsel, P. & Kunze, D. 2001. Waste composting for urban and peri-urban agriculture: closing the rural-urban nutrient cycle in sub-Saharan Africa, IWMI, FAO, CABI Publishing, Wallingford, UK.
- Duponnois, R., Founoune, H., Masse, D. & Pontanier, R. 2005. Inoculation of Acacia holosericea with ectomycorrhizal fungi in a semiarid site in Senegal: growth response and influences on the mycorrhizal soil infectivity after 2 years plantation. Forest Ecology and Management, 207, 351-362.
- FAO 2006. World agriculture: towards 2030/2050.Interim report. Prospects for food, nutrition, agriculture and major commodity groups. In. (ed G. P. S. Unit), Food and Agriculture Organization of the United Nations, Rome.
- Hien, E. 2004. Dynamique du carbone dans un acrisol ferrique du Centre Ouest Burkina: Influence des pratiques culturales sur le stock et la qualité de la matière organique. In: *Ecole Doctorale Biologie Intégrative*. Ecole Nationale Supérieure Agronomique de Montpellier, France, Montpellier, France.
- Hien, E., Ganry, F., Oliver, R., Masse, D., Feller, C. & Balesdent, J. 2008. Matière organique du sol et productivité végétale sous différentes pratiques agricoles : essai de longue durée et modélisation de la dynamique du carbone dans un environnement soudano-sahélien. *Terres Malgaches*, 26, 133-136.
- Hien, E., Kabore, T., Bilgo, A., Sall, S. & Masse, D. 2010. Chemical and microbial properties of farmer's field soils fertilized with municipal solid wastes without pretreatment in the peri-urban zone of Ouagadougou, Burkina Faso. *International Journal of biological and chemical sciences*, **4**, 1110-1121.
- Houot, S., Clergeot, D., Michelin, J., Francou, C., Bourgeois, S., Caria, G. & Ciesielski, H. 2002. Agronomic value and environmental impacts of urban composts used in agriculture. In: *Microbiology of Composting*. eds H. Insam, N. Riddech & S. Klammer), Springer, pp. 457-472.
- Kabore, W.-T. T., Hien, E., Zombre, P., Coulibaly, A., Houot, S. & Masse, D. 2011. Organic substrates recycling in the sub-urban agriculture of Ouagadougou (Burkina Faso) for soils fertilization: description of the different actors and their practices. *Biotechnologie Agronomie Societe Et Environnement*, 15, 271-286.
- Mando, A., Ouattara, B., Somado, A. E., Wopereis, M. C. S., Stroosnijder, L. & Breman, H. 2005. Long-term effects of fallow, tillage and manure application on soil organic matter and nitrogen fractions and on sorghum yield under Sudano-Sahelian conditions. *Soil Use and Management*, **21**, 25-31.
- Manlay, R., Chotte, J., Masse, D., Laurent, J. & Feller, C. 2002. Carbon, nitrogen and phosphorus allocation in agro-ecosystems of a West African savanna III. Plant and soil components under continuous cultivation. *Agriculture Ecosystems & Environment*, 88, 249-269.

- Manlay, R. J., Ickowicz, A., Masse, D., Feller, C. & Richard, D. 2004. Spatial carbon, nitrogen and phosphorus budget in a village of the West African savanna--II. Element flows and functioning of a mixed-farming system. *Agricultural Systems*, **79**, 83-107.
- Mkhabela, M. S. & Warman, P. R. 2005. The influence of municipal solid waste compost on yield, soil phosphorus availability and uptake by two vegetable crops grown in a Pugwash sandy loam soil in Nova Scotia. *Agriculture, Ecosystems et Environnement,* **106,** 57-67.
- Montemurro, F., Maiorana, M., Convertini, G. & Fornaro, F. 2005. Improvement of soil properties and nitrogen utilisation of sunflower by amending municipal solid waste compost. *Agron. Sustain. Dev.*, **25**, 369-375.
- Mustin, M. 1987. Le compost. Gestion de la matière organique, François Dusbusc, Paris.
- N'Dienor, M., Aubry, C. & Rabeharisoa, L. 2011. Stratégies de construction de la fertilité des terres par les agriculteurs dans les systèmes maraîchers périurbains d'Antananarivo (Madagascar). *Cah Agric*, **20**, 280-293.
- Ndienor, M. 2006. Analyse des modes de gestion de la fertilisation dans les systèmes maraîchers de l'agglomération d'Antananarivo (Madagascar). Etude de l'intérêt agronomique de l'utilisation de déchets urbains dans ces systèmes. In., INAPG, Paris.
- Nziguheba, G., Tossah, B. K., Diels, J., Franke, A. C., Aihou, K., Iwuafor, E. N. O., Nwoke, C. & Merckx, R. 2009. Assessment of nutrient deficiencies in maize in nutrient omission trials and long-term field experiments in the West African Savanna. *Plant and Soil*, **314**, 143-157.
- Pierrat, A. 2006. La gestion des déchets à Tananarive : étude de la valorisation des déchets urbains en produits fertilisants. Approche géographique. In: *Géographie*. Université Paris I La Sorbonne-Panthéon, Paris, pp. 193.
- Reed, S., Townsend, A., Taylor, P. & Cleveland, C. 2011. Phosphorus Cycling in Tropical Forests Growing on Highly Weathered Soils. In: *Phosphorus in Action.* eds E. Bünemann, A. Oberson & E. Frossard), Springer Berlin Heidelberg, pp. 339-369.
- Seh Ngoun, E., Omoko, M. & Simon, S. 2010. Impacts agronomiques, économiques et environnementaux de quelques amendements organiques à Nkolondom (Yaoundé Cameroun). In. "Lutte antiérosive: efficacité pour la restauration des sols et la protection contre les pluies cycloniques" E. Roose eds, Editions IRD Montpellier, sur CDROM, 470 p.
- Soumaré, M., Tack, F. M. G. & Verloo, M. G. 2003. Characterisation of Malian and Belgian solid waste composts with respect to fertility and suitability for land application. *Waste Management*, 23.

Restauration de la productivité des sols tropicaux et méditerranéens Contribution à l'agroécologie

Version préliminaire

Eric ROOSE Editeur scientifique

IRD Editions

INSTITUT DE RECHERCHE POUR LE DEVELOPPEMENT MONTPELLIER, JUILLET 2015