TOWARDS THE ELIMINATION OF MALARIA IN THE UNION OF COMOROS: GEOGRAPHICAL INSIGHT ON CONTROL ACTIONS AND MAINTENANCE FACTORS

Artadj Attoumane, Rahamatou Sili, Affane Bacar, Eric Cardinale, Gwenaelle Penneboker, Vincent Herbretreau

UMR ESPEDEV (IRD, UM2, UR, UAG), Saint-Pierre, La Réunion, France.
Programme Nationale de Lutte contre le Paludisme, Ministry of Public Health, Union of Comoros.
CIRAD, UMR 15 CMAEE, Sainte Clotilde, La Réunion, France

Introduction

Background
Malaria has long been endemic in the Union of Comoros. Since 2007, the Comorian government has been conducting a national strategy for eradicating malaria by Artemisinin-based combination therapies (ACTs) administration, mass drug administration with dihydroartemisinin-piperaquine plus primaquine, and large-scale distribution of long-lasting insecticidal nets (LLINs). Between 2010 and 2014, the number of malaria cases has radically fallen by more than 90%. This study aims at describing the spatial patterns of the epidemiology of malaria and at identifying risk factors through a geographical approach. Therefore, the purpose of this study is to:
• characterize the spatial and temporal dynamics of malaria,
• describe its ecological and social patterns,
• assess the impact of control actions,
• statistically model its distribution.

Material and methods

Study area
Located at the northern of the Mozambique Channel between the east coast of Africa and Madagascar, Comoros archipelago is composed of four islands: Grande Comore (1,147 km²), Anjouan (424 km²), Moheli (360 km²) and Mayotte (376 km²).

Epidemiological information
Monthly cases, as reported by the “Programme National de lutte Contre le paludisme” (PNLP) from 2010 to 2014, were geo-referenced in the three islands of different scales: by sanitary district and by health center. The incidence of malaria by district was calculated using population data from the National Census. We calculated the clinical prevalence of malaria in health centers and number of clinical patient.

Control actions information
Data of Artemisinin-based combination therapies (ACTs), mass drug administration with dihydroartemisinin-piperaquine plus primaquine and distribution of long-lasting insecticidal nets (LLINs) were used to determine the relation between control action and malaria cases with Linear regression model.

Spatial database
We completed the spatial database with data on environmental and social factors including meteorology, physical geography, population characteristics.

Results

Evolution of malaria prevalence reported in health centers

Annual malaria cases trend in Grande Comore and Moheli from 2010 to 2014.

Malaria control actions

Linear regression model of LLINs and mass drug administration with malaria cases by health districts

We observed a highly significant correlation (p < 0.001) between the proportion of LLINs distribution and the malaria cases in Grande Comore (R² = 0.93, p value = 0.00034) and Moheli (R² = 0.98, p value = 0.0011). Mass drug administration with dihydroartemisinin-piperaquine plus primaquine presented a strong positive correlation (p < 0.001) between the average incidence of malaria and the proportion of urban lands (r = 0.79, p = 0.0001), bare lands (r = 0.99, p = 0.001) and the population density (r = 0.74, p = 0.0001). Minor associations also presented a strong correlation (p < 0.001) between the average incidence of malaria and the proportion of NDDV (r = 0.7, p = 0.004) and a strong negative correlation with the urban lands (r = -0.6, p = 0.001). None relation was observed between environmental factors and the average incidence in Anjouan.

Linear regression model of ACTs and clinical malaria cases by health center

In the three years 59,495 malaria patients were treated by Artemisinin-based combination therapies (ACTs). Using linear regression model, we observed weak relation between ACTs administration and clinical malaria cases in Moheli (R² = 0.96, p value = 0.001) and Anjouan (R² = 0.72, p value = 2.43e-05).

Environmental factors

A PCA can discriminate the islands by using environmental variables. Grande Comore presents a strong positive correlation between the average incidence of malaria and the proportion of urban lands (r = 0.79, p = 0.0001), bare lands (r = 0.99, p = 0.001) and the population density (r = 0.74, p = 0.0001). Moheli presents also a strong positive correlation between the average incidence of malaria and the average of NDDV (r = 0.7, p = 0.004) and a strong negative correlation with the urban lands (r = -0.6, p = 0.001). None relation was observed between environmental factors and the average incidence in Anjouan.

Conclusion

The decrease of malaria has been driven by different control actions organized by the Government. Locally, some environmental factors seem also to influence the occurrence of malaria, as suggested by the relation between malaria and urban lands in Grande Comore and NDDV in Moheli. The Comorian Government targets the total elimination of malaria at the end of 2016. Actually, Moheli and Anjouan are classified in elimination phase and Grande Comore in control phase.

Reference