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Abstract 
We studied the effects of liquid nitrogen storage of maize, common bean and soybean seeds on their 
germination, electrolyte leakage, levels of chlorophylls, phenolics, aldehydes, proteins and 
peroxidase activity. After storage for 28 days, seeds were retrieved from liquid nitrogen, some were 
set to germinate and others were analyzed biochemically. No phenotypic modifications were 
observed visually 5 days after beginning of germination, although percentage of seed germination 
was reduced by LN in maize and soybean. Moreover, numerous significant effects of seed 
cryopreservation were recorded at the biochemical status.  In maize seeds, the most important and 
statistically significant modifications were observed in the increased levels of chlorophyll b and 
total chlorophyll pigments and in the decreased contents of free phenolics after 28 days of exposure 
to LN, compared to the control treatment.  In common bean, relevant changes were observed in the 
increased electrolyte leakage and in the reduced levels of chlorophyll pigments (b, total) and free 
phenolics.  In soybean, modifications were observed in the increased levels of chlorophyll pigments 
(a, b, total), malondialdehyde and electrolyte leakage, and in the decreased peroxidase activity. We 
have shown for the first time that immersion of maize, common bean and soybean seeds in liquid 
nitrogen modified the levels of different biochemicals.  
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1. Introduction 
Seed conservation is the most useful and proficient technique for ex situ maintenance of plant 
genetic resources (Linington & Pritchard, 2001). A great amount of crop species have seeds i.e. that 
can be dried out to small wet contents and can thus be stored at low temperature for extensive 
periods (Roberts, 1973). In cryogenic temperatures e.g. at liquid nitrogen temperature (LN, -196°C), 
the plant material can be stored without modification for extended time periods. Furthermore, 
samples are stored in a small volume, protected from contamination, and require very limited 
maintenance (Engelmann, 2011). 

An examination of plant species researched shows substantial attention in the cryopreservation 
of socio-economically key species. For orthodox seeds the most of these species are effortlessly 
conserved at cryogenic temperatures and there are many papers which illustrate seed 
cryopreservation procedures (Pritchard, 1995; Pritchard & Dickie, 2003; Walters, 2004; Walters, 
Wheeler & Stanwood, 2004; Pritchard, 2007; Pritchard & Nadarajan, 2008; Salinas-Flores, Adams, 
Wharton, Downes & Lim, 2008; Berjak et al., 2011; Engelmann, 2011; Forni et al., 2010). 
Contrastingly, just a few researches have been developed on the understanding of the biochemical 
special effects of LN exposure and of the physiological modifications taking place in seeds after LN 
storage (Uragami, Lucas, Ralambosoa, Renard & Dereuddre, 1993; Lakhanpaul, Babrekar & 
Chandel, 1996; Dussert et al., 2003; Harding, 2004; Varghese & Naithani, 2008; Cejas et al., 2012; 
Engelmann & Ramanatha, 2013; Zevallos et al., 2013a; Zevallos et al., 2013b). From the genebank 
and agronomic perspectives, the consequence of LN exposure on seed viability, germination, 
biochemistry and physiology should be evaluated for each plant material before using 
cryopreservation for long-term conservation. 

In a preceding research (Zevallos et al., 2013b), we evaluated the result of short-term LN 
conservation of Solanum lycopersicum Mill. seeds on their germination and phenolics contents. 
Following storage in LN for diverse time periods (0 to 28 days), seeds were recovered from LN and 
placed to germinate. Equally control and cryopreserved seeds showed about 60% germination 
without statistically significant differences. No phenotypic modifications were recorded visually in 
seedlings obtained from different treatments 7 days after start of germination. After 7 days, contents 
of phenolics (free, cell-wall linked and total) were determined in roots, stems and leaves of 
seedlings. When seeds were deepened in LN for 7, 14 and 21 days, the contents of cell wall-linked, 
free and total phenolics decreased considerably in roots and stems, compared to non-cryopreserved 
controls. However, their level in general augmented when seeds were deepened in LN for 28 days. 
In leaves, an analogous model to that recorded in roots and stems was noted with the free phenolics 
level but cell wall-linked phenolics were higher in leaves of seedling derived from seeds immersed 
in LN for 7 or 14 days. We concluded that immersion of tomato seeds in LN for diverse periods of 
time (0-28 days) changed the contents of phenolics, demonstrating that some modifications could 
have happened beyond the physiological state at which seeds were located in cryostorage. 
Additional experiments including longer periods of LN conservation are necessary to elucidate the 
mechanisms underlying the modifications observed by Zevallos et al. (2013b). 

