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Abstract 

Impact of anthropisation and revegetation on soil microbial diversity was studied by characterizing bacterial 

community structure in a sandpit located in Terga (Algeria). Soil samples were collected from several sites: an 

undisturbed forest area with pristine vegetation, a site revegetated by the National Forest Services in 1998, a 

newly revegetated site by the introduction of two tree species (Tetraclinis articulata and Schinus terebinthifolius) 

associated, or not, with two legume species (Retama monosperma and Lotus creticus). Samples were collected 

from bulk and rhizospheric soil compartments during an18 month-period. Soil bacterial community structure 

was characterized by rRNA Intergenic Spacer Analysis (RISA) and statistical analysis. Concerning revegetated 

sites, soil physicochemical analysis was performed just after plantation and after 18 months. The plant effects on 

bacterial community structure differed among sites and plant species. In pristine forest, bacterial community 

structures of bulk and rhizospheric soils are most similar, both in time and whatever the cover plant species. In 

the recolonized site, no temporal change was observed, but plant, mayimpact bacterial community structure in 

rhizosphere. ‘T. articulata’ impacted bacterial community structure all along the temporal scale. Opposite, no 

significant effect of S. terebinthifolius was detected. A correlation between soil parameters and bacterial 

community structure was observed, suggesting that plant may drive bacterial community structure by providing 

nutriments and modifying soil physicochemical parameters. These results evidence the dynamics of microbial 

communities in response to revegetation efforts; registering microbial community evolution in time may help to 

select plant species with biological soil quality enhancing potential. 
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Introduction 

Human activities like mining or quarrying generate 

soil degradation (soil characteristics and functions) 

that rapidly and drastically affects biogeochemical 

cycles (Citeau et al., 2008; Lehmann and Stahr, 

2007) and causes disturbances and damages to 

ecosystem processes (Jaffré and Rigault, 1991). 

Ecological restoration has become an important part 

of sustainable development (Sheoram et al., 2010). 

Specifically, revegetation is one of the most widely 

used practices to restore disturbed ecosystems (De 

Mei and Di Mauro, 2006; Duponnois et al., 2013). 

Revegetation programs include pioneer plants 

adapted to these drastic environments, among which 

those developing symbioses with microorganisms 

(Franco et al., 1994; Pelletier and Esterle, 1995; 

Brennan, 1996; Wilson and Hanlon, 2012). The latter 

include (i) nitrogen-fixing bacteria, enabling 

symbiotic plant to grow in nitrogen poor soil and 

contributing to N input into the ecosystem and (ii) 

mycorrhizal fungi involved in plant nutrition 

improvement, especially Phosphorus uptake 

(Requena et al., 2001). Symbioses were included in 

revegetation programs in several anthropic 

ecosystems like nickel mines in New Caledonia (Jaffré 

et al., 2001, Herrera et al., 2007), sand dune 

stabilization in Senegal (Diagne et al., 2013) and 

degraded sites in the Mediterranean (Brunel et al., 

2007).Acacia species were used for spoiled soil 

revegetation, and were introduced for soil 

rehabilitation in many countries, particularly in 

North Africa since 1870 (Poynton, 2009; Carruthers 

et al., 2011). Symbioses increase plant survival and 

facilitate ecological succession (Lugo, 1997). 

However, despite research efforts, determining 

optimal strategy for soil revegetation is still hindered 

by limited knowledge on environmental processes 

and ecosystem functioning. Soil microorganisms play 

central roles in environmental processes such as 

mineral and organic matter recycling (soil fertility) 

(Swift et al., 1998), nutrient and water availability, 

carbon and nitrogen cycles (Hattenschwiler et al., 

2005).  

 

The extensive exploitation of Terga dune (NW 

Algeria) during the last decades induced a continuous 

and drastic decrease of vegetation cover. In recent 

years, several revegetation efforts have been 

performed, attempting to directly introduce pioneer 

plant candidates, without considering any local 

parameter, including soil biology (Bouazza Marouf et 

al., 2015). However, studying bacterial community 

evolution could provide news insights on sandpit 

restoration and soil functioning, useful information 

for revegetation strategy success. Therefore, the aim 

of the present work was to investigate the impact of 

anthropisation and revegetation efforts on soil 

functioning. For this purpose, we followed the 

evolution of bacterial community, using RISA 

fingerprinting (Ranjard et al., 2000b; Acinas et al., 

1999; Borneman and Triplett, 1997; Felske and 

Akkermans, 1998) in pristine and disturbed 

environments of the sandpit of Terga (Algeria): (1) a 

native forest, (2) a replanted site by National Forests 

Services in 1998 (“Recolonized Sand spoils”), (3) a 

new “Revegetated Sand spoils trial” initiated at the 

beginning of this work. 
 

