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Abstract

The Wankama endoreic system in the region of Niamey (Niger), monitored over the period 1992–2000, is studied with

r.water.fea, a physically-based, spatially-distributed rainfall–runoff model. Catchment characteristics and data, together with

model principles and construction, are described in Peugeot et al. [J. Hydrol., 2003], who used the uncalibrated model as one of

several investigation tools for the screening of rainfall–runoff observations. This second paper focuses on model calibration and

verification, namely the methods and criteria used to that end followed by the results thereby obtained. Based on a diagnostic

function that combines errors in runoff volumes and in peak discharges, calibration is performed by exploring a 3D parameter

space. A resampling-based cross-validation technique is used to investigate calibration stability with respect to data sample

fluctuations, and to assess the predictive capabilities of the calibrated model. The issues of parameter uncertainty, sample

representativeness, and presence of influential observations, are discussed. An empirical, non-parametric method is devised to

characterize parameter uncertainty and to assign intervals to volume predictions. Model verification is performed against the

data from the last two seasons. Internal catchment behavior, as produced by the model, appears qualitatively consistent with

field information, including a weak upper-area contribution to catchment outflow due to large runoff abstraction by the

conveying hydrographic network.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The Sahel has been subject to sharp changes in

climatic and environmental conditions since the late

sixties, which strongly impact the water cycle. In this

context, the goal of the study presented here and in

the companion paper (Peugeot et al., 2003), hereafter

referred to as ‘C.Pap.’ (cf. Nomenclature), is to assess

the impact of these changes on water resources in the

Sahelian Niamey region, southwest Niger. Surface

water consists of a large number of small pools,

outlets of endoreic watersheds, which represent the

main source of recharge of the underlying unconfined

aquifer. Our studies focus on a 1500 km2 target-area

located 70 km east of Niamey, within the Hapex–

Sahel Experiment area (Goutorbe et al., 1994).

The Wankama endoreic system, composed of an
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elongated 1.9 km2 catchment (roughly 2.7 km long by

0.7 km wide) that drains to a 5 ha pool and is

considered representative of local catchments, is

used as a reference for subsequent extension to the

full study area. These two companion papers report on

the modeling of surface runoff and pool recharge in

this pilot watershed, using the physically-based,

distributed model r.water.fea (Vieux and Gaur,

1994; Vieux, 2001). Physical characteristics of the

watershed and analysis of rainfall – runoff data

collected over the 1992-to-2000 rain seasons have

been described in C.Pap., together with model

principles and construction. Using the uncalibrated

model as an aid for event data analysis, a fraction of

observed events in the 1992–1998 period was

screened out from the reference set because of

doubtful runoff volume values due to suspected

exogenous inflow. The selection method was vali-

dated with the 1999–2000 data, for which no such

uncertainty exists. A reference set of 97 rainfall–

runoff events (73 and 24 for the two consecutive

periods, respectively) was thus retained. The purpose

of this paper is to present the tuning, verification and

uncertainty analysis performed on the model based on

the reference data set. Here again the 1999–2000 data

is used a posteriori, only to test the model once

calibrated with the 1992–1998 data.

Here is a brief summary of information about the

catchment’s hydrology, data, and model. Precipitation

is limited to a short wet season (May–June to

September–October) and for the most part is associ-

ated with west-bound mesoscale convective systems

and squall-lines, causing short, often intense and very

intermittent rainfall. Data are continuously available

as 5 min intensities at the Mare raingauge near the

pool. Hortonian overland runoff is largely linked with

the presence/absence of surface crusts on essentially

sandy soils, and therefore with the spatial distribution

of cultivated millet fields and of natural savanna

vegetation clearing. Average slope is around 2%. The

hydrographic network is basically made up of a 2.5 km

long, sandy and hence infiltrating main ravine,

comprising two reaches that connect at mid-slope

through a sand-clogged spreading zone 0.4 km long by

0.2 km wide. The lower reach feeds into the Wankama

pool, which may occasionally interact with neighbor-

ing pools. Because of this and of catchment runoff flow

values being derived from observed stage fluctuations

of the Wankama pool, not all runoff events can be used

for our catchment modeling study (C.Pap.). This

results in an under-representation of large storms in the

reference data sample. Large-event under-represen-

tation is a potential problem since this category may

account for a substantial fraction of water resources in

the area, but on the other hand Séguis et al. (2002) have

shown that parameter calibration is more responsive to

short and/or low intensity rainfall events. Event

volumes (hereafter expressed as depths in mm after

division by the catchment surface area) are known

more precisely than actual discharge (m3/s), and are

also of much greater concern in the context of this

resource-oriented study. The r.water.fea physically-

based, spatially-distributed, Hortonian runoff event

model couples Green-Ampt infiltration and kinematic

Nomenclature

C.Pap. companion paper (Peugeot et al.,

2003)

DEM digital elevation model

EXO(p) event with proven exogenous inflow to

Wankama pool (see C.Pap.)

GIN(p) event with proven general inundation of

pool-kori system (C.Pap.)

GIS geographical information system

IRD Institut de Recherche pour le Dévelop-

pement (formerly ORSTOM), France

LOW(p) event with very low observed-to-simu-

lated runoff ratio (C.Pap.)

pEXO(p) event with probable exogenous inflow to

Wankama pool, rejected from reference

data set after statistical and model-aided

analyses (C.Pap.)

UMR Unité mixte de recherche (CNRS-IRD-

Universités de Montpellier 1&2, France)

(*) designates categories in the event classification of C.Pap.

B. Cappelaere et al. / Journal of Hydrology 279 (2003) 244–261 245



wave routing equations to represent runoff and run-on

distributions in time and space over complex terrain,

land use, soil, and conveying-network conditions,

within the Grass raster-GIS software (USACE, 1993).

In conjunction with uniform rain intensity time-series,

input for the Wankama catchment consists of 20 m

resolution maps for DEM (from field survey) and

hydraulic parameters (from SPOT imagery and field

observations), including six channel reaches and a

spreading zone. Spatially distributed hydraulic con-

ductivity and Manning roughness are used as prior

values before model calibration (see Section 2). For

initial humidity at the beginning of a rain event, a

uniform soil saturation ratio is computed, based on the

API (Antecedent Precipitation Index) formulation of

Kohler and Linsey (1951) and calibrated on soil

moisture observations (C.Pap.).

The uncalibrated Wankama model was used in

C.Pap., together with more purely data-driven,

statistical rainfall–runoff analyses, to perform an

event classification from the recorded 1992–1998 raw

sample, leading to selection of a subset referred to as

the ‘reference event sample’. As fortunate as it is

fortuitous, it so happens that the uncalibrated model

performs rather well, in terms of agreement between

observed and simulated runoff volumes, against the

reference event sample. This does not however

obliterate the necessity for actually calibrating the

model against sample data, in order to gain increased

predictive accuracy but also to clarify parameter and

prediction uncertainty. Model calibration includes

tuning of the parameter set in order to obtain optimal

model fit to observations, as well as characterization

of parameter uncertainty and definition of an evalu-

ation procedure for predictive uncertainty. Model

verification is performed here mainly with the tuned

(‘optimal’) parameter set, but the predictive-uncer-

tainty estimation is also partially tested. Section 2

presents the methods used for model calibration and

verification, while results are detailed in Section 3.