To increase our understanding of the consequences of LN storage length on biochemical 
modifications, we conducted an experiment with seeds of three dissimilar plant species, maize, 
common bean and soybean, on which a group of biochemical parameters were measured. We 
studied the results of short-term LN storage (28 days) of seeds on their germination, electrolyte 
leakage, contents of chlorophylls (a, b, total), phenolics (free, cell wall-linked, total), 
malondialdehyde, other aldehydes, proteins and peroxidase activity. We selected several 
biochemical compounds connected to a wide variety of significant biochemical and physiological 
pathways linked to storage compounds, membrane and cell wall injure, and ROS production 
depending of physiological processes such as germination, plant reaction to stress and 
photosynthesis (Gross, Hultenby, Mengarelli, Camner & Jarstrand, 2000; Moller, 2001; Porra, 
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2002; Hörtensteiner, 2006; Palma et al., 2006; Hörtensteiner & Kräutler, 2011; Xu, Lu, Tong & 
Song, 2011). After storage in LN for 28 days, seeds were retrieved from LN, 30% were placed to 
germinate and 70% were processed biochemically. 

Instinctively, it is predictable that cryopreserved cells should not modify further than the 
physiological status at which they were placed in cryostorage. It is generally recognized that  
cryostorage guarantees stabilization of cells, based on the idea that germplasm remains viable, does 
not experience long-term modifications and can be recovered healthy and unchanged after 
conservation (Benson, 2008). The present experiment was conducted to examine this theory. As far 
as we know, such results on maize, common bean and soybean seeds have not been reported 
previously.  

2. Materials and Methods  
Seeds were located in cryo-vials, deepened in LN for 28 days and then recovered (Stanwood & 
Bass, 1981). Control seeds were placed to germinate or analyzed directly, without LN exposure. To 
assess germination, seeds (three replicates of 10 seeds per treatment) were located on filter paper 
and partially immersed with 25 ml distilled water for 5 days in Petri dishes (Ø: 150 mm). For 
biochemical evaluations, three independent samples of 25 seeds each were ground in LN to generate 
seed powder. Powder samples (1000 mg each) were used to carry out every biochemical 
determinations.  Contents of chlorophylls (Porra, 2002), phenolics (Friend, 1992), malondialdehyde, 
other aldehydes (Heath & Packer, 1968), proteins (Bradford, 1976) and peroxidase activity 
(Hammerschmidt, Nuckles & Kuc, 1982) were determined.  The electrolyte efflux examination was 
used for electrolyte escape determination (Martínez-Montero et al., 2002) from unbroken seeds (3 
replicates of 15 seeds each per treatment). Seeds were brought back to ambient temperature before 
the germination and electrolyte leakage evaluations. SPSS was used to make t-tests (p≤0.05).  
Normality (Kolmogorov-Smirnov) and homogeneity of variances (Levene) were confirmed. The 
overall coefficients of variation (OCVs) were calculated too. For the statistical analysis only, 
percentages of germination were transformed according to y’=2*arcsin(y/100)0.5. 

3. Results and Discussion 
No phenotypic modifications were observed visually 5 days after beginning of germination, 
although percentage of seed germination was reduced by LN in maize and soybean (Table 1). 
Moreover, numerous significant effects of seed cryopreservation were recorded at the biochemical 
status.  In maize seeds, the most important and statistically significant modifications were observed 
in the increased levels of chlorophyll b and total chlorophyll pigments and in the decreased contents 
of free phenolics, with ¨medium¨ OCVs, after 28 days of exposure to LN. 

In common bean, changes with ¨high¨ and ¨medium¨ OCVs were observed in the increased 
electrolyte leakage and in the reduced levels of chlorophyll pigments (b, total) and free phenolics 
(Table 1).  In soybean, modifications were observed in the increased levels of chlorophyll pigments 
(a, b, total), malondialdehyde and electrolyte leakage, and in the decreased peroxidase activity 
(Table 1).  