Materials and methods 

Sites and sampling 

Soil samples were collected from a sandpit of Terga 

fore dune, which is located on the central part of the 

Témouchent region, along West Algerian coast. The 

dune covers an area of about 120 ha (Fig. 1), 45% of 

which is being exploited for sand production. This 

sandpit is located along the estuary of Wadi El Maleh 

(35°26'24.35"N, 1°13'35.20"O) (Fig. 1). Three 

contrasting study sites were chosen in the sandpit 

area (Table 1). One corresponded to the revegetated 

zone set up in April 2012 by planting four plants 

species: two tree species (Schinus terebenthifolius 

and Tetraclinis articulata) associated, or not, with 2 

legume plants (Retama monosperma and / or Lotus 

creticus). The experimental design is depicted in Fig. 

1. The second site was located in the zone revegetated 

by the forest services in 1998 (Recolonized sand 

spoils). The third one was chosen inside an 

undisturbed forest area with pristine vegetation. For 

the two latter sites, only legume plants were 

considered in the study.  
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Table 1. Description and name of soil samples in Terga sandpit. 

Nomenclature Soil type Plant 

SB Revegetated Sand spoils Bare soil 

S1 Revegetated Sand spoils Tetraclinis articulata 

S2 Revegetated Sand spoils Tetraclinis articulata and Retama monosperma 

S3 Revegetated Sand spoils Tetraclinis articulata and Lotus creticus 

S4 Revegetated Sand spoils Tetraclinis articulata, Lotus creticus and Retama monosperma 

S5 Revegetated Sand spoils Schinus terebinthifolius 

S6 Revegetated Sand spoils Schinus terebinthifolius and Retama monosperma 

S7 Revegetated Sand spoils Schinus terebinthifolius and Lotus creticus 

S8 Revegetated Sand spoils Schinus terebinthifolius, Lotus creticus and Retama monosperma 

   

P1 Pristine vegetation Bare soil 

P2 Pristine vegetation Retama monosperma 

P3 Pristine vegetation Lotus creticus 

   

R1 Recolonized Sand spoils Bare soil 

R2 Recolonized Sand spoils Retama monosperma 

R3 Recolonized Sand spoils Lotus creticus 

 

 

Fig. 1. The study site. 

A1 Location of sampling sites in the Terga Sandpit. 

https://www.google.fr/maps?hl=fr 

A2 Schematic diagram of the experimental design. Bold 

characters correspond to rhizospheric samples. The squares 

correspond to bulk soil samples. See Table 1 for treatment 

nomenclature.  

 

To follow the differential effect of plants in time: (1) 

In revegetated site, three temporal samplings were 

performed at 15 days, 12 and 18 months after 

plantation. The rhizospheric soils were sampled 

around the roots without destroying plants. (2) In the 

two older sites, two temporal samplings were 

performed at an initial time (T0) and after 12 months. 

The rhizospheric soils were sampled with roots. In 

each site, bare soils were sampled at 0-10 cm depth 

from the surface after eliminating first soil layer. All 

plant- and bare- soil samples were performed in 

triplicates. After sampling, the soils were dried for 24 

hours at room temperature, and then sieved at 2 mm. 

 

In revegetated site, soil physicochemical analysis 

(texture, pH, Electrical Conductivity, Total Nitrogen, 

Total Limestone, Organic Matter and Available 

Phosphorus) was performed by agronomic laboratory 

of FERTIAL Company and National Institute of 

Agronomic Research of Algeria (INRA) using 

standard procedures. Soil was sampled in triplicates, 

at the beginning of plantation (Bare soil) and after 18 

months. Each set of triplicate samples was pooled to 

create a single composite sample. In order to evaluate 

physicochemical changes, principal component 

analysis (PCA) was performed using R software (R 

Development Core Team, 2011) and the package 

ADE4TkGUI (Thioulouse and Dray, 2007). 
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DNA extraction 

DNA was extracted from 10g of each soil sample using 

an Ultra Clean Mega Soil DNA kit (Mobio, CA) 

according to the manufacturer instructions. Soil DNA 

was then further purified with Nucleo Trap® nucleic 

acid and protein purification Kit (Macherey-Nagel) or 

the Power Clean® DNA Clean-Up Kit (Mobio), 

depending on the DNA purity. DNA concentrations 

were determined on 1 µl DNA preparation with the 

Qubit BR kit or the high sensitivity kit (Invitrogen, 

Fisher scientific, Illkirch, France) on Qubit 

Fluorometer (Invitrogen), depending on DNA 

concentrations. 