2. Calibration—verification method

2.1. Parameter space

Many physical characteristics included in the

model (C.Pap.), particularly those related to geometry

and topography, were defined as being invariant

throughout the modeling procedure. Only the hydrau-

lic conductivity and roughness parameters are subject

to tuning, starting with prior reference values that

were assigned on the basis of field and remote sensing

information. The purpose of this subsection is to

specify the parameterization framework used and the

control-parameter space within which model cali-

bration is performed. Some results from preliminary

sensitivity analyses within this control-parameter

space are also presented.

Given that for any physical parameter (e.g.,

hydraulic conductivity Ks) there are as many potential

model parameters as there are grid cells in the discrete

model, there is a need to reduce the parameter space

dimension, which must be proportionate to the size and

information content of the calibration data sample.

This reduction can be done by using the distributed

prior reference values as constraints on the relative

spatial pattern for a given parameter physical type,

leading to a single scaling factor per parameter type.

Three such dimensionless scalar control parameters,

K; C; and M; are actually defined: M is a uniform

multiplier applied to the prior raster map of spatially

distributed Manning’s roughness values, while K and

C are applied to hillslope cells and to channel cells of

the prior Ks map, respectively. Hence, the model

parameterization consisting of these three dimension-

less scalar parameters K; C; and M; preserves the

spatial structure for each of the associated infiltration

or roughness properties.

For the largest event in the reference sample (July

18, 1992, with rain depth 57 mm), Fig. 1 shows model

sensitivity to the K; C; and M control parameters

around the prior point ð1; 1; 1Þ; with only one of the

three being varied at a time. Fig. 1(a) shows the

sensitivity of total volume for each parameter. While

it might have been thought that runoff volumes are

essentially controlled by the K and C infiltration

parameters and that M would primarily control the

timings of flow routing, Fig. 1(a) shows that M also

has a strong impact on volumes. This is because,

within the model as in reality, runoff production and

routing interact: if surface flow is slowed down, due to

hydraulically rougher surfaces, then there is more

opportunity for infiltration. Sensitivity to C is

comparatively lower: this probably results from the

catchment channel only partially controlling
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the catchment’s surface-area (,55%), and from its

rather high runoff abstraction efficiency, particularly

in the mid-slope spreading zone, given its prior

conductivity value (450 mm/h). The C impact on

runoff hydrograph is shown in Fig. 1(b). The rising

limb is much less affected than the peak and recession,

a finding consistent with those reported by Woolhiser

et al. (1996) for analytic kinematic-wave solutions

with channel losses.

2.2. Data sample management

A satisfying calibrated model should show suffi-

cient stability with respect to changes in the

composition of the calibration data sample. When

the available sample size is large enough, a common

practice to check this stability is to divide the sample

(‘split-sampling’) into two independent subsamples

that both represent the overall population equally

well, and to use one of them to perform calibration

and the other one to test the calibrated model (see for

instance: Kuczera and Parent, 1998; Feyen et al.,

2000). Owing to an insufficient number of large

storms, our 97-event reference data set does not allow

two such equally representative subsamples to be

obtained. The approach followed here is to use the

entire 1992–1998 period of the reference set (73

events) to perform model calibration, and to test the

calibration both by applying a resampling technique

on the 1992–1998 subsample (hereafter referred to as

cross-validation) and by verifying the calibrated

model’s performance against the 1999–2000 data

(24 events). The latter is too short to fully represent

the storm event population, but is quite informative in

the sense that it did not have to go through the model-

based event screening process devised for the

1992–1998 data (C.Pap.). In practice, these ‘special-

ized’ respective uses of the two successive data

periods were performed independently at quite

separate times, as each set became available.

2.3. Diagnostic function

Calibration is achieved through the minimization of

a diagnostic function, hereafter denoted F; which

quantifies model agreement with observations. This

measure is also used for model verification, and serves

as the basis for parameter uncertainty analysis.

Various function formulations are possible (e.g.

Sorooshian et al., 1983; Gan et al., 1997; Gupta et al.,

1998; Feyen et al., 2000), depending on modeling

purposes. For instance, if flood forecasting was the

objective, then peak discharge and time-to-peak would

be the most important criteria. Our perspective being

water resources, runoff volume distribution over the

storm event population is of primary concern.

However, to maximize model reliability and robust-

ness, it is desirable that the comparison between

simulated and observed runoff also accounts for

hydrograph shape. Due to the measurement method

(C.Pap.), per-event runoff volumes are known with

significantly better precision than instantaneous dis-

charge rates. Hence, it is reasonable to base model

performance assessment primarily on hydrograph

Fig. 1. Sensitivity to parameter values (July 18, 1992): (a) sensitivity

of volume to K (solid line), C (dotted line) and M (dashed line);

(b) hydrograph sensitivity to channel conductivity parameter C:
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volume and secondarily on its shape. In conjunction

with the integrated volume, the latter is represented by

the peak discharge (the choice of this variable as a

shape descriptor is further discussed in Section 3.2)

and is granted a lesser weight in the analysis. Because

the distribution of rain depths in the reference data

sample shows some distortion vis-à-vis the full set of

observed rainstorms (C.Pap.), weighting coefficients

are applied to each event in the diagnostic function

expression, based on rain depth partitioning into 7

classes: for any event i in class j; the weight ai is taken

as the ratio of the number of events in class j for the two

rain samples (full-sample over reference-sample) in

order to reflect the full-sample class size through the

reference-sample individuals. Resulting weight values

are maximum for the upper storm-magnitude class.

This event-number imbalance correction is felt all the

more necessary as the contribution to seasonal pool

recharge from every single large rain event is so much

greater than from any small one.

For either one of the two variables (runoff volume

V or peak discharge Q), the measure of model fit to a

set of any n observations is built as the mean weighted

sum of squared errors over these n events, normalized

by the observed weighted variance over a fixed,

reference sample of n0 events, i.e.:

for runoff volume : F2
V

¼

Xn

i¼1
{ai½VobsðiÞ2 VsimðiÞ�

2}=
Xn

i¼1
aiXn0

i¼1
{ai½VobsðiÞ2 Vobs�

2}=
Xn0

i¼1
ai

; ð1Þ

for peak discharge : F2
Q

¼

Xn

i¼1
{ai½QobsðiÞ2 QsimðiÞ�

2}=
Xn

i¼1
aiXn0

i¼1
{ai½QobsðiÞ2 Qobs�

2}=
Xn0

i¼1
ai

: ð2Þ

Denominators are only used to make errors non-

dimensional. It is the 1992–1998 reference sample of

size n0 ¼ 73 which is used to compute these

referential observed variances, irrespective of the n

events on which model performance is measured.

