CHEMICAL AND BIOACTIVE PRINCIPLES FROM SELECTED MALAYSIAN PLANTS

Institute for Advanced Studies, Universiti Malaya, 59100 Kuala Lumpur, Malaysia

Abstract: over the years a number of Malaysian plants have been examined for new chemical principles and some selected bioactivities. Selected plants from some families, e.g. Apocynaceae, Euphorbiaceae, Guttiferae, Magnoliaceae, Rubiaceae, and Rutaceae, have provided a variety of new and novel natural products.

Introduction

The Malaysian flora is among the world’s richest but their study has not been as rapid as the rapid development now taking place in the region. Over the last decade we have embarked on a program to study the phytochemistry and selected bioactivities of many of the available plant species and the results are summarised in this paper.

Biological Activities

The screening of 32 Euphorbiaceae species and 3 Thymelaeaceae species for tumor promoter activity was carried out by means of a short-term in vitro assay using human lymphoblastoid cells latently infected with Epstein-Barr virus. All the Thymelaceae species and 11 of the Euphorbiaceae species were found to be positive for tumour promoter activity. Two of the plants, Exeaearia agallocha and Wikstroemia ridleyi, were found to provide high activities.

The Euphorbiaceae family also provides the genus Macaranga of which the following species were screened for semiochemicals: M. conifera, M. denticulata, M. diepenhorstii, M. gigantea, M. hypoleuca, M. heynei, M. hosei, M. hulletti, M. indica, M. javanica, M. iowii, M. perakensis, M. populifolia, M. quadricornis, M. recurvata, M. tanarius and M. triloba. Several of the above species provide essential oils showing positive activities as semiochemicals.

Several selected plants have been tested for antihypertensive activity on normotensive and spontaneously hypertensive rats. Among the plants which show promising results are Andrographis paniculata, Averrhoa species and several Uncaria species. Portulaca oleracea provided hypertensive principles which include amine derivatives of phenylethane. Various alkaloids from Uncaria including dihydrocorynantheine (1a), gambirine (1b) and yohimbines were hypotensive.

Chemical Constituents

As expected a large number of natural products, many of them new or novel, were isolated from the plants studied. From Uncaria of the Rubiaceae family (U. acida, U. borneensis, U. calophylla, U. elliptica, U. gambir, U. lanosa and U. longiflora) a pattern of alkaloidal types may be discerned, namely the presence of tetra- and penta-cyclic...
heteroyohimbines and oxindoles. The results for *U. callophylla* are given below where it may be noted that novel dimeric indole alkaloids were isolated [1-4].

Apart from major compounds dihydrocorynantheine and gambirine (1a,b), isogambirine and gambireine (1c, d) are minor alkaloids. Although not all the yohimbines could be isolated from *U. callophylla* the ones listed could be found in this and other *Uncaria* studied. Although yohimbine isomers have been well studied, 3-epi-b-yohimbine (2e) has been isolated as a natural product for the first time [5]. Among the oxindoles rotundifoline (3) was isolated from while pteropodine and isopteropodine were found to be common in many *Uncaria* sp. studied. Noteworthy are dimeric indole alkaloids callophylline (4a), callophylline A (4b) and callophylline B (4c). 4a was present in relatively larger amounts while dimeric indoles 4b,c were minor alkaloids; all compounds were assigned on the basis of their 1D-NMR spectra. The formation of dimers are likely the result of an electrophilic attack of the corresponding iminium ions of monomeric alkaloids on the electron-rich alkaloid gambirine (1b) which is a major alkaloid. Characteristic CNMR shifts are instrumental to structure elucidation using only 1D-NMR techniques.
A number of Malaysian Euodia species including *E. enuera*, *E. latifolia*, *E. macrocarpa*, *E. pachyphylla*, *E. pilulisfera* and *E. roxburghiana* have been investigated and various furoquinolines, pyranoquinolines and a quinolone were isolable as shown below. Additionally two monoterpenoid phloroacetophenone derivatives, melifoliones (5) were isolated. These have the structural feature of the quite rare desbenzylidenerubramin or brucel [6] both of which were also elucidated by X-ray crystallography.
Studies on plants of the genus *Kopsia* have provided a large number of alkaloidal types, of which rhazinilam (6a) from *K. singaporensis* is of interest because of its anti-tubulin activity. The same alkaloid is available together with dihydrorhazinilam (6b) and leuconolam (6c) from an earlier study on *Leuconotis griffithii* and *L. eugenifolia* [8-10]. *Kopsia* species (*K. profunda*, *K. larutensis* and *K. arborea*) have provided a rich harvest of alkaloidal types as illustrated below [11,12].
Substances naturelles d'origine végétale

Kopsia profunda

![Structural formula of Kopsia profunda](image)

- $R_1, R_2 = \text{H, OMe, OH or OCH}_2\text{O}$
- $R_3 = \text{H or COOMe}$
- $R = -\text{O'}$ or MeO

Kopsia arborea

![Structural formula of Kopsia arborea](image)

- $R_1, R_2 = \text{H or OCH}_2\text{O}$
- $R_3 = \text{H or COOMe}$

Kopsia larutensis

![Structural formula of Kopsia larutensis](image)

- $R_1, R_2 = \text{H, OH or =O}$
- $R = -\text{O'}$ or MeO

Tabernaemontana species are also widespread but they remain a taxonomically difficult group. Some of the varied alkaloid chemistry from *T. corymbosa* and *T. divaricata* are illustrated below [13].

Tabernaemontana corymbosa

![Structural formula of Tabernaemontana corymbosa](image)

- $R_1 = \text{H or OMe}$
- $R_2 = \text{H or CO}_2\text{Me}$
- $R_3 = \text{H}_2$ or O

T. divaricata

![Structural formula of T. divaricata](image)

- $R = \text{H or MeO}$
- $R' = \text{H or OH}$

T. divaricata

- voaphylline
 - $R = \text{H or Me}$
- apparicine

Troisième Symposium sur les substances naturelles d'intérêt biologique de la région Pacifique-Asie
Recent work on *Aromadendron elegans* (Magnoliaceae) has provided five known aporphine alkaloids and two new ones [14]. The structures of the new alkaloids 7 and 8 were elucidated by NMR techniques including COSY, HMBC, HMQC and NOESY experiments. Compounds 7a and 8 are of interest since in the NMR spectra they can be seen to exist in E and Z forms which may be expected in view of the amide linkage.

The chemistry of the secondary metabolites of *Callophyllum inophyllum* and *Garcinia opaca* (Guttiferae) were also examined recently [14-16] and novel xanthones 9-11 were characterised by 2D-NMR techniques. These are given below. The HMBC technique is particularly useful in delineating 2J and 3J connectivities within the structural framework.

Acknowledgements: This work is carried out under AAECP with financial assistance from AIDAB. IRPA (Malaysia) grants providing partial support are also acknowledged. One of us (Ibrahim Jantan) thanks the Director-General of the Forest Research Institute of Malaysia for carrying out some of the work described here.
References

Troisième Symposium sur les substances naturelles d'intérêt biologique de la région Pacifique-Asie

Nouméa, Nouvelle-Calédonie, 26-30 Août 1991

ACTES

Editeurs : Cécile DEBITUS, Philippe AMADE,
Dominique LAURENT, Jean-Pierre COSSON