Spatial investigation of congenital malformations in La Réunion (2008-2012)

Mathilde André1, Hinrich Randriananialo1, Bénédicte Bertaut-Nativel1, Vincent Herbetteau2
1) Registre des Malformations Congénitales de La Réunion (RMCR), Centre Hospitalier Universitaire (CHU) de La Réunion, 97410 Saint-Pierre, France, 2) INSERM UMR ESPE-GEV (IRD, Univ. Antilles-Guyane, Univ. Montpellier, Univ. Rennes), Station SEAS-OI, 97419 Saint-Pierre, France

Introduction

Reunion Island is a French territory located in the south-western Indian Ocean (Figure 1). The Reunion Registry of congenital malformations (RMCR) is in charge of monitoring cases. Overall prevalence (289 cases per 10,000 births) is close to the average reported by mainland French registries (315 cases). However, the prevalence of spina bifida and anencephalies is almost twice (19 cases per 10,000 births) the one reported in mainland France (10 cases). This study aims at describing the heterogeneous spatial distribution of different birth defects and identifying clusters.

The exposure to environmental pollutants (such as proximity to farmlands or pollution sites) could explain the occurrence of spina bifida and anencephalies (Rull RP et al. 2006; Lacasana M et al., 2006). Therefore this study focuses on comparing the spatial distribution of spina bifida and anencephalies with two other groups of malformations (cleft lip and palate and congenital heart defects) for which the average prevalence in Reunion Island are close to those measured in mainland France. These two are also related to environmental factors (Wang W, 2009; Greer W et al., 2005).

Cluster detection methods:
• Kulldorff: SaTScan software (Kulldorff M, 1997)
• Standardized Prevalence Ratio (SPR): Poison distribution to compare the number of births + average island prevalence, P-value < 0.05 implies that the result is statistically significant.
• Hierarchical Clustering Analysis (HCA)

Geographic epicenter method (Boumediene F, 2011):
This method allows to intersect the clustering results at different scales and assign an index to each IRIS (Figure 2). For instance, an index value of 3 stands for an IRIS identified as a cluster at the IRIS scale and only one of the two other scales.

Material and methods

Results and discussion

Cluster detection of the average prevalence of spina bifida and anencephaly, cleft lip and palate and congenital heart defect using 3 methods (2008-2012)

Table 1: Prevalence / group (per 10,000 births):

<table>
<thead>
<tr>
<th>Clustering method</th>
<th>Cases</th>
<th>Cleft lip and palate</th>
<th>Spina bifida and anencephaly</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPR</td>
<td>500</td>
<td>108</td>
<td>141</td>
</tr>
<tr>
<td>Cases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCA</td>
<td>111</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Mean prev</td>
<td>75.4</td>
<td>15.1</td>
<td>18.7</td>
</tr>
<tr>
<td>Max prev</td>
<td>396.6</td>
<td>105</td>
<td>160</td>
</tr>
<tr>
<td>Std dev</td>
<td>63.8</td>
<td>27</td>
<td>29.6</td>
</tr>
</tbody>
</table>

Results regarding groups of pathologies:
Overall, the southern region shows higher prevalences and a higher number of clusters.

Spina bifida and anencephaly clusters:
- North east: high prevalence in 1 IRIS
- South: high prevalence in at least 3 IRIS

Cleft lip and palate and congenital heart defect clusters:
- North or north west: high prevalence in 1 IRIS
- Northern or south west: high prevalence in 1 IRIS

Conclusions:
A need to rely on different clustering methods:
The three clustering methods agree on identifying the South as a region of higher prevalence. Unlike congenital heart defects and cleft lip and palate, spina bifida and anencephalies seem to be more localized.

These clustering methods slightly differ on the size and number of clusters. Consequently, using several methods provides more certainty about the findings of the study.

Perspectives:
This cluster investigation will help to focus on the most affected areas and investigate potential environmental factors that may contribute to congenital disorders.

The main hypothesis is based on the role of pesticides largely used on the island. Crops are mainly located in the south and the east of the island. Indeed recent work showed that the use of pesticides is responsible of some birth defects (INSERM, 2013). What about Reunion Island? Such investigation will require a case-control study with accurate information on living conditions and practices.

Acknowledgements:
The authors would like to thank:
• the RMCR collaborators (doctors, executives and midwives), Mrs Wilulai and Dr Boumahni, head of “Naitre Aujourd’hui” and the DRI
• the RMCR–funders: ARS-OI, INSERM and Santé publique France (INSERM)
• the students: Mireille Irabé, Katharine Abbey Owens, Emmeline Benard, Emilene Davonce
• IRD, Université de La Réunion and SEAS-OI for scientific support and the LeptOI project (FEDER POCT 31569) and Christophe Revillon for the landuse map.

Finally the authors wish to warmly thank the JRC organizers of the 13th EUROCAT Scientific Symposium for the invitation to present this poster and the financial support provided.

References