 

Inter-Genic Spacer (IGS) Amplification 

The intergenic spacer region (IGS) between the small 

and large subunit rDNA gene was amplified, using 1 

ng DNA template and the universal primers: SD-Bact-

1522-bS-20 and LD-Bact-132-aA-18 (Ranjard et al., 

2000a). Amplification reaction was performed in a 

final volume of 25 µl containing 0.2 µM of each 

primer, 1.3 M betaine and 1X Cesium polymerase 

Klentaq AC LA PCR Kit reagent (DNA Polymerase 

Technology, St. Louis, Missouri). Amplification was 

performed as follows: preheating at 95°C for 2min, 

followed by 30 cycles: denaturation at 94°C for 50 s, 

annealing at 55°C for 50 s and extension at 68°C for 

2min. After a final extension step at 68°C for 5 min 

the reaction is cooled and kept at 10°C. In order to 

eliminate inhibitors, PCR products were purified with 

the Nucleo Spin Gel and PCR Clean-up kit (Macherey-

nagel). Amplification profiles were checked on 1% 

agarose gel. 

 

Ribosomal Intergenic Spacer Analysis (RISA) and 

Statistical analysis 

RISA was performed in a 2100 Bioanalyzer (Agilent 

Technologies, USA), using High Sensitivity DNA 

chips according to the manufacturer’s 

recommendations. The 2100 expert Agilent software 

determines peak sizes and areas in reference to both 

internal size standards included in each test sample 

and an external ladder and then converts fluorescence 

data into electrophoregrams. The data are exported in 

a CSV format and then imported into the RISA 

Aligner program (Navarro et al., 2015) for alignment 

and normalization. 

Tocompare soil microbial communities, Between 

Component Analysis (BCA) of their RISA patterns 

was performed using R software (R Core Team (2015) 

and the package ADE4TkGUI (Thioulouse and Dray, 

2007). 

 

Relationships between bacterial community 

structure and soil physicochemical features 

In order to analyze the relationships between soil 

physicochemical characteristics and bacterial 

community structures, we performed a coinertia 

analysis, a standard multivariate analysis that 

describes the relationships between two data tables 

(Doledec and Chessel, 1994; Dray et al., 2003). In 

order to proceed to coinertia analysis, two principal 

component analyses (PCA) were performed: the first 

one to describe the genetic structure of bacterial 

communities and the second to describe the soil 

physicochemical characteristics. PCA, co-inertia 

analysis and Monte Carlo test, used to check the 

significance of the analysis, were performed using the 

Ade4TkGUI software (Thioulouse and Dray, 2007). 

 

Results 

Soil characteristics 

Bare and rhizospheric soils were sampled at different 

times during a18 month period in order to evaluate 

plant species and temporal scale effects on bacterial 

community structure. Soil analysis (Table 2) indicates 

that all soils exhibit a sandy texture with about 94% 

sand, with good internal drainage and low water- and 

fertilizer- retention capacity. Principal component 

analysis (PCA) showed differences in soil 

physicochemical characteristics at the beginning of 

plantation and after 18 months (Fig. S1). The first 

axis, explaining 61.9% of the variance, separated bulk 

soils and rhizospheric soils under T. articulate or S. 

terebinthifolius from the others plant combinations. 

This separation was correlated to high nitrogen and 

phosphorus contents and low pH (Table 2). Organic 

matter and electric conductivity remain stable in all 

soils, averaging 0.1 and 0.19 respectively. Opposite, 

limestone rate increases when plants are present 

(Table 2). 
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Table 2. Soil characteristics at the initial stage and after 18 months of plantation. 

