A CCURATE DIFFUSIVE WAVE ROUTING

By Bernard Cappelaere’

ApsTtRacT: The diffusive wave simplification of the unsteady, open-channel flow equations is a commonly
used approach for flood routing applications. Among the many routing methods, except for those based on the
De Saint-Venant equations, it may be considered to be the one that most closely complies with the physics of
open-channel hydraulics. However, common implementations of the diffusive wave approach (linear diffusion,
variable parameter diffusion) involve additional approximations that diminish its physical significance and ac-
curacy. A new formulation for the nonlinear diffusive wave is presented that better respects conservation prin-
ciples through close consistency with the fundamental flow equations. The accuracy and reliability of the pro-
posed model are shown on test cases consisting both of a hypothetical, regular channel, and of an actual river
reach. Simulated discharges are compared to those obtained by a full De Saint-Venant model and by ordinary
diffusion methods, as well as to observed hydrographs in the real-world test case. This model, based on hydraulic
theory, can be safely applied to a wide range of flow conditions, while complying with the practical constraints
of flow routing applications, including the usual nonavailability of adequate channel geometry data.

INTRODUCTION

The diffusive wave approach to flow modeling in open
channels has the combined advantage of allowing for:

e The elimination of one of the two state variables (dis-
charge Q or stage Z) from the governing equations

» The aggregation of a great number of basic channel char-
acteristics (describing channel geometry and roughness
distribution over space) into more global parameters,
namely wave celerity and attenuation. These parameters
control the propagation of the remaining variable of con-
cern, generally @, through a single ‘‘advection-diffusion’’
(ADE) type equation.

This approach is especially suitable for flood routing appli-
cations, when available data consist of observed upstream and
downstream stage records or hydrographs on a river reach,
rather than in the detailed channel description required for full
flow modeling. In such cases, variables and wave parameters
involved in the diffusion routing model are closer to the ob-
servable data and are therefore more meaningful to the user
than those describing actual flow conditions (e.g., profile of
the free surface, distribution of velocity, wetted surface and
perimeter, and roughness along the channel) in a full dynamic
model. Hence, a functional representation that uses the fewest
possible nonmeasured internal state variables and calibration
parameters, while preserving a physically sound basis of the
model, is desirable. The underlying simplification of the dif-
fusion method is the neglect of the inertia terms from the mo-
mentum conservation part of the De Saint-Venant flow equa-
tions. This approximation has been shown to be sufficiently
accurate for a wide range of open-channel flow conditions,
particularly in rivers and natural streams [e.g., Bocquillon
(1978); Ponce et al. (1978); Weinmann and Laurenson (1979)].

More significant departure from the original flow equations
is brought about by the additional simplifications that are used
in the various common propagation models, such as linear
(constant parameter) diffusion, kinematic wave, and reservoir-
type conceptualization (momentum equation replaced by some
linear storage expression) like the Muskingum method. While
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these methods do generally satisfy mass conservation, the deg-
radation of the dynamic equation (conservation of momentum)
considerably reduces generality and limits the scope of use to
quite specific conditions (e.g., for the kinematic wave, small
water depths, steep slopes, little lateral inflow), or only to the
very situations used for model calibration. Although the so-
lution of these simpler systems is usually easier than that of
the flow equations (with or without inertia terms), severe nu-
merical difficulties are not precluded, such as the encounter of
kinematic shocks in the kinematic wave approach (Lighthill
and Whitham 1955).

The variable parameter diffusion was introduced (Cunge
1969; Price 1973; Bocquillon and Moussa 1988) to account
for the strongly nonlinear nature of the momentum equation,
while conserving the general form and objectives of the ADE
formulation; celerity and attenuation parameters are expressed
as functions of the state variable (usually discharge, Q), which
makes the equation suitable for numerical resolution without
having to solve concurrently for the other variable (Z). This
refinement does lend a more realistic representation of prop-
agation dynamics; however, it no longer guarantees strict con-
servation of fluid mass, as will be shown in this paper. This
shortcoming, seldom mentioned in the literature (the ADE
equation is usually shown to be derived from the De Saint-
Venant equations directly), not only raises a problem from a
theoretical standpoint, but also may lead to significant error
on predicted discharges, including the peak flow rate, in the
very situations where the zero-inertia approximation itself
would actually hold true.

Hence, despite this more sophisticated form of the diffusion
method, limitations are also imposed to its use, to ensure that
mass balance error be kept small; in particular, sufficient chan-
nel slopes and slowly varying discharges along time and space
are needed. This is due to the fact that accounting for the
pressure gradient term of the momentum equation, which is
supposed to be precisely the theoretical benefit of the diffusive
wave approach over the kinematic propagation theory, is only
very partial in common implementations of the diffusion
method (hereafter designated as ‘ordinary’ diffusion method),
since it is not reflected in the expressions of the celerity and
attenuation coefficients themselves when these are functions
of discharge Q only, or constants.

