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ABSTRACT

Vertical modal calculations were performed on a one degree longitude-latitude
grid over the tropical Pacific using the Levitus salinity and temperature file and a
bathymetry file. To observe the influence of density structure and bottom depth, the
calculations were also made with a flat bottom as well as with a mean density structure.
Density is found far a more important parameter than bottom depth for modal
calculations. Close examination of modal structures at depth with a more precise NODC
CTD file showed that it is crucial to know the density profile for the first S00 meters in
order to obtain meaningful modal values.

RESUME

Une décomposition en modes verticaux a été effectuée sur une grille longitude-latitude
sur tout le Pacifique Tropical a partir du fichier Levitus de température et de salinité et d’un
fichier bathymétrique. Afin d’estimer I'influence de la structure de densité et de la
profondeur, les calculs ont été aussi effectués avec un fond plat et avec une densité moyenne.
La densité est ainsi apparue comme un paramétre beaucoup plus important que la
profondeur pour les calculs de décomposition modale. L’examen détaillé des structures
modales a différentes profondeur, griace a un fichier NODC sonde CTD beaucoup plus précis,
a montré qu’il était crucial de connaitre le profil de densité sur les premiers SO0m, afin
d’obtenir une décomposition modale significative.
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I INTRODUCTION

Vertical and horizontal modal decompositions have been widely used in
theoretical models of equatorial dynamics. A quick survey of the models developed is
provided by McCreary (1985). Thus, modal decomposition, as a mathematical tool, is
primordial.

For example, the most successful models for El Nino describe the onset of the
phenomenon, after the trade wind collapse in the western Pacific, in terms of equatorially
trapped waves.

In the past years, oceanographers have been interested in finding if the modal
structures have any physical reality. The resolution of the vertical modes with
observational data has been successful in several cases. For example, Hayes et al., (1985)
have looked into the problem and developed a technique to study the expected errors of a
modal expansion using observational data. Toole and Borges (1984) discussed CTD data,
collected from the R.V. Conrad in the early stages of the 1982/1983 El Nino, in terms of
trapped waves and showed the existence of Kelvin waves. Behringer (1984) fitted, with
relative success, dynamical modes to data originating from CTD casts. Modal fits to near
equatorial data at 85°W in 1982 were also performed by Toole (1985). Tang et al. (1988)
also showed evidence of vertical modes in the Eastern Equatorial Pacific Ocean.

Hence, one can consider that vertical modal decomposition have a physical
relevance. Therefore, one can expect that modal calculations will be performed regularly
in the future. The purpose of this report is to examine the influence of bottom depth and
density structure on these calculations. And since information at depth is not always
readily available, we would also like to find out how much information is really
necessary to calculate correct modal structures.

II THEORETICAL REVIEW

A perturbation from a rest state of an homogeneous inviscid fluid (i.e. uniform
density) will generate a disturbance of the surface which can take the form of a
horizontal traveling wave or standing wave. In reality, the ocean is continuously
. stratified since temperature, salinity and pressure are not constant parameters within the
world oceans. One can imagine an ocean with a two layer configuration (the two layers
having different densities and being immiscible). The treatment of such a problem,
which was first performed by Stokes in 1947 (Gill, 1982), gives a simplified idea of the
effects of stratification. A perturbation in such a system will generate an internal
oscillation at the interface of the two layers.

A continuously stratified fluid corresponds to a fluid with an infinite amount of
layers. These layers can be considered as extremely thin sheets of fluid since the
horizontal scale of the ocean is much larger than the vertical scale. Thus, one can use the
technique of separation of variables when examining the equations of motion of the
system. The solution can then be expressed as a sum of normal modes. A normal mode
has a fixed vertical structure and behaves in the horizontal dimension and in time in the
same way as does a homogeneous fluid with free surface (Gill, 1982). The next four
sections will provide a brief theoretical review of modal decomposition.