It is considered that metabolic action and cell division stop at the temperature of LN or its vapor 
(Benson, 2008). Nevertheless, experiments conducted by Walters et al. (2004) cautioned that, even 
though cryogenic conservation is supposed to supply long life, the result of timescales on viability 
has not been evaluated. Walters (2004) studied the biophysical immovability of dehydrated seeds 
using the Kauzmann temperature, i.e. the position as which the molecular constancy of glasses is 
almost nil, as a pointer of molecular mobility. Walters (2004) concluded that molecular mobility
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Table 1. Biochemical changes produced in maize, common bean and soybean seeds after exposure to LN 

 Maize Common bean Soybean 

Seed exposure to LN (days) 0 28 OCV (%) ** 0 28 OCV (%)** 0 28 OCV (%)** 

Percentage of germination at 5 days after exposure to LN  * 100.00 a 80.00 b 15.71 93.33 a 86.67 a 5.23 93.33 a 73.33 b 16.97 

Electrolyte leakage (%) * 14.96 b 23.44 a 31.23 0.49 b 29.15 a 136.74 0.65 b 4.37 a 104.80 

Chlorophyll a concentration (μg g-1 fresh weight) * 2.50 b 3.73 a 27.92 5.81 a 3.31 b 38.76 1.60 b 8.04 a 94.48 

Chlorophyll b concentration (μg g-1 fresh weight) * 4.21 b 10.53 a 60.63 4.70 a 1.69 b 66.61 5.69 b 12.45 a 52.70 

Total chlorophyll concentration (μg g-1 fresh weight) * 6.71 b 14.26 a 50.91 10.51 a 5.01 b 50.11 7.29 b 20.49 a 67.20 

Content of free phenolics (µg g−1 fresh weight) 522.46 a 268.90 b 45.31 326.71 a 88.38 b 81.19 793.52 a 534.11 b 27.63 

Content of cell wall-linked phenolics (µg g−1 fresh weight) * 5865.48 a 6226.56 a 4.22 7243.31 b 9473.48 a 18.86 9189.32 b 11382.64 a 15.08 

Total content of phenolics (µg g−1 fresh weight) * 6387.94 a 6495.46 a 1.18 7570.02 b 9561.87 a 16.44 9982.84 b 11916.74 a 12.49 

Malondialdehyde content (μmol g−1 fresh weight) * 12.61 b 16.87 a 20.43 185.73 a 119.26 b 30.82 58.22 b 136.01 a 56.64 

Other aldehyde content (μmol g−1 fresh weight) * 1.52 a 1.50 a 0.93 5.40 a 4.15 b 18.51 3.95 a 3.93 a 0.36 

Total protein content (mg g−1 fresh weight) * 11.89 b 15.91 a 20.45 29.45 a 30.89 a 3.37 37.65 a 36.34 a 2.50 

Peroxidase activity (U mg−1 fresh weight) * 9.67 b 13.37 a 22.71 52.91 b 67.91 a 17.55 7.63 a 3.46 b 53.18 

Peroxidase specific activity (U mg−1 of protein) * 0.87 a 0.85 a 1.64 1.80 b 2.20 a 14.14 0.20 a 0.09 b 53.64 

* In each crop, results with the same letter are not statistically different (t-test, p>0.05). For the statistical analysis only, percentages of germination were transformed according 
to y’=2*arcsin(y/100)0.5    

** Overall coefficient of variation = (Standard deviation/Average)* 100.  To calculate this coefficient, average values were considered. The higher difference between the two 
times compared, the higher the overall coefficient of variation. 

Classification of the OCV: From 0.35 to 45.82% was regarded as ¨low¨, from 45.82 to 91.28% was regarded as ¨medium¨ and from 91.28 to 136.74% was regarded as ¨high¨. 
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could slowly take place still at cryogenic temperatures. Buitink, Leprince, Hemminga and Hoekstra 
(2000) used electron paramagnetic resonance spectroscopy to measure the rotational movement of a 
spin probe in the cytoplasm of seed, pollen and various plant species as a function of water level 
and temperature. Their results recommended that unfavorable changes were linked to molecular 
mobility in the cytoplasm. 

Even though the time scales evaluated by Buitink et al. (2000) and Walters (2004) are different 
from that used in our experiment (years in their case, days in ours), their results can be used to 
elucidate some of our results. The molecular mobility happening in the cytoplasm for the duration 
of cryostorage might, for example, provoke oxidative stress throughout the development of free 
radicals, which may injure the cell membrane organization and create microfractures on it. These 
modifications in the cell partition may combine some biochemicals that are separated under normal 
situations and then provoke alterations in diverse metabolic pathways. 

In this work, we have shown for the first time that immersion of maize, common bean and 
soybean seeds in LN modified the levels of different biochemicals, demonstrating that some 
changes can have taken place beyond the point at which seeds were placed in cryostorage.  
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