Unlike inertia terms, pressure gradients frequently have sig-
nificant effects on the propagation process [see, for instance,
Morel-Seytoux et al. (1993)]. Their importance increases with
lower channel slopes or steeper hydrographs. On the other
hand, any attempt at keeping those terms fully in the devel-
opment of the advection-diffusion equation for discharge Q,
makes elimination of the stage variable Z impossible (or vice



versa). Price (1985) produced a nonlinear Muskingum-like
model through approximation of the dynamic flow equation
with respect to the pressure gradient term: departing from the
diffusive wave formulation, it removes any backwater effect
from the discharge routing process.

The purpose of this paper is to provide a derivation of a
discharge advection-diffusion type equation [hereafter named
‘modified” or high-accuracy nonlinear diffusion method
(HAND)] that fully eliminates the stage variable (or the dis-
charge) while closely respecting the influence of pressure gra-
dients on the propagation process. To get the full benefit from
this higher precision of the new equation formulation for the
diffusive wave, an accurate numerical resolution procedure is
implemented to best fit the specific nature of the ADE, that
mixes both hyperbolic and parabolic components. Through a
fractional-step method, each component is handled separately
with a numerical scheme that best suits its particular behavior,
instead of globally solving for the whole equation by a single
scheme, as is generally done. Special care is brought to the
treatment of the convective term, to reduce numerical diffusion
effects.

Such refinements, brought both to equation building and
solving for the nonlinear diffusive wave approach, make the
method appropriate for modeling in a wide range of commonly
encountered situations, because it closely follows the funda-
mental governing equations for flow (including mass conser-
vation) under negligible inertia conditions.

DIFFUSIVE WAVE THEORY

Written in terms of discharge Q and water flow depth A
(rather than stage Z) as state variables, the general system of
equations for one-dimensional, unsteady, open-channel flow
known as the De Saint-Venant equations, is

oh 80 - .
—+ ==
Bh) o o 0 (continuity equation) (1)

é‘;—': + gg—: + % - S, +S,=0 (dynamic equation) (2)
where ¢ = time, x = longitudinal coordinate (abscissa along
channel reach); u = flow velocity [u = Q/A(h), A being the
cross-sectional area of flow]; B = channel width at water sur-
face; S, = channel bottom slope; and S, = friction slope (slope
of energy line).

Neglecting the inertia terms [first two terms of (2), that is,
accelerations over time and spacel], and estimating S; as S, =
Q% D*(h), where D(h) is the section conveyance for flow depth
h, then (2) can be rewritten as

Q*D*h) + 3hlox =S, 3
Eq. (3) yields the discharge Q as a function of 4 and 8A/3x
Q = Q(h)-COR C)]
where O(h) = D(h)\/S, and COR = V/1 — S, 3h/dx.

Q(h) is the so-called ‘‘normal’” discharge for depth A, de-
fined as the discharge value under zero pressure-gradient con-
ditions (8h/dx = 0, COR = 1), that is, when the free water
surface is parallel to the channel bottom. COR is a dimen-
sionless correcting factor, accounting for the effect of the pres-
sure gradient 9h/dx, relative to the channel slope S,. An ex-
pression for D(h) is provided, for instance, by Manning’s
formula: D(h) = K-A(h)-R**(h) with R and K being the
hydraulic radius and Strickler’s roughness coefficient, respec-
tively. The system of (1) and (3) forms the basis for the dif-
fusive wave approach.

Classically, to obtain a discharge propagation equation, the
derivatives of h are eliminated by combining (1) and (3) once

differentiated with respect to x and ¢, respectively, eliminating
the remaining dh/dt using (1), expanding the differentiation of
products, and dividing by —2BQ/D’. Writing dD/dh as D' and
dB/dh as B’, the general diffusive wave equation, based only
on the zero-inertia approximation, is

QJ,Q(QD_'J,LZQE):iQ )
at  ox \B D 2B°Q ox 2BQ dx

that amounts to the advection-diffusion equation for discharge

o
:10) a0 3*Q
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here Cp= 2= + 22| (22} 4 pr 2
where o B D B ax/, B ax ™
and o, = D*/(2BQ) (8)

C, and oy, are the celerity and attenuation parameters for the
diffusive wave routing process. Because (4) expresses Q as a
function of h and dh/dx, it is seen that C, and g, also are
functions of A and 0A/dx. To complete the full elimination of
variable h from the discharge propagation equation [(6)—(8)].
C, and o should be functions of Q and its derivatives only,
which is not the case. At most, only one of the two unwanted
variables A or dh/dx could be further eliminated [through use
of (3)] but not both, thus precluding a resolution based solely
on this diffusive wave equation. Further approximation(s) be-
yond the zero-inertia hypothesis must therefore be made to
produce a solvable propagation equation.

Before going deeper into these approximations, a few re-
marks may be made.