A. The Governing Equations

Considering a continuously stratified ocean, the equation of motion, in its most
general form, is given by:
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where /£ is density

Jpisgravity

<7 1s earth’s rotation
A is the viscosity coefficient

ﬁ; is the pressure gradient ‘

F is the resultant of the other external

. forces acting on a fluid particle
@ is the Laplacian

—_,,_(_ - % . TP Is the total time derivative

The other important governing equation is the mass conservation equation:
—-> —>

df 7.V = o
e S

Several assumptions need to be made in order to obtain workable equations. The
first assumption is that we are dealing with an incompressible fluid. Thus, 7. V" =0. We
shall also assume that the fluid is ideal, i.e. & = 0. F is taken to be null (there are no
external forces besides gravity acting on the fluid particles). The horizontal components
of earth’s rotation are also neglected. Thus, (be=S'7=0. If the disturbances due to internal
waves have small amplitudes, the non-linear convective terms ( (7 #) 7 ) may be
neglected. This approximation, called linearization, is crucial because it allows to solve
the wave equation by normal modes.

- Hence; after these approximations, the governing equations of motion become: - .
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f is the Coriolis parameter defined by:
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We also have the continuity equation:
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One more assumption is necessary: the Boussinesq approximation. Let us define :
p and P as a sum of a background state po(z) and Py(z), and fluctuations p’(x,y,z,t) and
P’(x,y,z,t)due to internal waves : ,

p =po(z) +p’ (X,y,z1)
P =Py(2)+P'(x,y,2,0)

-f 9 22 Hydostatic equilibrium

If the fluctuation amphtudes are small, p, will be much larger than p and P will be
much larger than P Also, i ﬁtwﬂl be s1gmﬁcant1y greater than v V/’ The boussmesq
approximation consists in neglecting p as far as inertia terms are concerned but taking
density variations in full account as far as buoyancy forces are concerned (Gill, 1982).
Hence, p cannot be neglected in the term containing g.

Thus, the final equations are:
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B. The Vertical Structure of Internal Waves
1. The Vertical Velocity Equation

The vertical velocity equation is obtained by eliminating progressively p’, ¢ ,u
and v from the governing equations. Roberts (1975) method shall be used. We shall
derive equation (1) with respect to z and substract it from equation (3) derived with
respect to x. Similarly, we shall derive equation (2) with respect to z and substract it
from equation (3) derived with respect to y.
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Adding the two equations obtained and simplifying with

6[ > =0, we have:
z
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Deriving this expression with respect to t:
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Adding these two expressions together:
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" The equation is simplified to the following:
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This is the vertical velocity equation.



2. Vaisala Frequency

Consider a fluid particle displaced vertically through a small disturbance £ from
its equilibrium position without disturbing the fluid’s stratification and then released. It’s
motion can be described by the following equations:
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Replacing p’ in the first expressmn we obtain:
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The last two terms may be neglected. Hence,
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Stability occurs if ‘fi_f >0, 1ie., /V >0
2

The fluid particle, displaced from its equilibrium position, will oscillate around it
in a simple harmonic motion whose frequency is N, called Vaisala frequency (or
Brunt-Vaisala frequency). N is the natural frequency of oscillation for a fluid particle in
a stratified ocean. The corresponding period £ T /p/varies from a few minutes in the
thermocline, where the density gradient is high, to a few hours in the deep ocean.

. 3. Solution to the Vertical Velocity Equation

We are looking for a solutlon to the vertical velocity equatlon which has the form
“of: - : kK 2 + £ Gt) r—-—~
w= w (Z) € ( y gn H -~ ‘Lz E ¢

Applying this to the governing equation, we obtain:
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Limiting to cases when ¢ > f:
-If N < o: W(z) is a monotonous function of z. The only possible mode is a surface
wave which is maximum at the surface and disappears at depth.
-If N> o : W(2) is an oscillatory function which changes sign in the depth interval
where N > ¢. An infinity of solutions are possible for an infinity of discrete values of k, -

4. Boundary Conditions

BOTTOM BOUNDARY CONDITIONS ,

For an ideal fluid, the velocity at the bottom should be tangent to it. For a viscous
fluid, the velocity should be zero at the fixed boundary. If z=H(x,y) is the bottom
funcnon then w= « 2”‘ +v?2 f” at z = H(x,y). For a horizontal bottom, H= constant and

Thus, w=0 at z=H.

FREE SURFACE CONDITION

At the surface, the variation of the pressure of the fluid is equal to the
atmospheric pressure (P (x,y,t)). Thus, 2%p¢ = bTa foe

2P = _?_f_‘ ﬁ = 2—6, ~ D PG—
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If we suppose that P, is constant we have:
= -hav

Deriving respectively (1), (2) and (3) with respect to X, y and z and adding them
together, we obtain:
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Thus, using the continuity equation we get:
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Deriving with respect tot:
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which is the vertical velocity equation at the free surface.