Normalization by constant variances eases inter-

comparison of FV - or FQ-values, i.e. of mean

quadratic errors, between dissimilar event samples,

namely: 1992–1998 subsamples of unequal sizes

(cross-validation in Sections 2.5 and 3.2) or distinct

observation periods (Sections 2.7 and 3.5). Nil values

of FV and FQ indicate perfect fit. Note that 1 2 F2
V (or

1 2 F2
Q) would amount to the so-called efficiency

criterion of Nash and Sutcliffe (1970) when the n and

the n0 events coincide. Combination of the two

criteria into a global diagnostic function F is achieved

by a weighted quadratic average of FV and FQ :

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

V þ ðaFQÞ
2

q
; with 0 , a # 1; ð3Þ

where the weighing factor a accounts for the lesser

impact of peak discharge in the global quality

assessment. A value of 0.5 is used for a: The curved

lines in Fig. 2 represent the contours of the F surface

as a function of FV and FQ; the straight line is the

locus of equal sensitivity of F to FV and FQ: It can be

seen that F; as a quadratic average, is much more

sensitive to the more poorly satisfied of the two

criteria when the difference between the two is large

(i.e. near the axis corresponding to that poorly

satisfied criterion). The priority given to the volume

criterion appears clearly when one sees that F

becomes really sensitive to FQ only when FV is low

or when FQ is very large. In other words, the peak

discharge will come into significant play only when

the fit on volumes is sufficient or when the discharge

criterion is very bad. Hereafter F0 designates the value

of F for n ¼ n0; i.e. for the entire 1992–1998

reference sample, and is used as the tuning criterion

(Section 2.4) and as a comparative measure for

parameter acceptability (Section 2.6); F2
0 is analogous

to a weighted residual variance proportion. The

addition of a penalty term to the diagnostic function

was considered, to reflect a decreasing ðK;C;MÞ

likelihood with increasing distance from the prior

ð1; 1; 1Þ value and thereby avoid an overly different

calibrated parameter set, but tests showed that this is

not necessary in the present case, partly due to the

good performance (F0 ¼ 0:196; see Section 3.1) of

this prior parameter set.

2.4. Function minimization, parameter sampling

Model calibration is performed by searching for

minima of the F0 function in the 3D K –C –M

parameter space. Powerful automatic search algor-

ithms may be required to find the global minimum

when the problem dimension is large (e.g. Duan

et al., 1992). When the dimension is small like in
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the present case, direct analysis of the surface is

possible, and is very informative as for possible

multiple optima, parameter interactions and sensi-

tivity to parameter values (e.g. Gaume et al., 1998),

i.e. about uncertainty on calibrated parameters.

Calibration is performed here by exploring the 3D

parameter space at the nodes of an irregular,

manually adapted grid with finer spacing around

the function minimum and looser spacing away

from the minimum, within what is considered to be

a reasonable parameter subspace, centered around

the ð1; 1; 1Þ prior point and spanning about one order

of magnitude in K and M; and over two in C: To

reflect the fact that the channel should not be less

pervious than the hillslopes, a constraint is intro-

duced that keeps the effective value of channel

hydraulic conductivity (i.e. C times the prior value)

larger than or equal to the lowest hillslope effective

conductivity (i.e. K times the lowest Ks-map value).

In order to obtain the solution to the minimization

problem with adequate precision, the parameter grid

is developed sufficiently in its vicinity to ensure an

insignificant function gradient at the optimal node

ðK̂; Ĉ; M̂Þ0: As put forward for instance by Beven

and Binley (1992) under the concept of equifinality,

the ðK̂; Ĉ; M̂Þ0 optimum is not the only parameter set

worthy of interest, the neighboring sets whose F0

performances are nearly as good should also be

considered as potential candidates to represent the

physical system. Therefore, the F0ðK;C;MÞ surface

around the ðK̂; Ĉ; M̂Þ0 optimum is used to represent

this notion of multiple acceptable parameter sets,

and serves as a basis for the parameter uncertainty

characterization method of Section 2.6.

2.5. Resampling-based cross-validation

Because the available reference data set is not

sufficient for fully-fledged split-sampling calibra-

tion/validation, the verification approach includes

limited split-sample testing (data for the 1999 and

2000 seasons are used for verification only, see

Section 2.7) as well as a resampling-based cross-

validation scheme. This makes optimal use of the

available data, since the size and representativeness

of the calibration sample are maximized, while the

quality of calibration output can still be checked.

The cross-validation scheme used amounts to

mimicking a validation sample in order to both

test parameter stability with respect to the cali-

bration sample, and assess the predictive capability

of the calibrated model measured by the F criterion,

Fig. 2. Contours of diagnostic function F in ðFV ;FQÞ space (straight line ¼ equal sensitivity of F to FV and FQ), and F0 locations (dots) of

parameter sets explored in calibration and validation procedures.
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much like the so-called press (short for ‘predictive

sum of squares’) in regression methods (Draper and

Smith, 1981). In this subsection, and in its follow-

up Section 3.2, calibration refers only to the

model’s optimal parameter set, not to the parameter

uncertainty aspect. Cross-validation with resampling

is a commonly used technique to study the

sensitivity of models to data sample fluctuations

(see for instance Stone, 1974; Tukey, 1977). It

basically consists in performing multiple calibra-

tions using multiple data sets, each one being a

subsample of the original data set obtained by

leaving out a certain number of observations, one in

our case (‘leave out one observation’ approach).

Specifically, the model is re-calibrated for each

subsample of size n0 2 1 that can be obtained from

the original calibration sample of size n0; leading to

n0 new estimated parameter sets denoted ðK̂; Ĉ; M̂Þ\i
where i designates the left-out event, between 1 and

n0: Comparison of the ðK̂; Ĉ; M̂Þ\i triplets with the

globally-optimal, calibrated set ðK̂; Ĉ; M̂Þ0 informs

about the stability of calibration-produced par-

ameters. An F0 like value is now computed by

using for VsimðiÞ and QsimðiÞ in Eqs. (1) and (2) the

volume and peak discharge obtained by simulation

of event i with parameter set ðK̂; Ĉ; M̂Þ\i; which is

independent from the VobsðiÞ and QobsðiÞ obser-

vations for that event. This ‘simulated’ F0 value

(denoted Fcv
0 ) is a good indication of the predictive

performance of the calibrated model, i.e. of its F

score on a new, independent data sample represen-

tative of the storm event population. Some degra-

dation relative to the calibration score

Fc
0 ¼ F0ððK̂; Ĉ; M̂ÞoÞ is to be expected, but should

remain moderate in order to accept the calibrated

model. While cross-validation is commonly used for

statistical or neural models (e.g. Prechelt, 1998;

Coulibaly et al., 2000), very few applications can be

found for conceptual or distributed hydrologic

models (see for instance, Berri and Flamenco,

1999). The partial, recalibration steps are performed

here using the same parameter-space sampling from

Section 2.4, and may therefore be somewhat more

approximate than the calibration step of Section 2.4

(no grid refining around new minimum), without

weakening the conclusions from this cross-vali-

dation procedure.