1. With lateral inflow (or outflow), it can be shown that the
diffusive wave equation [(6)] becomes

8Q 80 *Q
or T e TG T o @

where g, = ¢ — (04/Cp)-3q/0x, g being the algebraic
lateral flow rate per unit channel length (positive for in-
flow). If variations of g along the channel abscissa x can
be considered small, then g, ~ q.

2. Expressing C, and g, without direct dependence on A
implies that the conveyance D(k), and consequently the
“normal’’ discharge Q(k), are invertible functions of A,
so that & may be eliminated as invQ(Q/COR) [see (4)],
where invQ() designates the inverse function of Q(h).
This simply means that there exists a single-valued,
monotonic relationship between A and Q. This excludes,
for instance, the case of a closed pipe where some nor-
mal discharge values can be obtained for two distinct
flow depths.

3. If the diffusive wave equation had been derived for the
variable 4 [eliminating the Q instead of the h derivatives
from (1) and (3)], then the celerity and attenuation pa-
rameters C, and o, for flow depth would have been C,
= QD'/BD [first term of C,, see (7)], and o, = g, = D/
(2BQ). Hence, C, and o, also are functions of A and dh/
dx only, and elimination of the variable Q from the equa-
tion for diffusive propagation of flow depth 4 is complete
[thanks to (4)], with no need for any further approxi-
mation

C,=C(h)-COR and o, = &(h)/COR (10)
where C(h) = B™'dQ(h)/dh and &(h) = Q(W)/(2B-S,) (11)

Expression (11) is well-known formulas for the propagation
coefficients; they yield the correct values for flow depth prop-
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agation when the flow conditions are ‘‘normal’’. Equation (10}
gives the stage propagation coefficients as products of these
zero pressure-gradient values (function of & only) and of the
correction factor COR due to the pressure gradient dh/dx. Also
note that the attenuation coefficients for discharge and flow
depth are identical, and that the celerities are also equal in the
case of constant width (uniform rectangular channel).

ORDINARY DIFFUSIVE WAVE METHODS

To solve the diffusive wave equation (9), two alternative
approaches are generally used, based on simplifying assump-
tions on the Cy and o, coefficients; (1) Cp and o, are taken
as prescribed functions of Q only {the so-called variable pa-
rameter diffusion method, noted as VPD [see for example,
Price (1975)}} or (2) C, and o, are considered to be constant
(linear diffusion, first introduced by Hayami 1951), for which
case an analytical solution is readily obtained. The latter sim-
plification can be viewed as a particular case of the more gen-
eral first approximation, which is the only one to be discussed
further.

Considering C, and o, as functions of @ only, implies
that in expressions (7) and (8) of Cy and o, the influence of
dh/ox on C, and oy, is neglected, and therefore that Q is sim-
plified to Q, h to ki = invQ(Q) (the ‘‘normal’’ flow depth for
discharge Q), C, and o, (as well as C, and o0,) to C and &.

With the correcting factor COR being thus implicitly ig-
nored, this first-order approximation is valid only if 6h/dx is
small compared to the channel slope S, [see (4)]. Otherwise,
the diffusion equation (6) no longer complies with (5), and
therefore departs from its founding equations (1) and (3).
Hence, not only is distortion brought into the conservation of
momentum, but more importantly mass conservation is no
longer guaranteed. The annoying point is that the diffusive
wave approach was developed precisely for the case where
dh/dx cannot be neglected in (3). [Note that when it can be
neglected altogether, the system of (1) and (3) yields the much
simpler, attenuation-free, kinematic wave approximation:
3Q/ar + C-3Q/3x = 0, where the kinematic wave speed C =
B™'dQ/dh can be obtained as a function of Q only].

Hence, even if this simple method for nonlinear diffusion
can provide a better solution to propagation than the kinematic
wave approach when dh/dx may not be neglected altogether,
this solution contains a bias that can be strong and detrimental,
since the basic equations are not satisfied. Mass conservation
not being guaranteed is a major concern, from a theoretical as
well as practical standpoint, when handling any flow propa-
gation problem. Volumes would be preserved only if some
appropriate constraint could be put on the two variable param-
eter functions, binding very strictly Co(Q) and g,(Q) to each
other. One such condition that would ensure mass conservation
is 0o/C, = constant, for all Q.

However this property of (6) is of little practical interest,
since C, and o, seldom follow a proportionality relationship
in real situations. Note that Hayami’s linear diffusion model
is only a particular case of this condition being fulfilled. In
fact, the method that will be proposed in the next section,
imposes some link between the C, and o, values in (9)
through the expressions by which they are derived from the
state variable Q and its derivatives.