C. The Horizontal Structure of Internal Waves

This short theoretical review would be incomplete without a quick description of
the horizontal structure of internal waves in the equatorial region.

Using the method of separation of variables on equations (1) through (4) (for
example, let u—g_ukwk(z) and v=gv,w,(z) where wy is the vertical structure), one
obtains a new system of equations which allows free wave solutions. There are several
types of free waves possible which are represented in the dispersion diagram (figure 1).

The Kelvin wave is the simplest solution. Its meridional velocity is null and its
amplitude is maximum at the equator, decreasing exponentially towards the turning
latitudes. The Kelvin wave, trapped at the equator, propagates eastward without
dispersion. Its dispersion relation is: w =kc¢

In addition to the Kelvin waves, there is an infinite number of equatorially

trapped waves. These waves are linear combinations of Hermite polynomials H . These - -

functions oscillate about the equator and are exponentially decreasing away from it. One
type of waves is the 1nert1a-0rav1ty waves which have the followmg dlspers1on
telationship: @?-k?=2n+1
They are dispersive and may propagate westward or eastward The dispersion relanon
for Rossby waves is: k2 + k/@ + 2n+1 =0
The short Rossby waves are dispersive and propagate eastward. They are relatively slow.
The faster long Rossby waves propagate westward. One last category is the
Rossby-gravity wave (or Yanai wave) whose dispersion relation is: k% +k/o- @2 +1 =0
This wave behaves as a short Rossby wave at low frequencies and as a gravity wave at
high frequencies.

Mathematically, these horizontal structures are associated with vertical structures
to form the particle velocities u, v and w.



I REGION AND MEANS OF STUDY

The area of study is the tropical Pacific ocean; more precisely, the region
between 30°N and 30°S and between 120°E and 90°W. The equatorial region acts as a
waveguide since the Coriolis parameter vanishes at the equator and is, therefore, an
important area of study.

The first five vertical baroclinic modes are calculated for the entire region of
study every degree of latitude and longitude. The bottom depths are obtained from a
bathymetry file. Density profiles are provided by a file constructed from the Levitus
(1982) Climatological Atlas of the World Ocean. A one degree latitude-longitude grid
was used.

Another temperature-salinity file, besides the Levitus file, was necessary for
more precise local examinations, since its vertical resolution is rather coarse, especially
at depth (e.g. 8 data points available in the 2000m-5500m depth interval). Hence, the
NODC Compressed CTD/STD Data file provided the extra data needed. From this file,
three regions are sorted out. Each is a 4° by 4" area centered about the following
positions: 8°N-150"W, 12°N-138°W and 15°N-125°W. The first file consists of 33
profiles; the second file consists of 33 profiles and the last one consists of 9 profiles. On
a mean there are 80 depth levels in each file.

The program used to calculate the vertical modes was written by Julian P.
McCreary and modified by Joel Picaut with the help of Frangois Masia. Basically, the
mode functions are iterated until convergence is obtained. A minimum depth of 500 m
and a maximum of 7000 m were set. The ORSTOM Center Sun computer system was
used to perform all the necessary calculation.

IV GENERAL DESCRIPTION OF THE FIRST FIVE VERTICAL MODES IN
THE TROPICAL PACIFIC

Figures 2 to 11 are contour plots of phase speeds and surface amplitudes (as
defined by Cane, 1984) of modes 1 through 5. One immediately notices tightly packed
contour lines in the south-west as well as along the continents. Intuitively, one would
suggest that the bottom profile is responsible for such steep gradients. Indeed, the bottom
topography in the south-west Pacific is very uneven. Hence, the modes calculated in that
region do not have much physical meaning. One of the assumptions made in order to
perform theoretical calculations was that the vertical velocity is null at the bottom. But if
a steep bottom slope exists, velocity will not be negligible since there will-be a-
possibility -for the existence of vertical currents at the bottom point. Thus, one should be
extremely careful when considering the results obtained in the south-west equatorial
Pacific. : '
- . A trend visible in each graph is an increase in speed from east to west. One would
suppose that this zonal increase is due to the fact that waters in the eastern Pacific are in
general shallower than waters in the western Pacific. We shall show later on that this
increase is in fact mainly explained by the way the density profiles change from east to
west.