2.6. Parameter uncertainty characterization

While the minimum of the F0 function in the

parameter space provides the single best parameter

set, the neighboring region of parameter sets that

produce close F0 values can be viewed as nearly, albeit

not quite, as acceptable as this optimal set. The farther a

parameter set’s F0-value from the minimum Fc
0 ¼

F0ððK̂; Ĉ; M̂Þ0Þ; the less consistent it is with the data, and

vice-versa. Hence, the acceptability of a parameter set

canberatedbyitsF0-value,whichmeans thataregionof

acceptable parameter sets may be defined in the

parameter space as the compact subspace confined by

some closed iso-F0 surface. Parameter uncertainty can

be characterized by analyzing how far from ðK̂; Ĉ; M̂Þ0
this region must extend in order that a prescribed

fraction of the observed event volumes be properly

simulated at least once when parameter sets are varied

all over this region. Practically speaking, a parameter

region is considered successful in simulating a given

observed event when both underestimations and over-

estimations of its runoff volume occur for the various

parameter sets sampled over that region. This allows a

graph to be built of F0 against the fraction fE of

successfully simulated events within the parameter

region defined by the F0 value (Section 3.3). An

experimental delineation (by an F0 contour) is thus

obtainedof theparameter region tobeconsideredfor the

inclusive reproduction of any given fraction f (%) of

observed volumes. Conversely, the range of predicted

volumes produced by this parameter region for any

particular rainevent (observedornot)canbeconsidered

as representing an empirical f -% confidence interval

estimate for that event volume (see Section 3.4).

2.7. Test with the 1999–2000 event data

In order to check that performance of the calibrated

model with the optimal parameter set ðK̂; Ĉ; M̂Þ0 or with

its neighbors (acceptable parameter sets) is more or less

preserved when applied toadifferent, fully independent

sample of events, the 24 reference events of the 1999–

2000 period are used to perform this test. Model

performance is assessed with the same F function used

for calibration and cross-validation, but with a smaller

number n of events for the computation of quadratic

errors in FV and FQ’s numerators. As explained in

Section 2.3, denominators in FV and FQ are left
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unchanged, i.e. taken as the volume and discharge

variances of the 1992–1998 reference sample of n0 ¼

73 events (see Eqs. (1) and (2)). Hence, comparing F-

values (or FV and FQ separately) for the calibration

sample, i.e. F0; and for the 1999–2000 sample, denoted

F1999–2000; with the same model (same parameter set)

amounts to comparing weighted mean quadratic error

for the twosamples.Results are showninSection3.5 for

all parameter sets sampled in the F0 # 0:4-region. The

1999–2000 data are also used to test the stability of the

parameter uncertainty characterization scheme, by

comparing, for the two distinct event samples (cali-

bration and 1999–2000), the simulation ‘success’ rates

of F0-defined parameter regions, as defined in Section

2.6. These tests with the 1999–2000 sample are of

course very partial, the sample being to short to fully

represent the event population. In particular, it does not

include any very large event. Therefore the test cannot

be totally conclusive by itself, but complements the

indications provided by the cross-validation test.

3. Results

3.1. Calibration

A total of 942 sets of three parameters ðK;C;MÞ

were processed, with steps in the ranges 0.05–0.5,

0.125–2.0, and 0.1–0.25, respectively, leading to a

single function minimum and no alternative signifi-

cant local minimum. The minimum F0 value is Fc
0 ¼

0:160; obtained for ðK̂; Ĉ; M̂Þ0 ¼ ð0:75; 1:0; 1:25Þ con-

sidered as the globally optimal parameter set. It brings

a noticeable improvement to the initial score of F0 ¼

0:196 for the prior parameter set ð1; 1; 1Þ: A second-

order analysis performed around this point shows that

any further refinement of the solution is not

significant. The F0ðK;C;MÞ diagnostic function sur-

face appears to be well-conditioned (i.e. the model

parameterization can be considered as yielding a well-

posed calibration problem), with rapidly increasing

values when crossing the boundaries of the explored

parameter domain outwards. Only more model

degradation is to be expected outside this domain,

because of the monotonous marginal effect of any one

of the three parameters on the runoff variables, from

model construction. A partial graphical representation

of this 4D hyper-surface is obtained by projections

onto 2-parameter planes, in the neighborhood of the

optimum: Fig. 3 shows the maps of F0 contours,

interpolated between computed values, for the 3D

surfaces F0ðK;C¼1;MÞ, F0ðK;log10ðCÞ;M¼1:25Þ and

F0ðK¼0:75;log10ðCÞ;MÞ. The C parameter is plotted

with a logarithmic scale because of its noticeably

lesser sensitivity, already pointed out in Section 2.1.

The surfaces are rather smooth, with a single, well-

confined region of low F values in the K–M subspace

(Fig. 3(a)) and more elongated troughs in the K–C and

M–C subspaces (Fig. 3(b) and (c)) extending over a

large range of C values given the logarithmic axis, and

nearly parallel to this axis especially in the K–C

subspace. Hence, parameter uncertainty is the least for

Fig. 3. 2D-projections of diagnostic function around global optimum: (a) F0ðK;C ¼ 1;MÞ; (b) F0ðK;C;M ¼ 1:25Þ; (c) F0ðK ¼ 0:75;C;MÞ

(note that C is plotted with a logarithmic scale, in (b) and (c)).
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K; then for M; and is much larger for C; as foreseen by

the preliminary sensitivity analysis in Section 2.1. Fig.

3 shows that, although no alternate optima exist,

multiple parameter sets may be nearly equally

acceptable, especially for a broad range of C-values.

Moreover, the tilt of the low F values especially in the

ðK;MÞ and ðC;MÞ subspaces illustrates the interactions

between soil conductivity and surface roughness

parameters, embedded in the model’s coupled formu-

lation of the infiltration and transfer equations.

Comparatively, K and C appear to be somewhat

more independent from one another, in the tuning

region. Although the optimal point ðK̂;Ĉ;M̂Þ0 found in

the parameter space will be paid special attention, the

existence of alternative parameter candidates will also

be taken into account, through the procedure used for

parameter uncertainty characterization (Section 3.3).

Model control by the parameterization scheme is

further scrutinized in Fig. 2, where the explored

parameter sets are plotted in the ðFV ;FQÞ space

(actually limited to values below 1, for legibility) with

F0 contours in the background. The cloud of points is

bounded by non-zero FV and FQ minima (0.119 and

0.173), corresponding to the best possible simulations

of either observed volumes or peak discharges,

respectively. Excellent volume matching may be

associated with bad peak discharge, and vice-versa.

The optimal F0 value combines only slightly sub-

optimal FV and FQ scores (0.127 and 0.197), and can

therefore be considered to achieve an adequate

compromise between the two criteria: volumes are

not over-fitted at the expense of unrealistic hydro-

graph shape. Had the FQ term not been included in the

F0 calibration criterion, then a much more fragile

model would have been produced, for only a very

slight gain in volume representation of the calibration

sample. As a matter of fact, with the FV criterion alone

a much larger range of parameter values would have

been acceptable candidates, all corresponding to quite

different model behaviors as evidenced by the

variations in FQ scores. This emphasizes the import-

ance of additional, behavioral variables in the

diagnostic function besides the target variable itself,

V in our case. The choice of the ‘blending’ coefficient

(a in Eq. (3)) value is only of second-order

importance, its role is merely to arbitrate between a

few very close parameter sets (points clustered in the

very lower-left corner of Fig. 2) that indeed appear as

nearly equivalent when parameter uncertainty is

considered as in Section 3.3.