Example

To illustrate the behavior of the ordinary nonlinear diffusion
approach, a regular channel reach with known geometry and
roughness is used, the celerity and attenuation parameters Cy,
and o, being taken as the C(Q) = B~'dQ/dh and a(Q) = Q/
(2BS,) functions, precalculated for these channel characteris-
tics (as already mentioned, this method assimilates Q to Q as
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FIG. 1. Celerity and Attenuation versus Discharge for Hypo-
thetical, Trapezoidal Channel {Attenuation Is Plotted as Ratio o/

(10.Q)]

Discharge (m3/s)
000

5 1 1.5 2
Time (day)
—{ . Hypothetical upstream hydrograph

——— Full De Saint-Venant solution

— — — Ordinary non-linear diffusion (VPD

---------- Modified non-linear diffusion (HAND)

FIG. 2. “Ordinary” (VPD) versus Modified (HAND) Nonlinear
Diffusion in Hypothetical, Trapezoidal Channel

far as the propagation coefficients are concerned). Using ce-
lerity and attenuation functions derived from geometry rather
than calibrated from given hydrographs does not alter the gen-
erality of the example presented here. Indeed, since the method
itself does not impose any specific constraint on the shape of
the prescribed functions for these parameters, the values cal-
culated under the hypothesis of ‘‘normal’’ flow conditions are
as good as any, if not better, to represent such functions.

A 100-km long trapezoidal channel, 12 m high, with lower
and upper widths equal to 40 and 80 m, respectively, a 5.107*
slope, and a roughness value K = 20 (SI units), is used for
illustrative purposes. Functions Cy(Q) and o(Q) are tabulated
for the values of normal discharge corresponding to a 0.1-m
water depth increment (Fig. 1), and are linearly interpolated
in between.

A hydrograph with equal values for initial and final steady-
state discharges is fed into the channel upstream end, to enable
the direct comparison of upstream and downstream hydro-
graph volumes (there is no difference in water stored in the
channel between the initial and final steady states). The non-
linear partial differential equation (P.D.E) [(6)] for discharge
propagation is solved by the numerical method presented in
the later section entitled ‘‘Numerical Method.”’

The propagated hydrograph resulting at the downstream end
of the channel is presented in Fig. 2 (VPD curve). There is
nearly a 20% difference in volumes above base-flow, obtained
between upstream and downstream hydrographs (20.5 and
16.4 hm’, respectively). This discrepancy can be attributed to
the model formulation itself [(6) with C, and o, dependent
on Q only], not to numerical resolution error. The same nu-



merical method applied to (6) with constant Cp and og, or
with C, and o, respecting the very peculiar condition men-
tioned earlier (o,/Cy = constant), yields no such mass loss. If
(6) were now slightly transformed to take the form of a true
ADE with variable parameters (comparable for instance to a
solute transport equation, where Q would represent some sol-
ute concentration)

9 L HCQ) _ 8 ( 6Q>

g, —=
ot ax ox 2 ax

while keeping the Cy(Q) and o,(Q) functions of Fig. 1 (or as
a matter of fact, any prescribed Cy(Q) and oy(Q) functions),
the solution obtained for Q with exactly the same numerical
method, is found to conserve the mass of Q (here a solute
mass), the flux through a section now being CpQ — o0, 9Q/
dx, instead of Q itself. These tests show that the numerical
procedure used in the model can be used reliably to highlight
the deviation from fundamental fluid movement principles pro-
duced by the simple, variable parameter diffusion approach.

To further qualify the solution obtained by this approach,
the downstream hydrograph resulting from simulation by a full
De Saint-Venant model [solving the basic set of (1) and (2)
with an implicit finite-difference scheme (Fread 1985), and of
course abiding totally by the principles of mass and momen-
tum conservation] is plotted on Fig. 2. Comparison of hydro-
graphs shows the damping effect on discharge values, espe-
cially on peak discharge, produced by the simple nonlinear
diffusion method. Suppressing inertia terms in the De Saint-
Venant solution leads to no visible difference with the full
model, showing that the zero-inertia approximation inherent to
diffusion theory is perfectly acceptable.

A conclusion from this section is that the ordinary VPD
diffusion method can safely be employed only in situations
remaining close to the domain of validity of either the linear
diffusion, or the kinematic wave approximation. Much of the
interest lying in such nonlinear method is thus lost. Ordinary
diffusive wave methods, with constant or variable parameters,
must be viewed as conceptual models that do not abide by
strict hydraulic principles. The following section develops the
equations that make nonlinear diffusion applicable to the gen-
eral case of negligible inertia.

MODIFIED METHOD FOR VARIABLE-PARAMETER
DIFFUSION (HAND METHOD)

The full expressions for the coefficients Cp and o, are [see

(7) and (8)]
B [<%)». + B’ %] where C, =

Co=Co+ 28 (12)
oy = o, = DY(2BQ) (13)

WO
SIS

The purpose of this modified method is to show that when Q
is used in conjunction with its derivative 4Q/dx to control the
expression of C, and o, an approximation of (5) can be ob-
tained with second-order accuracy. Both mass and momentum
conservation are then closely satisfied. Conversely, if C, and
o, are functions of Q and 4Q/ox respecting the expressions
proposed hereafter, conservation principles can be expected to
be satisfied. Let us see in (12) and (13) how C, and oy, func-
tions of h and 9h/ox, can be approximated as functions of Q
and aQ/dx.