For mode 1, the velocities range from 180 cm/s to 300 cm/s. For the second
mode, they range from 100 cm/s to 150 cm/s. The third mode values are spread out over
the interval 70 cm/s - 100 cm/s, the fourth mode values over 54 cmy/s - 80 cm/s and the
fifth mode values over 40 cm/s - 60 cm/s. The surface amplitudes vary from 2.0 cm to
5.0 cm.
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V INFLUENCE OF BOTTOM DEPTH AND OF DENSITY STRUCTURE ON
THE CALCULATION OF VERTICAL MODES

The influences of bottom depth and of density profiles on the calculation of
vertical modes have been estimated by using a flat bottom and a mean density profile for
the tropical Pacific ocean. The mean bottom depth was calculated for the region of
interest (and was found to be 3570 m). The mode calculation program was then run with
a flat bottom ( the desired depth was reached by extrapolation or by cutoff). Figures 12
through 16 represent the contour plots of the modes (1 through 5) obtained in this
manner. Since depth is constant, only density profiles can be held responsible for the
contours observed. Again, as one proceeds from east to west, the mode values increase.
Hence, the distribution of density profiles in the tropical Pacific is in great part
responsible for the trend observed in figures 2 through 6.

This finding is reinforced by the contour plots obtained for the modes calculated
with a mean density profile for the area of interest (figures 17 through 21). The effect of
bottom topography on the calculations appears to be less significant than the effect of
varying intensity profiles. Thus, this general increase in modes from east to west is due
to the variation in vertical density structure from east to west.

From these last five figures, one can notice that bottom topography is most
influential on the west of the region studied. In this region, the bottom changes depth
rapidly even though it is not necessarily the deepest. Thus, it seems that the actual depth
plays only a minor role in the calculation of modes.

One may also notice that, at higher latitudes (for the contour plots with flat
bottom), that’s to say around 10°-15" and 25°-30°, the mode velocities do not vary much
zonal. This is due to the fact that density profiles along a given latitude in those regions
are similar to each other as seen by inspection of Emery et al. (1984), geographic
distribution of Brunt-Vaisala frequency profiles in the north Pacific.

Qualitatively, we know that an increase in bottom depth will cause an increase in
phase speed. But, how much will the mode be changed if one varies the bottom depth?
Observation of the contour plots with mean Levitus density profile in comparison to
contour plots with flat bottom shows that the use of a flat bottom doesn’t change the
mode values as much as the use of a mean density structure. A better quantitative grasp
is possible by calculating the mean change in the modes when one uses the uniform
bottom instead of the real depthsl. For the phase speeds the use of a mean depth causes
only a 6% change. On the other hand, the use of a mean density profile causes 28%
change. For the amplitudes, the use of a flat bottom yields a mean change of 11%

whereas a change of 37% is-obtained when using a mean density profile. Clearly, the -

influence of the bottom depth is relatively small.

Figures 23 through 27 show the contour plots of the differences obtained between
real modes and modes calculated with a uniform depth. The comparison of these figures
with figure 22 (which is the contour plot of the differences between real depths and mean
depth for the area of interest) is interesting in that the differences in modes are in no
fashion proportional to the differences between real depths and mean depth. Most of the
phase speed differences over the region considered are relatively small (5 to 20 cmy/s)
except close to the continents and in the south-west Pacific where differences reach 160
cm/s for mode 1. Thus, the bottom has a non negligible influence in these regions. It

1. * Percentages are obtained by dividing the difference in modes by the real mode
value. :
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would not be wise to replace a real depth by an average bottom depth in these particular
cases, since it could result to up to 50% error. But, as pointed out in section IV, one
should be extremely careful when calculating modes in this region.

Contour plots were also made for the differences between real modes and modes
calculated with a mean Levitus density profile. The south - west part of the region of
interest does not stand out as much as in the previous graphs. And, in general, the
differences are larger. The calculation of a mean ratio shows that differences between
real modes and "mean density modes" are about 5 times larger than the differences
caused by the use of a mean depth.