Soils 
Texture (%) Conductivity 

1:5(ms.cm-1) 
pH 

Total CaCO3 
(%) 

Organicmatter 
(%) 

Available 
phosphorus (ppm) 

Total nitrogen 
(%) Sand Limon Clay 

SB-0 94 4 2 0.12 8.80 28.60 0.007 6.30 0.02 
SB-18 95 3 2 0.19 7.87 29.33 0.005 6.20 0.02 
S1-18 95 3 2 0.20 7.90 33.80 0.005 6.60 0.02 
S2-18 94 4 2 0.20 7.30 41.00 0.010 9.00 0.03 
S3-18 93 4 3 0.20 7.20 39.30 0.001 9.80 0.04 
S4-18 94 4 2 0.19 7.30 40.20 0.006 9.20 0.03 
S5-18 94 4 2 0.17 7.50 40.00 0.008 7.00 0.02 
S6-18 95 2 5 0.25 6.00 37.00 0.010 9.80 0.04 
S7-18 94 3 3 0.21 6.80 37.40 0.010 11.00 0.05 

S8-18 94 3 3 0.22 7.20 34.00 0.009 10.80 0.03 

Note: 0 and 18 after sample name/code correspond to time sampling. 

 

Spatio-temporal evolution of soil bacterial 

community structure 

The impact of plant cover restoration on soil bacterial 

community structure was performed by RISA 

fingerprinting method followed by BCA pattern 

analysis. 

 

In a first step, the soil bacterial community structures 

were compared in the two oldest sites: pristine and 

recolonized. Bacterial structures differed in the two 

sites. In pristine soils, bacterial community structures 

were rather similar whatever the soil type 

(rhizospheric or bare) and the sampling time as 

shown by BC Aanalysis (Fig. 2A1). Opposite, in the 

recolonized site, a major impact of plant on soil 

bacterial diversity was observed (Fig. 2A2). The first 

axis of the BCA explains 44.2 % of the variance and 

shows a strong separation between bare and 

rhizospheric soils. However, the plant type has less 

impact. In both sites, no obvious temporal effect on 

the bacterial community structure could be 

established. 

 

Opposite, a temporal effect on bacterial community 

structure was observed in soil under T. articulate 

whatever alone or with any additional associated 

plant. This is also the case for bare soils (Fig. 3). 

 
 

Fig.2. BCA analysis of soil bacterial community 

structure in the pristine forestland. 

(A1) and recolonized Sand site (A2) including samples from 

bulk soils (purple ellipses), R. monosperma rhizospheric 

soils (red ellipses) and L. creticus rhizospheric soils (Blue 

ellipses). Note: 0and 12 after sample name correspond to 

time sampling. 
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Fig. 3. BC Aanalysis of soil bacterial community structure of sand spoiltrial with T. articulata. 

A1: Monospecific T. articulate rhizospheric soil samples; A2: Association of T. articulata and R. monospermarhizospheric soils; 

A3: Association of T. articulataand L. creticusrhizospheric soils; A4: Association of T. articulata, L. creticus and R. 

monosperma rhizospheric soils. Samplings were performed at initial stage (red ellipses), 12 months (blue ellipses) and 18 

months (green ellipses). Purple ellipses represent bulk soils whatever the sampling time. 

 

At T0 the rhizospheric bacterial community structure 

is close to bare soil bacterial community structure. 

Considering T. articulate (S1) and its associations 

with R. monosperma (S2) or L. creticus (S3), BCA 

analyses support a temporal evolution as bacterial 

community structures of soil samples at T0, T12 and 

T18 (Fig. 3A1, 3A2, 3A3). The first axis explains 32.4; 

37.2 and 39.8 % of the variance for S1, S2 and S3 

respectively, demonstrating an evolution of bacterial 

community structure between bare soils and T12 soil 

samplings. Considering the last pattern (S4) 

representing the association of the three plants, the 

rhizospheric effect on bacterial community structure 

clearly occurred only at T18.The RISA profiles of 

bacterial communities of T18 soil samples are 

separated by the second axis, except for S3 patterns 

for which no evolution was observed between T12 and 

T18. Considering S. terebinthifolius, the rhizospheric 

bacterial community structures were stable and very 

similar to those in bare soils (Fig. 4), whatever its 

associated plant(s) or time. 

 

Relationships between bacterial community 

structure and physicochemical characteristics of 

soils 

The results of a coinertia analysis (Fig. 5) indicate 

that the bacterial community structure and the 

physicochemical characteristics of soils are correlated 

(P=0.036; RV-coefficient=0.55). The first axis 

accounted for 84% of the explained inertia while the 

second axis accounted for 6 % of the explained inertia 

(Fig. 5). The first axis separated bulk soils and 

rhizospheric soils under T. articulate or S. 

terebinthifolius from the other plant combinations. 