The term (6B/dx), which expresses the variability of channel
geometry along the x axis, will hereafter be omitted. This is
not to say that this term is always negligible in reality; how-
ever, propagation models usually schematize the actual chan-
nel into a series of prismatic reaches, each being characterized
by a set of space-lumped parameter values, and therefore im-

plicitly, by some equivalent, fictitious, uniform channel ge-
ometry (see section ‘‘Validation by full hydraulic modeling of
the equivalent channel’’ for a discussion of this geometry). It
is to this equivalent channel that the theory developed here-
after applies. Effects of cross-section variations on hydrograph
routing have been discussed in the literature [see for instance
Price (1975)]. The suitability of the concept of equivalent, uni-
form channel is presented by Price (1985).

First, dh/dx can be eliminated as S,(1-COR?) using (4).
Equation (10) gives C, and 0, (i.e. o) as functions of C and
& (zero pressure-gradient celerity and attenuation for ‘‘nor-
mal”’ flow conditions in the section; functions of A or Q(h),
indifferently), and COR. Finally, B'/B can be eliminated by
writing

o dQ

Bl _dBdD1 _dB . C ( _0do
dh B dQ dh B dQ ~ ~ 23S,

the expression for dB/dQ being obtained through derivation of

B = Q/(26S,), given by (11). Equations (12) and (13) then

become

_C Qdo) 1 [, _Qds\]|
Co=3 [COR(I + &dQ) +COR<] &dQ>J,UQ—U/COR
(14a,b)

where = Q/COR. These are the general expressions for Co
and g, for the assumptions of negligible inertia and channel
section variability but none on pressure gradients. Only the
correction factor COR, given by (4), is still A-dependent: the
dh/dx term can be eliminated through approximation of the
equation for flow depth propagation dh/3tr + C,ah/dx = O(8*h/
dx*). Dropping the right-member term and eliminating dh/ar
with the continuity equation [(1)], C, with (10) and (4), and
finally using (11) to clean out all undesirable variables (S,, B,
and (), COR can be approximated as

- [y - 28 3
COR = 4/1 co o (15)

This relationship still holds true when there is some lateral
inflow, g. The approximation relative to the pressure gradient
term is selective in the sense that it bears only on the esti-
mation of the corrective factor for the equation parameters
[(15)], not on the formulation of the propagation equation it-
self [(14)].

Equation (14), with (15), provides the expressions for ce-
lerity and attenuation coefficients, with only Q and 4Q/dx as
variables, and prescribed functions C(Q) and 6(Q) as variable
parameters. Together with the propagation equation [(9)] itself,
this makes a fully determined PD.E. system (five equations
for five unknowns: Q, @, COR, C; and o), that can be solved
numerically for the main unknown @, given the C(Q) and
&(Q) functions. COR, C, and g, are explicit intermediate var-
iables used only for convenient writing; they can be eliminated
directly if desired, leaving only two remaining equations with
the unknowns Q and Q.

The very interesting feature of this set of equations is that
indeed all basic, h-dependent physical data, describing channel
geometry and roughness, have disappeared [including slope S,,
which was not the case in (10) for stage propagation, where
S, appears in the expression of COR], the two global wave
parameters C and & sufficing to describe discharge propagation
along the channel. Hence, topography is not necessary, when
the model can be calibrated from recorded upstream and
downstream hydrographs. Calibration of the modified nonlin-
ear diffusion model (HAND) is not significantly different from
ordinary variable-parameter (VPD) calibration. For an exam-
ple of a calibration method, see Price (1975). Note that when
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& may be neglected, the kinematic wave model is indeed ob-
tained, for which C, = C and Q = Q; of course dQ/9x = 0
(COR = 1) yields Cp, = C, 0, = & and 0 = Q. The problem
of the radicand in (15) becoming negative or nil should not
theoretically arise (aside from numerical divergence of the
model), since hydrograph routing cannot be expected to pro-
duce Q = 0 conditions due to a horizontal or counter-slope
water surface.

NUMERICAL METHOD

Given the distinct natures of the propagation equation’s con-
vective and diffusive components, an operator-splitting ap-
proach is used to handle the two terms separately. This ap-
proach allows giving each term a specific numerical treatment,
that best suits its particular behavior, instead of globally solv-
ing for the whole equation by a single scheme, as is most often
done.