. Further investigation into the problem of quantifying the influences of bottom

depth and density on mode calculations was performed by correlating the modes
obtained with a mean depth and the real modes (figures 28 -through 32). Correlations
were also made for the modes calculated with a mean density profile (figures 33 through
37). For all the correlations, the area’ of study was reduced to 170°E - 110°E in order to
eliminate all the erroneous data points provided by the south - west region.

The slopes of the linear regression lines reveal once again that density plays a
greater role than bottom depth. If the correlation coefficients were all as good as the one
for figure 28, information on the extent to which the bottom depth and density influence
mode calculations would be available.

VI INFLUENCE OF DEEP DENSITY STRUCTURE ON THE CALCULATION
OF VERTICAL MODES

Part of the last section dealt with the influence of density structure on the mode
calculations. The conclusion that density is, by far, more important than bottom depth
was reached. In this section, we examine the influence of deep vertical density structure.

In order to do this, a mean density profile, as well as a mean Vaisala frequency
profile, for the entire region of study is obtained. At a given position, the corresponding
Vaisala frequency profile is connected at 500 m to the mean profile by linear
interpolation over an interval of 200 m. Thus, the actual profile is conserved for the first
five hundred meters whereas below 500 m, the profile is the mean Vaisala frequency

. profile. A vertical mode decomposition is then performed for this connected profile and
plotted in order to visualize the vertical modal structure. The vertical modal structure of
the actual profile (corresponding to the given posmon) is also plottcd and allows

- comparison to take place.

Several examples -are-given in- figures 38 39 and 40 They all- show the actual
Vaisala frequency profile, the connected profile and the corresponding calculated mode.
The errors in using the connected profiles are in the order of 2% to 4% for the phase
speeds and surface amplitudes. These errors are estimated as the difference between the
values obtained with real and connected profiles, divided by the real profile value. It is
interesting to see that the use of the connected profile has very little effect on the modal
structure, even at depth. The mode graphs can be superposed nearly perfectly. Hence, the
most important information necessary to calculate vertical modes at a given posmon is
the density profile for the first 500 m.

In order to verify these results, the procedure was repeated for the more
depth-precise files (see section III) sorted out for the 4° by 4° regions centered around
8°N-150"W. The records contained in this file have very precise depth data which will
allow a better examination of the effects of our procedure at depth. Figures 41 through
43 show examples of the results obtained. The phase speeds and surface amplitudes do
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not differ more than by 3 to 4%. And even though the vertical modal structures are not as
smooth as the ones obtained with the Levitus file, they superpose each other relatively
well for a given position.

VII CONCLUSION

There are two important conclusions to be made from the study. First of all, the
influence of bottom depth in the modal calculation is negligible as compared to the
influence of the density structure. The other major result is that one only needs to possess
precise information about the density structure in the top 500 meters in order to calculate
accurate modal values (with the help of a mean density profile reaching the bottom for
the entire region considered) at a given position.

The statistical reliability of the Levitus file appears to be sufficient (only a few
profiles are invalid for modal calculations, mainly due to density inversions). This file
provides a handy working tool for the examination of vertical modal structures in the
world oceans. Unfortunately, the problem of quantifying the respective influences of
density and depth has not been solved satisfactorily.
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FIG.35.Correlation between real mode 3 and mode 3 calculated with a mean density profile.
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FIG.36.Correlation between real mode 4 and mode 4 calculated with a mean density profile.
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FIG.37.Correlation between real mode 5 and mode 5 calculated with a mean density profile.
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FIG.38.Comparison of the real modal structure (left) and the modal structure obtained with the
connected Viiséla profile (right) for the position 10.5N, 160.5 W. :
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FIG.39. Comparlson of the real modal structure (left) and the modal structure obtamed with the
connected Viisila profile (nght) for the position 12.5 N, 138.5 E.
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FIG.40.Comparison of the real modal structure (left) and the modal structure obtained with the

connected Viiséla profile (right) for the position 8.5 N, 150.5 E,
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FIG.41.Comparison of the real modal structure (left) and the modal structure obtained with the
connected Viisila profile (right) for the position 8.27 N, 150.54 W,
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FIG.43.Comparison of the real modal structure (left) and the modal structure obtained with the
connected Viisiila profile (right) for the position 8.26 N, 150.16 W.
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FIG.42.Comparison of the real modal structure (left) and the modal structure obtained with the
connected Viisila profile (right) for the position 7.60 N, 150.43 W.
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