In Table 1 (first two columns), some global

statistics of simulated runoff volume and peak

discharge produced by the ðK̂; Ĉ; M̂Þ0 optimal par-

ameter set are compared with observations. While

standard deviations and maxima (July 18, 1992) for

both volume and peak discharge are quite close to

observed values, mean peak discharge is under-

estimated by 22%. This reflects the lesser weight

given to peak discharge in the objective function.

Filled triangles in Fig. 4 compare observed and

simulated event volumes (a) and peak discharges

(b) for the n0 ¼ 73 events of the calibration sample.

The latter indicates that the rather poor performance

cited above for mean peak discharge mainly comes

from a great number of small events. Displayed for

illustrative purposes in Fig. 5 are the observed (bold

line) and simulated (thin line) hydrographs for four

selected events of varying, increasing magnitudes.

Small-event peak-discharge underestimation is again

evidenced (Fig. 5(a) and (b)), while bigger-event

hydrographs appear very adequately simulated ((c)

and (d)). Although to a lesser extent, this phenomenon

also exists for volumes, leading to a 9.2% under-

estimation by the calibrated model of the volume

mean over the sample (the underestimation is nearly

Table 1

Compared global statistics (1992–1998 reference sample) for event

runoff observation, calibration (ðK̂; Ĉ; M̂Þ0 optimal parameter set)

and cross-validation; relative departure from observation in

brackets

Observed Calibration Cross-

validation

Runoff

volume

(mm)

Average 1.3 1.2 (29%) 1.1 (210%)

Std.

deviation

2.4 2.4 (þ1%) 2.3 (23%)

Largest 16.9 17.2 (þ1%) 16.0 (26%)

Peak

discharge

(m3/s)

Average 0.9 0.7 (222%) 0.8 (217%)

Std.

deviation

1.6 1.5 (25%) 1.9 (þ18%)

Largest 10.8 11.2 (þ3%) 14.8 (þ36%)

Diagnostic

function

FV 0.127 0.137

FQ 0.197 0.377

F 0.160 0.233
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25% for the uncalibrated model). This bias is

a potential concern with respect to future model

operation for predicting seasonal catchment yields.

However, it is shown in Section 3.4 how the bias is

essentially eliminated when the optimal parameter set

is not the only one to be considered, i.e. when

predictions are made as confidence intervals.

3.2. Cross-validation

The cross-validation scheme described in Sec-

tion 2.5 was first used to investigate the stability

of the calibration procedure, that is to say its

sensitivity to the event sample. Successively for

each of the n0 ¼ 73 subsamples of n0 2 1

events from the 1992–1998 reference sample, 942

new F values (one for each of the previously

explored parameter sets ðK;C;MÞ) are computed

(with n ¼ n0 2 1 in Eqs. (1) and (2)), the minimum

of which yields the optimal parameter set for that

subsample. Hence, these n0 partial calibration steps

lead to n0 ‘partially’-optimal parameter sets

ðK̂; Ĉ; M̂Þ\i ði ¼ 1 to n0Þ; all but one turn out to

be identical to the ‘globally’-optimal set

ðK̂; Ĉ; M̂Þ0 ¼ ð0:75; 1:0; 1:25Þ produced by the full

calibration step of Section 3.1 (strict identity results

from the discrete parameter sampling scheme). The

only exception occurs when withdrawing the largest

event in the reference sample (July 18, 1992):

in this case the partially calibrated parameter set is

ðK̂; Ĉ; M̂Þ\ðJuly 18; 1992Þ ¼ ð0:75; 11:0; 0:75Þ; i.e. C un-

realistically departs from its prior and globally-

optimal value ðĈ0 ¼ 1:0Þ; unlike K and M: For

this ðK̂; Ĉ; M̂Þ\ðJuly 18; 1992Þ parameter set, the F0

value computed in Section 3.1 with the entire

event sample is 0.220 (FV ¼ 0:129 and FQ ¼ 0:357;

see Fig. 2). The model calibration may be called

stable, being sensitive only to the absence of the

largest event in the calibration sample, which does

significantly impact the peak discharges produced by

the resulting model but not the simulated

runoff volumes, i.e. this study’s prime concern.

This is confirmed when assessing the predictive

capability of the calibrated model, as defined in

Section 2.5: each event i is now simulated with

the partial-calibration parameter set ðK̂; Ĉ; M̂Þ\i
obtained without that event. The last column

in Table 1 shows the statistics and F-value

produced by this ‘simulated’ validation sample.

For volumes the results are very similar to those

obtained in the calibration step, whereas

degradation in the FQ component of the diagnostic

function leads to an overall Fcv
0 score of 0.233.

In fact, since the largest event is the only one

whose presence or absence in the calibration

sample makes a difference in the estimated

Fig. 4. Simulated vs observed volumes (a) and peak discharges

(b) for: 73 reference events of 1992–1998 period with calibrated

parameter set ðK̂; Ĉ; M̂Þ0 ¼ ð0:75; 1:0; 1:25Þ (filled triangles) and

with cross-validation scheme (empty triangles, coinciding with

filled triangles for all but largest event of July 18, 1992); 24 events

of 1999–2000, with ðK̂; Ĉ; M̂Þ0 ¼ ð0:75; 1:0; 1:25Þ calibrated par-

ameter set (circles); 5 ‘LOW’ outlying events in classification of

raw 1992–1998 sample (Peugeot et al., 2003), with ðK̂; Ĉ; M̂Þ0
calibrated parameter set (‘ £ ’ crosses).
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parameters, the Fc
0-to-Fcv

0 deterioration comes

entirely from the poorer Qmax plus the much

more slightly degraded V for that remarkable

event when it does not contribute to calibration

(i.e. for ðK̂; Ĉ; M̂Þ\ðJuly 18; 1992Þ; see ‘largest’ values in

Table 1, empty triangles in the scatterplots of Fig.

4, and dotted-line hydrograph in Fig. 5(d)). This

cross-validation exercise undoubtedly suffers from

the scarcity of very large events in the reference

data sample, only one belonging to that category.

However again, our variable of main concern is the

runoff volume which appears to be properly

replicated by this validation step. Also, the

relatively poor Fcv
Q score appears to be an overly

pessimistic quantification of hydrograph shape

deterioration for the validation sample: the only

degraded hydrograph, i.e. July 18, 1992 (Fig. 5(d),

dotted line) is not that different in shape from the

observed curve, but it is the weight in FQ of any

error (even if limited in relative terms) on this

event’s large peak discharge that tends to over-

emphasize the degradation. In fact FQ suffers from

not being a pure hydrograph shape-agreement

indicator, but a variable that also carries infor-

mation about event magnitude, as FV already does.

Furthermore, as already mentioned, precision is

much less here for peak-discharge data than on

volume or general hydrograph pattern. A better

shape-criterion could probably have been devised,

bearing for instance on relative peak-discharge

errors, or on errors on some hydrograph-duration

characteristic, e.g. the shortest duration for a given

runoff volume fraction (the runoff time dimension

is much less sensitive to event magnitude and to

measurement error than discharge is), but this is

beyond the scope of this paper.

From the above, it may be concluded that the

simulation capability of the calibrated model is

largely preserved through cross-validation resam-

pling. Finally, it must be emphasized that, far from

being an ‘outlier’, the large event of July 18, 1992,

is an extremely informative one which should not be

omitted from the event dataset as it carries a lot of

information about the modeled system, especially in

the prospect of seasonal runoff volume simulation.