At each time step At, the propagation equation [(9)] is re-
placed by a set of two partial differential equations that are
solved successively, with a step fractioning technique [see, for
instance, Usseglio and Chenin (1988)]

a a
a—? + Cy a—Q = Cp-q. a pure convection equation (16)
X
3 3
a—? =0y -ax—Qz a pure diffusion equation amn

The advection equation [(16)] is solved first, over the time
step Ar, starting with known discharge values Q(x, ) at the
beginning of the time step. A method of characteristics with
third-order interpolation is used that minimizes numerical dif-
fusion error. The solution obtained from this first equation,
Q*(x), is then fed as initial values for the time-step to the
parabolic, diffusion equation [(17)]; the latter is solved through
a six-point, Crank-Nicholson implicit finite-difference scheme,
over the time step Af, to produce the solution Q(x, t + Ar) at
the end of the time step.

The solution Q(x, t + Ar) thus obtained through this oper-
ator-splitting, fractional-step technique, is at least a second-
order accuracy approximation to the original propagation
equation. This method overcomes the strict condition that must
be observed on time and space steps (Ax/At = n-Cy,, where n
is an integer), for pure finite-difference schemes to avoid nu-
merical diffusion. Respecting this condition is not possible
when C, varies over time and space, as is the case for the
nonlinear diffusive wave. Finite-difference methods thus pro-
duce significant error on the convective part of the propagation
equation that is eliminated by the highly accurate, character-
istics approach used with the HAND method.

Initial conditions are taken as steady-state discharges. Inflow
hydrographs are forced into the model as the upstream bound-
ary condition and lateral inflow. For the diffusion step, the
downstream boundary condition simulates the effect of a semi-
infinite uniform channel prolongating to infinity the last inter-
nal point’s diffusion equation.

IMPLEMENTATION ON TEST CASES

The modified nonlinear diffusive wave method was first im-
plemented on regular channels. Results for the hypothetical
test case used as an example for the ordinary variable param-
eter method will be presented hereafter.

The same input data (tables for zero pressure-gradient prop-
agation parameters C and & as functions of Q; channel length;
upstream hydrograph), as well as time and space steps are
used. The numerical method is basically identical (the COR
variable just has to be set to 1, meaning that the effect of aQ/
dx is neglected, to come back to the ordinary model).
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FIG. 3. Linear Versus Nonlinear Ditfusion with Modified
(HAND) Routing Method in Hypothetical, Trapezoldal Channel

The hydrograph routed by the HAND model is plotted on
Fig. 2, together with those produced by the De Saint-Venant
and ordinary diffusion (VPD) methods. It can be seen that the
output of this new, accurate model closely follows the De
Saint-Venant solution, with only a 0.2% volume discrepancy,
compared to the 20% loss incurred with the ordinary model.

To compare with the linear diffusion method, a set of con-
stant celerity and attenuation coefficients is arbitrarily taken as
the € and & values obtained for a discharge value denoted Q.
equal to half the peak upstream discharge. Fig. 3 shows the
hydrographs obtained with, respectively,

1. The modified nonlinear diffusion (HAND) method with
the full, variable parameter tables

2. The analytical (Hayami) solution to the linear diffusion
equation for the C(Q,.;) and &(Q,,) constants (2 m/s and
7,884 m?/s)

3. The modified nonlinear diffusion method with the same
C(Q.p) and &(Q..) constants

This shows that the proposed method

+ Allows for good modeling of the nonlinearities of channel
routing (compare curves 1 and 2, together with the De
Saint-Venant hydrograph of Fig. 2)

* Is able to handle varied parameter configurations, includ-
ing constant € and & values (compare methods 2 and 3;
in this case, agreement would be good between the two
variable-parameter modeling methods, because noncon-
servation of mass no longer occurs when the ordinary dif-
fusion equation is linear)

The method is now tested on the real case of a natural
stream, drawn from the data provided by Price (1975) for the
Erwood-Belmont reach of the river Wye in Great Britain. This
69.75 km-long reach is reported to have a large flood plain
and small lateral inflow, making it of significant interest for
flood routing tests. Curves for celerity and attenuation versus
discharge, as established by Price (1975), are shown in Fig. 4,
and were used ‘as is’; that is, with no additional calibration
(the calibration criteria used by Price were the value and time
of peak).

Results obtained for two major flood events, those of Jan-
uary 1948 (upstream peak discharge of about 800 m®s) and
December 1960 (peak around 1,200 m?s), are presented in
Figs. 5 and 6, respectively. In the plot for the 1960 flood (Fig.
6), an 8.5% reduction is applied to all values of the down-
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FIG. 5. Routing of January 1948 Flood, Erwood-Belmont
Reach of River Wye
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FIG. 6. Routing of December 1960 Flood, Erwood-Belmont
Reach of River Wye

stream hydrograph recorded at Belmont (leading to what is
called the ‘reference’ hydrograph, on Fig. 6), to account for
the 8.5% volume discrepancy between the reported upstream
and downstream hydrographs. The source of this discrepancy
is not known (lateral inflow, or rating error, or both), nor is a
better correction procedure to allow for proper observed-to-
predicted comparisons. The affine hydrograph reduction ap-
plied is tantamount to consider that when there is lateral in-
flow, its variations closely follow those of the main discharge,

and that the relative error on discharge estimation is constant.
Figs. 5 and 6 show that the overall shape of the downstream
hydrograph is better replicated with the modified diffusion
method than with the ordinary method, especially in the re-
cession limbs. The same parameter and computational incre-
ments were used for both methods. In other words, no attempt
was made whatsoever to improve agreement with records.