For these soils, bacterial community structure and 

physicochemical characteristics are clearly correlated. 

In the other rhizospheric soil samples combining two 

or three plants, the correlation is less obvious. 
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Fig. 4. BCA analysis of soil bacterial community structure of sand spoil revegetation trial with S. terebinthifolius. 

A1: Monospecific S. terebinthifolius rhizospheric soils; A2: Association of S. terebinthifolius and R. monosperma rhizospheric 

soils; A3: Association of S. terebinthifolius and L. creticus rhizospheric soils; A4: Association of S. terebinthifolius, L. creticus 

and R. monosperma rhizospheric soils. Samplings were performed at initial stage (red ellipses), 12 months (blue ellipses) and 

18 months (green ellipses). Purple ellipses represent bulk soils whatever the sampling time.  

 

 

Fig. 5. Correlation between bacterial community structure and physicochemical characteristics by co-inertia analysis. 

Each site is represented by two points: one corresponds to the soil bacterial community structure and the other corresponds to 

the soil physicochemical characteristics. 

Note: 0, 12 and 18 after sample name correspond to time sampling. 
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Fig. 6. S1. PCA analysis of soil physicochemical characteristics. 

SB: Bulk soil; S1: Monospecific T. articulator hizospheric soil samples; S2: Association of T. articulata and R. monosperma 

rhizospheric soil; S3: Association of T. articulate and L. creticus rhizospheric soils; S4: Association of T. articulata, L. creticus 

and R. monosperma rhizospheric soils; S5: Monospecific S. terebinthifolius rhizospheric soils; S6: Association of S. 

terebinthifolius and R. monosperma rhizospheric soils; S7: Association of S. terebinthifolius and L. creticus rhizospheric soils; 

S8: Association of S. terebinthifolius, L. creticus and R. monosperma rhizospheric soils. 

Note: 0 and 18 after nomenclature represent time sampling. 

 

Discussion 

The extensive exploitation of Terga sandpit since 1941 

(Ghodbani, 2008) induced a continuous and drastic 

decrease of vegetation cover. For tentative 

environmental balance of this site, several 

revegetation programs were achieved. In 1998, the 

Algerian Forest Service settled a recolonization trial 

plot by introducing two legume plant species, 

Retamamonosperma and Acacia saligna, 

unsuccessful for these species but with relative 

success of colonization by others plant species. Our 

research group settled additional trials in 2008, 

including legume plant-microorganisms symbioses. A 

successful sustainable restoration strategy requires 

many attempts during several years. Ecological 

restoration is the process of assisting the recovery of 

an ecosystem that has been degraded, damaged, or 

destroyed (Harris, 2003). Indicators are necessary to 

evaluate the success or failure of revegetation 

attempts. Soil microbial community structure and 

evolution could be one of them to follow up soil 

quality and progress of revegetation (Sparling, 1992; 

Harris, 2003; Gomez et al., 2006). 

 

In the present study, the evolution of the bacterial 

community structure was registered, at spatial and 

temporal scales, in three cases: a recent revegetation 

trial (0-18 months after plantation), the 14 year-old 

recolonization trial site of the National Forest Service 

and the native undisturbed forest. In this purpose, we 

performed RISA, a molecular fingerprinting method 

widely reportedin literature for successful monitoring 

of microbial communities in complex environments 

(Borneman and Triplett, 1997; Ranjard et al., 

2000a,b; Yu and Mohn, 2001; Eriksson et al., 2003; 

Ikeda et al., 2008). 

 

Plant impacts on soil bacterial community structure 

and temporal evolution are not similar in the two 

older sites. Considering the native forest, bacterial 

community structures of both bulk and rhizospheric 

soils are close, whatever the plant species. This might 

be explained by the difficulty to find bare soil free of 

roots in this ecosystem at sampling. This suggests 

that natural processes may drive a dense vegetation 

cover in this dune environment. Opposite, in soils of 

the 14 year-old recolonized site, the bacterial 

communities are impacted by the plant rhizosphere. 

Soils of this site appear in a transitory state fourteen 

years after plantation.  
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This could be explained by the fact that plants 

introduced by national forest service did not persist 

but allowed colonization by other species. It is 

difficult to predict the period of time necessary for 

this ecosystem to come up to resilience because there 

are several processes and factors that influence ability 

and rate of recovery (Lal, 1997). 