Being the only member of the under-represented

class of large to very large events, its solitary

presence in the reference sample penalizes cross-

validation performance, but it is essential that model

calibration fully accounts for this particular event, as

is achieved through error weighting in the diagnostic

function F0 (ai coefficients in Eqs. (1) and (2)).

Fig. 5. Hydrographs for selected events: bold line ¼ observation; thin line ¼ simulation with calibrated parameter set ðK̂; Ĉ; M̂Þ0 ¼

ð0:75; 1:0; 1:25Þ; dotted line ¼ cross-validation simulation with ðK̂; Ĉ; M̂Þ\i (coincides with thin line in (a) to (c)).
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3.3. Parameter uncertainty characterization

The F0 measure of parameter acceptability was

rated in terms of fraction of properly simulated

volumes ðfEÞ as described in Section 2.6. Because of

the heterogeneity between very small and very large

events, the overall 1992–1998 reference sample of

n0 ¼ 73 events was split into two halves, and the

rating performed separately on each of these two

subsamples. To make this uncertainty characteriz-

ation readily usable for predictions, the splitting

criterion used to differentiate event magnitude is the

runoff volume Vc
sim simulated with the optimal

ðK̂; Ĉ; M̂Þ0 parameter set. Hence two separate F0-

vs-fE graphs are constructed (Fig. 6), for the 37 and

the 36 events with Vc
sim above and below 500 m3

(0.27 mm), respectively. In the determination of fE;

measurement uncertainty on pool recharge volumes

associated with the 1 cm precision on stage record-

ing is accounted for, as a function of pool stage.

Each graph displays an expected overall shape with

sharply contrasted, globally decreasing slopes

(upward concavity), consistent with a roughly

unimodal density distribution around the ðK̂; Ĉ; M̂Þ0
optimal parameter set. Improved parameter space

sampling would logically result in smoother curves.

The heterogeneity between small and big events

is clearly highlighted, with a larger parameter

uncertainty for the former. Using the one-to-one

relationships defined by Fig. 6, the hypersurface

displayed as projections in Fig. 3 could be redrawn

with parameter sets now rated in terms of fraction fE
of correctly simulated events, for each of the two

subsamples. The use of this method of parameter

uncertainty characterization in prediction is pre-

sented below (Section 3.4).

3.4. Prediction intervals

Based on parameter uncertainty as expressed by

Fig. 6, it is possible to derive empirical confidence

limits on volume prediction for any simulated event.

This obviously is of great value for operational model

use with unmonitored events, but in the current model

development phase it is also interesting to explore

these generated confidence intervals for the reference

sample events. The idea is that, as a result of the F0-

vs-fE calibration rule, a volume prediction interval at a

given fE confidence level can be obtained by

simulating with all parameters sets within the F0ðfEÞ

region. Practically, for any given rainfall event, the

model is first run with the optimal ðK̂; Ĉ; M̂Þ0
parameter set to allow identification of the runoff

event type, either small or big (Section 3.3), and

selection of the associated parameter uncertainty

curve from Fig. 6. Then, out of the 942 parameter

sets, only those with F0 values below the upper limit

ðfE , 1Þ of the appropriate uncertainty curve need to

be simulated, and computed {F0; Volume} couples

are sorted in increasing-F0 order. The gradual growth

of the volume interval with increasing F0 is

represented through the evolution of its lower and

upper bounds, obtained as the running extremes along

the sorted {F0, Volume} series. These two curves of

F0 vs volume-bound can then be translated directly

into graphs of volume confidence limits by replacing

the F0 axis with the event fraction fE axis, using the

proper parameter uncertainty curve from Fig. 6.

Hence confidence intervals on volume prediction for

an event are obtained not only for a particular

confidence level, but across the whole range of fE
confidence values, as a function of the latter. Fig. 7

shows two contrasting examples of such confidence

graphs, for the predicted runoff volumes of July 18,

1992, and June 27, 1998, respectively. The latter

displays strong asymmetry typical of smaller events.

Fig. 6. Parameter uncertainty characterization, as fEðF0Þ (fraction of

successfully simulated events fE within the parameter subregion

encompassed by an F0 contour), for calibration events with Vc
sim

(simulated runoff volume using optimal parameter set ðK̂; Ĉ; M̂Þ0),

above (solid line) or below (dotted line) threshold of 500 m3

(0.27 mm).
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The above analysis quantifies the effect of

parameter calibration uncertainty on runoff volume

predictions for individual events, but the model’s

main practical use will eventually be to estimate

seasonal volumes. It is therefore highly desirable to be

able to produce confidence intervals for any linear

combination, like the sum or the mean, of predicted

runoff volumes from a collection of events. It will be

seen hereafter how this approach further highlights

and helps to get round major shortcomings of the use

of the optimal parameter set alone, namely: bias on

cumulative volume prediction due to non-nil mean

event-wise error (already mentioned in Section 3.1),

as well as unlikeliness of this aggregated prediction in

the overall range of possible values (see below).

Prediction errors on individual events may reasonably

be assumed to be independent, thus confidence

intervals on combined volumes can be produced

through Monte Carlo simulations using independent

probability distributions for individual event volumes,

which can be derived from the confidence graphs

exemplified in Fig. 7. This was performed for the

mean volume of the 73 events from the 1992–1998

reference sample, hereafter called ‘combined

volume’. A cumulative distribution function was

generated for each event from its own confidence

graph, and 10,000 samples of 73 event volumes were

simulated by randomly drawing from each of these

distributions. The resulting histogram for the com-

bined volume is shown in Fig. 8. As expected the

distribution is quasi-gaussian, with a mean value of

2465 m3 ¼ 1.31 mm (roughly equal to the mode), and

a 6.4% variation coefficient. This combined volume

expectation over the 1992–1998 reference sample is

only 2.4% off the observed value, significantly less

than the above variation coefficient, meaning that

when confidence intervals on event volumes are

considered instead of only their most probable values

(those produced by the optimal parameter set) then the

bias on volume estimations vanishes. In fact, the

combined volume produced over the reference sample

by the optimally tuned model appears to be a very

unlikely value when prediction intervals are con-

sidered, since it is located 1.8 standard-deviation

away from the expected value (Fig. 8); probability of a

lower combined volume is only 2.6%. This is due to

the largely asymmetrical distributions for most

individual events. Illustrated here is the danger of

considering only a single, most ‘reasonable’ set of

model parameters, not only because it disregards the

full range of possible output values, but also because

those predictions may, as in our case, take relatively

unlikely values and lie relatively far from the most

Fig. 8. Distribution of Monte Carlo-simulated event volume mean

over 1992–1998 reference sample (diamond: observed mean;

triangle: computed with optimal parameter set ðK̂; Ĉ; M̂Þ0).

Fig. 7. Examples of predicted runoff confidence graphs (limits of

predicted volume interval, on abscissa, for a given confidence level,

on ordinate) for two individual events, big and small: (a) July 18,

1992; (b) June 27, 1998; diamonds are observed volumes.
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probable ones. Making predictions with confidence

intervals here allows us to obtain de-biased esti-

mations for expected volumes, and consequently to

more safely extend those predictions to seasonal event

sequences for water resources investigation.