Results for the ordinary diffusion method (VPD curves) are
consistent with those reported by Price (1975). Note that to
improve the agreement between observations and predictions
in the recession limb, some artificial, empirical control over
the solution was introduced by Price (1975) that consisted of
maintaining the value of C constant when the computed dis-
charge at any point fell below a certain value, namely 400 m*/
s, provided it had previously exceeded some value greater than
the bankfull discharge in the natural river.

Volume conservation is better satisfied with our modified
method than with the ordinary method; differences with up-
stream volumes are —0.1 against —7.6% for the 1948 flood,
and 0.7 against 5.7% for the 1960 event, respectively. The
values of Nash’s efficiency criterion (Nash and Sutcliffe 1970)
were computed for all four solutions; results are 88.7% in 1948
and 86.8% in 1960 for the ordinary diffusion method, against
93.1 and 95.7%, respectively, for the proposed modified
method. This quantifies the better agreement with observations
obtained for the modified method, given that maximum theo-
retical efficiency would be 100% for an ideal model.

VALIDATION BY FULL HYDRAULIC MODELING OF
THE EQUIVALENT CHANNEL (MEC METHOD)

Given two C(Q) and 6(Q) functions (as tabulated data, or
as analytical expressions, for instance), it is possible to derive
a synthetic geometry for a fictitious equivalent channel that
behaves similarly to the actual reach (the one described by the
two celerity and attenuation input functions) with respect to
hydrograph propagation. To find this equivalent channel, one
has to solve for the channel characteristics that satisfy the ex-
pressions [(11)] of C and & for a given channel.

In actual fact, the solution to this inverse problem does not
need to be provided as the full geometrical description of an
equivalent channel; determining the variations of width B(k)
and conveyance D(h) = Q/\/S, with water depth , is sufficient
to fully describe the hydraulic behavior of the equivalent cross
section. Besides, the solution of the inverse problem is not
unique; there is even an infinity of them, one for a given value
of slope S,

C(Q), (Q) and S, being provided, one can compute

—2 _:5 0 _p o LD _. 5
BQ) =505 =/@. and Zi=B C=o0o 50 =£(0)
a0 - [ a0
H =dh id h =
ence O yielding A(Q) )

Therefore, integration of 1/f,(Q) over Q (performed numeri-
cally, with the trapezoidal rule), from Q =0to Q = @, provides
the water depth 4 in the cross section for normal discharge Q;
the corresponding conveyance D(h) and width B(h) are ob-
tained as O/V'S, and £,(Q), respectively. This makes h(Q) a
monotonic, increasing function, thereby ensuring the physical
viability of the synthetic channel configuration. This way, rout-
ing parameters, supplied as [Q, C(Q), 6(Q)] input tables, can
be transformed into tabulated hydraulic characteristics [h,
B(h), D(h)], enabling full flow modeling in the equivalent,
prismatic channel. To ensure true equivalence of the two sets
of tables, it might be necessary to intensify the discretization
of the (Q, C, &) input tables before they are processed into (h,
B, D) tables, since the transformation (from routing character-
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FIG. 8. Routing of December 1960 Flood by Equivalent Chan-
nel (MEC) Method, Erwood-Belmont Reach of River Wye

istics to hydraulic characteristics) is highly nonlinear. Routing
of a given hydrograph in the equivalent channel can then be
modeled by solving the De Saint-Venant equations for these
uniform cross-sectional characteristics, over the length of the
actual reach, with the given slope S, (set as the real average
slope if known, or as any arbitrary value otherwise).

When applied, for instance to the C(Q) and &(Q) input ta-
bles corresponding to the regular channel reach already used
earlier, this method of hydraulic routing along a synthetic,
equivalent channel, for various arbitrary slope values (i.e.,
equal or not to the true slope) does produce the same routed
hydrograph as the original De Saint-Venant solution for the
actual slope, geometry, and roughness. The ‘‘synthesized’’ ge-
ometry is found to be identical to the actual geometry when
and only when the original slope value is used for the equiv-
alent channel reach.

If the MEC method is now applied with constant C and &
values for all discharges Q, excellent agreement is found with
Hayami’s analytical solution to the linear diffusion [see Fig.
7 for the set of values C(Q.) and 6(Q.,) defined in the pre-
vious section; slope S, is given the arbitrary value 0.001]. In-
cidentally, this means that some channel geometry can theo-
retically be found to satisfy any combination of C(J) and
&(0) input functions, including constant € and & coefficients.
These results show the value of this MEC method as an al-
ternate solution for nonlinear diffusion modeling. The advan-
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tage of this method is that satisfaction of the physical laws of
mass and momentum conservation is guaranteed, as they are
explicitly formulated by the equations being solved. A draw-
back, aside from the larger volume of computations to be per-
formed (the system to be solved is twice as big, the numbers
of unknowns and differential equations being doubled; small
space and time steps may be required, due to rugged shapes
of the inferred channel characteristics), is the totally fictitious
hydraulic description that is produced, bearing no significance
with respect to actual flow in the channel.