 

The soil bacterial community structure in these two 

sites is rather similar during temporal scale. This 

suggests stability over time, probably due to the lack 

of human disturbance. In fact, diversity of soil 

bacterial communities is impacted by natural (Paine 

and Levin, 1981; Sousa, 1984) or anthropogenic 

disturbances (Buckling et al., 2000; Hery et al., 2003; 

Kang and Mills, 2004; Herrera et al., 2007). In order 

to understand impact of anthropic disturbance in 

Terga sandpit, the structure of bacterial communities 

has been followed in bulk and rhizospheric soils of the 

newly revegetated sandspoil. Major changes in soil 

bacterial community structure were observed in this 

recently revegetated sandpit, at the beginning of the 

planting and in some cases.  

 

The introduction of T. articulata (Barbary Thuja) was 

unsuccessful as plants died after one month. 

Nevertheless, although T. articulate was planted 

alone, a plant rhizospheric effect on bacterial 

communities was observed after 12 months. To 

explain this, we may hypothesize that the soil and its 

associated bacterial community introduced with the 

plant may have had an impact on bacterial diversity. 

This suggests that, in case of future revegetation 

attempts on Terga sandpit, topsoil could be used to 

boost soil biology and plant growth. Topsoils have 

been used with success in others environments 

Warren et al., 1980; Rokich et al., 2001; Wong, 2003; 

Rate et al., 2004; Mola et al., 2009). Association of T. 

articulata with R. monosperma or L. creticus had an 

effect on soil bacterial community structure, 

especially with L. creticus. Nevertheless, association 

of the three plants together mitigates this impact. 

Plant diversity is a driver of bacterial community 

structure and may decrease or cancel impacts of 

individual plants by mediating microbial interactions 

like competition, antagonism (Schlatter et al., 2015). 

 

S. terebinthifolius (Brazilian pepper tree) characterized 

by a high growth rate and a wide environmental 

tolerance was introduced in more than 20 countries 

(Ewel et al., 1982) to invade a variety of ecosystems 

(Woodall, 1982; Laroche and Baker, 1994; Langeland 

and Burks, 1998). The introduction of this plant in 

Terga site was a success as the plant grew well during 

the 18 month-period of this study. Nevertheless, a 

weak effect on bacterial community structure was 

observed, whatever S. terebinthifolius was alone or 

associated with legumes. This could be explained by 

allelopathic properties of this exotic invasive plant 

(Mahendra et al., 1995; Nickerson and Flory, 2015), 

which may prevent the development of others plants 

and may influence the bacterial community structure.  

 

Plants also impact concentration of soil nutriments 

(OM, C, N, P and K) that are drivers of competition 

and interactions between soil bacteria (Schlatter et 

al., 2015). Moreover, soil edaphic parameters drive 

bacterial community structure. Manyauthors reported 

relationships between edaphic parameters and 

microbial community structures in soils (Bardgett et 

al., 1997; Fierer and Jackson, 2006 ; Lejon et al., 

2007 ; Lauber et al., 2008 ; Lauber et al., 2009 ; 

Nacke et al., 2011). In the Terga trial, plantation of 

legumes results in pH variations from alkaline to 

acidic, and induces increase of nitrogen and 

phosphorus contents. A correlation between soil 

parameters and bacterial community structure was 

evidenced by coinertia analysis. These findings 

suggest that plants drive bacterial community 

structure by producing root exudates and by 

modifying soil physicochemical parameters. 

Literature reports that root exudates create favorable 

environment for soil microorganisms, by secreting 10 

to 20% of carbon assimilated during photosynthesis 

(Dakora and Phillips, 2002; Walker et al., 2003; 

Hartmann et al., 2009; Dennis et al., 2010; Dazy et 

al., 2008; Siciliano et al., 2003). 

 

In conclusion, although all plant introduction assays 

were not successful, we evidenced changes in soil 

edaphic and biotic characteristics. Moreover, 

bacterial community structure analyses suggest that 

the recolonized site may be in an intermediate state 

between the native forest and the revegetated site.  
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This raises the question of the time necessary to reach 

the ecological resilience in this ecosystem. This work 

provides new data that could be used for the 

restoration of Terga sandpit. Specifically, in future 

more care should be provided on plant selection and 

association and characterized topsoil may be spread 

on the trial before planting. 
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