3.5. Test with 1999–2000 data

The simulated volumes and peak discharges

obtained with the calibrated parameter set

ðK̂; Ĉ; M̂Þ0 ¼ ð0:75; 1:0; 1:25Þ for the n ¼ 24 reference

events of the 1999 and 2000 rainy seasons are

compared with observations in Fig. 4 (circles). It

can be seen that the agreement is generally fine, with

values of FV ¼ 0:096 and FQ ¼ 0:121; yielding F ¼

0:114 for the 1999–2000 storm subsample. The

response hyper-surfaces F0ðK;C;MÞ and

F1999–2000ðK;C;MÞ are compared via the scatterplot

of Fig. 9 which crosses the F scores obtained with the

two data samples (calibration and 1999–2000 refer-

ence samples), for all parameter sets sampled in the

F0 # 0:4-region. The two variables are bound in a

triangle that has the following properties: its vertex

corresponds to the above optimal parameter set

ðK̂; Ĉ; M̂Þ0, its lower edge is horizontal and is

associated with the minimum F1999–2000 value

ð, 0:1Þ; and its upper edge rises with a roughly 1:1

slope. Hence, when F0 increases, the mean and

standard deviation of the F1999–2000ðF0Þ conditional

distribution both grow steadily, while this distribution

remains entirely below F0 : the performance tested

with this independent sample is always at least as

good as that obtained with the calibration sample, for

any F0 region taken around the calibrated parameter

set. For instance, the range of F1999–2000 is approxi-

mately 0.1–0.3 for F0 up to 0.4 (please note that the

F0 # 0:4-region is associated with a volume-confi-

dence level slightly above 80% as rated by the overall

fraction of successfully simulated events from the

calibration sample, see Section 3.3).

The volume-confidence rating of parameter

regions produced by calibration (Sections 2.6 and

3.3, Fig. 6) can be tested against success frequencies

obtained with the 1999–2000 event sample, when

using the same, F0-controlled regions. Only the

smaller-event curve can be tested since all but one

of the 24 events in the 1999–2000 sample fall in that

category. While the curve produced with this latter

sample (not shown) does generally associate to any

given F0-region a somewhat lower level of confidence

than the calibrated curve, this difference remains

reasonable, always below 10% (mean difference is

5.6%). The bias resorption effect of using prediction

intervals is also obtained with the 1999–2000

reference sample, even more so than with the

1992–1998 calibration data: while the ratio of

simulated-over-observed combined volume is only

0.56 when the ðK̂; Ĉ; M̂Þ0 optimal parameter set is used

alone, its expected value is 0.83 when parameter

uncertainty is accounted for, with a 27% variation

coefficient. Albeit the limitation stemming from

sample representativeness, these results contribute to

corroborating the model calibration obtained in the

explored parameter space, both in terms of the optimal

parameter set ðK̂; Ĉ; M̂Þ0 and of quantification of

parameter uncertainty around this optimum.

3.6. Discussion: internal catchment behavior,

and posterior analysis of screened-out events

Except for catchment outflows, no quantitative

data is available for confrontation with the various

state variables of the model. Nevertheless, it is of

interest to examine a few of these distributed variables

to get some insight into the model’s internal behavior,

and check it against qualitative information. For lack

of spatially distributed storm-period observations,

only field-estimated conveying capacities can be

compared with simulated water depths and dis-

charges, for the calibrated parameter set ðK̂; Ĉ; M̂Þ0:

Values produced by the largest reference event (July

18, 1992) are most pertinent for this purpose.

Fig. 9. Comparing parameter performance on calibration (1992–

1998) and verification (1999–2000) reference data sets; filled circle

is prior parameter set ð1; 1; 1Þ:
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The largest simulated overland discharge is 2.3 m3/s,

for a water depth of 27 cm, in eroding car-tracks (just

slightly visible along the very northern basin bound-

ary in Fig. 10) where such values are to be expected.

Everywhere else on hillslopes, water depths are at

most 2 cm. In the main channel, the largest discharge

is 4.4 m3/s while maximum water depth is 1.9 m, in

line with the bank-full depth of the ravine and with

field-observed flood marks. It is interesting to note

that the ravine, which represents 55% of the

catchment area, contributes only 31% of the total

pool recharge for this event, and even less for most

other simulated events. This is yet more pronounced

for the runoff contribution from the upper 28% of the

catchment, through the mid-slope spreading zone. As

already seen with the uncalibrated model (C.Pap.),

only insignificant volumes run off from the spreading

zone even for the largest storms of the reference

sample with the optimal parameter set. This result

remains true for a wide parameter region around the

optimal set, including the cross-validation

ðK̂; Ĉ; M̂Þ\ðJuly 18; 1992Þ parameter set, and is consistent

with field observations. Fig. 10 shows the spatial

distribution of runoff coefficient (ratio of runoff

volume to upstream-precipitated rainfall) for July

18, 1992, as simulated with the ðK̂; Ĉ; M̂Þ0 optimal

parameter set (whole catchment value is 0.30).

While the runoff data screening performed in

C.Pap. made use of the uncalibrated model, it is not

uninteresting to investigate a posteriori how model

parameter values affect the event discrimination

achieved. First, it is found that none of the 942

parameter sets explored for model calibration is able

to produce acceptable simulated outputs both for the

reference 1992–1998 data sample actually used for

calibration and for the events that were rejected from

that sample: the pattern of relative locations of those

two event groups in a simulated-vs-observed volume

scatterplot is always very similar to that presented in

C.Pap. for the prior parameter set ð1; 1; 1Þ: Second,

when volume prediction intervals are calculated with

the calibrated model for all 57 rejected events of the

1992–2000 period (all rejection categories) and

compared to observations, only 11% of them fall in

the 80%-confidence intervals, 16% in the 90%

intervals. Among these, none of the events that were

ultimately screened-out based on statistical and model

analyses (‘pEXO’ and ‘LOW’ categories, see C.Pap.)

fall in the 90% intervals. All this strengthens the

conclusion that it is very unlikely that the entire

original set of observations belongs to a single,

homogeneous population, thereby making selection

of reference events necessary. Conversely, five large

events with proven pond overflow (from GIN and

EXO categories in C.Pap.) do appear well simulated

against ‘apparent’ observed runoff, within the present

calibration framework; among these, the three GINs

produce more predicted runoff than any other of the

154 events simulated in this study (i.e. all categories).

It may be pointed out that, had the evidence of pond

overflow not been available for these five events, they

would have been accepted as valid by the classifi-

cation method of C.Pap.. This supports the calibrated

model in the range of very large events, where the

reference data set is rather weak.