Since for a given set of C(Q) and 6(Q) input functions, the
HAND method can be viewed as providing an approximate
solution to the more accurate MEC formulation, the validity
of the HAND solution can be checked against the MEC so-
lution. This was done for the case of the Wye river described
in the previous section. Fig. 8 compares the HAND and MEC
solutions (together with the reference hydrograph), for the De-
cember 1960 flood. It can be seen that agreement between the
two solutions is very good, leading to the conclusion that the
HAND method can be confidently used to correctly solve the
nonlinear diffusion problem for flood routing. It is probable
that the imperfect agreement of both solutions with the refer-
ence hydrograph is due to insufficient calibration of the celer-
ity and attenuation functions and to the absence of lateral in-
flow estimation (these adjustment steps were not considered
in the present work), rather than to the actual model formu-
lation and solution method.

CONCLUSION

A new method was devised for modeling flood routing in
the very common situation where the diffusive wave analogy,
that is, the zero-inertia approximation, is suitable. This
method, named HAND, improves the accuracy of the general
nonlinear diffusive wave approach, through a modification of
the variable-parameter diffusion equation for flow routing that
better ensures accounting for the effect of the pressure gradient
term on discharge propagation. Increasing model compliance
with the fundamental De Saint-Venant equations guarantees
that the basic principles of momentum and mass conservation
are better satisfied, while still solving for discharge as the only
state variable, like with the ordinary diffusive wave models.
Hence, the advantages of (1) A potentially large applicability
for this method; (2) a simpler model; and (3) reduced data-
needs compared to a full De Saint-Venant model, are com-
bined. To keep up with the higher accuracy of this new equa-
tion formulation, a precise numerical solution procedure, based
on a fractional-step, process-splitting method, was imple-
mented, that is well suited to the form of this nonlinear dif-
fusion-type equation.

The modeling capability of the HAND method was dem-
onstrated both for a hypothetical, regular channel, against a
full De Saint-Venant solution for this completely defined hy-
draulic system, and on an existing natural river reach, with
recorded hydrographs but unknown geometry: the Wye river
between Erwood and Belmont (U.K.). It was also tested
against an alternative, high-accuracy approach, the MEC
method, consisting of full hydraulic modeling, by the De
Saint-Venant equations, using a fictitious synthetic channel,
this channel is designed to be equivalent to the actual river
reach as far as the laws of variation of the propagation coef-
ficients with discharge are concerned. In all cases, agreement
of the results between the HAND method and the full De
Saint-Venant solutions was found to be very good. Improve-
ment over the ordinary variable-parameter approach (VPD)
can be very significant, both in terms of replication of refer-
ence hydrograph (observed or computed), and of satisfaction
of the basic physical principles, especially mass conservation.

It can thus be concluded that the HAND method can be



used more reliably for a wider range of propagation problems
than other diffusive or kinematic wave methods: close accor-
dance with the physics of open-channel flow provides both a
higher capability for modeling propagation dynamics than the
linear diffusion and kinematic wave approaches, and safer and
more accurate results than the ordinary VPD method, the latter
being reasonably applicable under quasi-linear or quasi-kine-
matic conditions only.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

A = cross-sectional area of flow;
B = channel width at water surface;
B’ = dB/dh (derivative of B with respect to h);
C, = celerity of water depth wave;
C, = discharge wave celerity;
g = C, and C, under zero pressure-gradient conditions
(kinematic wave celerity);
COR = dimensionless correcting factor, accounting for effect
of the pressure gradient;
D = section conveyance;
D' = dD/dh (derivative of D with respect to h);
h = water flow depth;
invQ() = inverse function of Q(k) (yields the ‘‘normal” water
depth for a given discharge value);
K = Strickler’s roughness coefficient;
Q = actual discharge;
Q(h) = ‘“‘normal”’ discharge for depth h (i.e., under no pres-

sure gradient);

g = algebraic lateral flow rate per unit channel length (pos-
ditive for inflow);

q. = q — (0y/Cp)dq/dx (effective discharge gradient due to
lateral flow introduced in the convective term of the
diffusive wave equation);

R = hydraulic radius;

S, = channel bottom slope;

S, = friction slope (slope of energy line);

t = time;

u = flow velocity;

x = longitudinal coordinate (abscissa along channel reach);

Z = water stage,

o, = attenuation parameter for the water depth diffusive
wave;

o, = attenuation parameter of the diffusive discharge wave;
and

& = o, and o, simplified to zero pressure-gradient condi-
tions.
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