In C.Pap., the hypothesis is put forward that the

five LOW events occurred under specific, distinct

conditions which justify that they be excluded from

the reference data set used for model calibration/va-

lidation. Indeed, simulation of these events with the

calibrated parameters ðK̂; Ĉ; M̂Þ0 (see five ‘ £ ’—

crosses in Fig. 4) largely overestimates volumes

compared to data, by a factor of 2.3–3.4, thereby

corroborating the assumption that some unaccounted-

for feature(s) comparatively dampen(s) runoff for

these particular events. It is suggested in C.Pap. that

for most of these events this may largely be due to

temporarily rougher and more pervious farmed areas,

from hoe-weeding. This interpretation is tested here

by applying, within the cultivated parts of the

catchment exclusively, two further, greater-than-one

Fig. 10. Map of simulated runoff coefficient for July 18, 1992, with

calibrated parameter set ðK̂;Ĉ;M̂Þ0 ¼ð0:75;1:0;1:25Þ; pond is white.
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multiplicative scalar factors denoted Kfields and Mfields

to the calibrated hydraulic conductivity and roughness

maps, respectively, i.e. ‘on top of’ the optimal

K –C –M parameter set ðK̂; Ĉ; M̂Þ0: All channel

reaches and unfarmed overland-flow areas are left

unchanged for this test. Farming operations being

tightly linked with the stage in the rain season and in

millet-plant development, it is reasonable to assume

total correlation between the states of all fields. Using

an exploration step of 0.5 for these two extra, partial-

space parameters, it is found that all five outlying

events are now best, very closely and simultaneously

reproduced by a set of Kfields and Mfields values nearing

2.5 and 3 respectively. These figures are consistent

with reported infiltration rate increases under tillage,

observed at the plot scale in the Sahel (respectively 6-

fold and 1.5- to 7-fold by Lamachère, 1991, and

Casenave and Valentin, 1992, under simulated rain;

7.2-fold by Stroosnijder and Hoogmoed, 1984). A

large increase in hydraulic roughness is to be expected

when one considers that in addition to the effect on the

soil surface per say, tillage and weeding also result in

above-ground accumulation of vegetation debris that

hinder overland flow. Altogether, these figures seem

quite realistic, and confirm that runoff sensitivity to

enhanced field-area infiltration suffices to explain the

occasionally-observed marked fluctuations in relative

catchment yield as resulting from cultivation. It will

be recalled that in this area the effects on soil structure

disappear soon after each field operation, due to very

fast crust restoration under a few centimeters of

subsequent rainfall (Stroosnijder and Hoogmoed,

1984; Lamachère, 1991; Peugeot et al., 1997).

Spatial rainfall heterogeneity is also mentioned in

C.Pap. as a possible source of occasional departure

from the main-trend catchment behavior represented

by the calibrated, uniform-rainfall model with the

Mare hyetograph as sole input. Hyetograph compari-

son of the Mare and Ouest raingauges, which are

located well apart in the catchment, over the

1993–1994 period of simultaneous recording, showed

that differences can only rarely be large (C.Pap.). The

strongly infiltrating channel and spreading zone, as

evidenced by field observations and model cali-

bration, result in a strong dampening effect on any

rainfall heterogeneity that may occur over the basin.

Tests with those three events, among the five

‘outliers’ (LOW), that belong to the 1993–1994

period for which Ouest data is available, show that for

two of them (June 13 and August 13, 1993)

hyetograph overestimation in the simulation with the

calibrated model cannot explain the observed runoff

volume overshoot. Only for the smallest of all five

storms (October 1, 1994) is the discrepancy between

the two hyetographs large enough to provide a partial

explanation for the model error; note that large-scale

cultivation is unlikely at that point in the growing

season. Hence it is believed that rainfall non-

uniformity is only rarely a significant source of runoff

mis-modeling by the calibrated model, and that it

should not represent a real problem in the context of

seasonal runoff yield prediction for a catchment of

that size.

4. Conclusion and prospects

Based on a reference rainfall–runoff data sample

built from a 7-year long (1992–1998) record of rain

intensities and pool level fluctuations in the 1.9 km2

Wankama catchment (C.Pap.), the r.water.fea dis-

tributed, physically-based hydrological model set up

for this catchment (C.Pap.) was calibrated through

model control by three non-dimensional scaling

parameters applied to prior maps of hydraulic

conductivity and roughness in overland flow areas

and channel reaches. A special diagnostic function

was built to meet the specific needs and conditions of

the problem in hand, in particular the emphasis on

runoff volumes and the question of representativeness

of the full event population by the reference data

sample. A single calibration optimum was identified,

making the equifinality dilemma inherent to model

calibration less acute than in multiple-optima cases.

This optimum is rather close to the prior parameter

set. Parameter uncertainty around the optimum was

characterized by rating the diagnostic function value,

which defines a region in the parameter space, against

successes in replicating individual observed event

volumes, separately for small and large events. This

empirical approach to calibration uncertainty enables

the production of prediction intervals, a highly

desirable feature for reasoned model operation.

Event volume bias associated with the ‘optimal’

model is virtually eliminated when prediction

intervals are considered, allowing safe aggregative
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upscaling over time, from event-wise to seasonal pool

recharge. This method of uncertainty characterization

is believed to have potential for use in various

modeling applications.

Model verification was performed successively

through a resampling-based cross-validation tech-

nique applied to the reference data sample, through

fully calibration-independent runs on a separate event

subsample obtained for the years 1999 and 2000

(split-sample approach), and through the analysis of

internal simulated variables (peak flow discharges and

depths over hillslopes and in channel reaches) and

their confrontation to known qualitative field infor-

mation. The calibrated model highlights some key

processes controlling runoff in the catchment. Runoff

production is high due to widespread soil crusts, but is

dampened by intense channel and spreading-zone

infiltration, leaving only small fractions of upper-

catchment runoff actually contributed to pool

recharge. Significant though short-lived pool recharge

reduction may result from occasional tillage oper-

ations over the cultivated areas at the catchment scale.

Event-wise runoff simulation and model cali-

bration, as performed in this study, appears to be a

necessary step for seasonal-scale analyses of water

resource renewal in the area. Model improvement is

currently sought through dynamic interfacing with a

vegetation growth model and an energy balance

(SVAT) model. The uncertainty analysis component

needs to be refined with better parameter space

sampling, using for instance Kuczera and Parent’s

(1998) sampling scheme. Next, the modeling tool

developed based on the data for the Wankama pool

and catchment is intended to be used for extending

recharge estimates to a much longer period of time

and to a regional area containing several such runoff–

collecting systems. The specific objective is to

investigate, over significant time and space scales,

the sensitivity to rainfall variability and to environ-

ment alteration. Subject to further testing, the

physically based hydrological model has the potential

to be transposed to other endoreic catchments in the

same landscape, to changing land surface conditions

associated with land use modifications, and to non-

stationary climatic situations. Applying the model to

the past few decades, simulated runoff evolution will

be compared with the observed increase in ground-

water recharge (Favreau et al., 2002), which is

attributed to the extension of cropped surfaces over

this rain-deficient period through enhanced runoff

production and concentration. A preliminary investi-

gation of possible climatic impacts on water resources

in the area was made by Vieux et al. (1998), based on

the uncalibrated Wankama model and on hypoth-

esized rainfall reduction scenarios through possible

cuts in event numbers, shown by Le Barbé and Lebel

(1997) to be the prime mode of seasonal rain deficit in

the region. In current studies with the calibrated

model (Séguis et al., submitted), more elaborate

models of rainfall chronicles over the past decades

are considered, together with reconstitution of

environmental evolution.
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