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ABSTRACT Describing the genetic diversity in the gene pool of crops will provide breeders with novel
resources for varietal improvement. Nested Association Mapping (NAM) populations are uniquely suited for
characterizing parental diversity through the shuffling and fixation of parental haplotypes. Here, we describe
a set of 1879 rice NAM lines created through the selfing and single-seed descent of F1 hybrids derived from
elite IR64 indica crossed with 10 diverse tropical japonica lines. Genotyping data indicated tropical japonica
alleles were captured at every queried locus despite the presence of segregation distortion factors. Several
distortion loci were mapped, both shared and unique, among the 10 populations. Using two-point and
multi-point genetic map calculations, our datasets achieved the �1500 cM expected map size in rice.
Finally, we highlighted the utility of the NAM lines for QTL mapping, including joint analysis across the
10 populations, by confirming known QTL locations for the trait days to heading.
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Currently, one in eight people is estimated to be suffering from mal-
nourishment, primarily in developing countries (Tscharntke et al.
2012). Advances in plant breeding and biotechnology, including in-
creasing the quality and diversity of germplasm, will play an important
role in reducing malnourishment and improving food security (Tester
and Langridge 2010; Brennan and Malabayabas 2011). Domesticated
rice is the staple of over half of the global population, comprising 50%
of the daily caloric intake of 560 million Asians experiencing under-
nourishment (Mohanty 2013;Muthayya et al. 2014). The future of food
security, including rice agriculture, faces incredible challenges in the

form of climate change, population growth, and increasing standard of
living (Godfray et al. 2010). For example, many areas of lowland trop-
ical Asia suffer from erratic flooding, a trend only to increase with
climate change. The introduction of submergence-tolerance into rice
varieties vastly improved rice agriculture in many impoverished areas
prone to flooding, reaching 3.8 million Asian farmers within 3 yr of its
introduction (Ismail et al. 2013). This is a prime example of how
identifying new sources of valuable agronomic traits can improve
germplasm and, therefore, food security.

Domesticated Asian rice, Oryza sativa, has been subjected to distinct
trajectories of domestication and cultivation, resulting in separate reser-
voirs of genetic diversity. Domestication of the twomajor clades of rice, the
japonica and indica subspecies, began�9000 yr ago, in the river valleys of
East Asia and (concurrently or possibly afterward) across the foothills of
the Himalayas (Khush 1997; Garris et al. 2005; Londo et al. 2006; Kovach
et al. 2007; Lin et al. 2007; Sweeney and McCouch 2007; Izawa 2008;
Callaway 2014; Civáň et al. 2015). Tropical japonica, a japonica group, is
descended from japonicas brought south to tropical Asia and Indonesia,
whereas temperate japonicaswere adapted to temperate Asia (Khush 1997;
Kovach et al. 2007). Indica rice can be divided into indica and aus groups,
although there is evidence that aus is descended from a separate wild
population (Civáň et al. 2015). However, the divergence between indica
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and japonica predates domestication, as each subspecies resulted from
sampling separate wild populations that diverged 0.44 MYA (Ma and
Bennetzen 2004; Kovach et al. 2007; Schatz et al. 2014). As a result, tropical
rice diversity has at least two major sources, one found in the indicas and
the other in japonicas. Therefore, creating admixture populations between
indica and tropical japonica varieties may result in novel combinations of
tropical agriculture-adapted alleles. Moreover, traits found in japonicas,
especially in tropical japonicas, such as blast resistance, robust panicles,
extensive root architecture, and fewer yet sturdier stems, are just some of
the features that could be beneficial in the development of improved indica
rice varieties (Guiderdoni et al. 1992; Peng et al. 1999).

A central goal ofmapping populations in plants has been to identify the
genetic architecture of agronomic traits present in diverse germplasm.
Mapping populations can be used to create novel combinations of parental
alleles, fix parental alleles, break apart haplotypes, and to test additive or
dominanceeffects.NAMpopulations, inparticular, feature thedevelopment
of a series of parallel Recombinant Inbred Lines (RILs), each representing a
different “diversity donor” parent crossed with a common “reference”
parent (Yu et al. 2008; McMullen et al. 2009). Initial F1 crosses are self-
pollinated by single seed descent for several generations to nearly reach
complete homozygosity. Despite extensive recombination, parental alleles
and haplotypes become fixed. The power of this population design is
through the presence of two sources of recombination: (1) the shuffling
of parental alleles over several generations through segregation and genetic
recombination, and (2) historical recombination of haplotypes present in
the various diversity donors. This combination allows for joint mapping of
traits across multiple NAM-RILs, greatly increasing the accuracy and pre-
cision ofQTLdiscovery, especiallywhen combinedwithhigh-density geno-
typing. Detection power is increased when weak QTL signals in NAM
lines (possibly representingQTLwith small genetic effects) are accumulated
from several populations into a stronger signal. Statistical methods such as
joint stepwise regression (Buckler et al. 2009; Ogut et al. 2015) and Fisher’s
method (Peirce et al. 2007; Broman and Sen 2009) have been used for joint
mapping and pooling test statistics from population-specific QTL analyses.

NAM has been designed primarily for maize (Yu et al. 2008;
McMullen et al. 2009; Li et al. 2016), but also in other cereals such as
wheat (Bajgain et al. 2016) and barley (Maurer et al. 2015). This ap-
proach has resulted in the mapping of QTL for traits such as flowering
time (Buckler et al. 2009) and leaf blight resistance in maize (Kump
et al. 2011; Poland et al. 2011), stem rust resistance in wheat (Bajgain
et al. 2016), and flowering time in barley (Maurer et al. 2015).

Moreover, NAM lines may also function as an archive for genetic
diversity. In the maize NAMpopulations, major heterotic groups in the
UnitedStates andChinahavebeen representedby the careful selectionof
founding parental lines (Yu et al. 2008; McMullen et al. 2009; Li et al.
2016). TheNAMpopulations generated from these founding lines are a
resource for maize breeders to identify genetic diversity that has not yet
been applied in breeding programs.

In this current study,wedeveloped andcharacterized riceNAMlines
to facilitate the identification of beneficial tropical japonica diversity,
and incorporated these traits via an elite indica bridge variety (IR64) for
future breeding initiatives. Ten tropical japonica diversity donor paren-
tals were selected to be crossed with IR64 indica and create 10 recombi-
nant inbred populations of �200 lines each for a total of 1879 NAM
lines. The allelic segregation and recombination patterns in the 10 pop-
ulations were described to aid future trait mapping and breeding
endeavors. As a demonstration of the usefulness of our populations
for mapping traits, we explored the genetic architecture of a well-
characterized agronomic trait and show, through joint analysis, that
combining QTL test statistics from multiple populations can provide
additional mapping precision in rice NAM lines.

MATERIALS AND METHODS

Generation of the NAM population
A NAM population using tropical japonica diversity donors was con-
structed according to the protocol of the original NAMdesign formaize
(Yu et al. 2008; McMullen et al. 2009). IR64, an elite International Rice
Research Institute (IRRI) indica line with a complex pedigree, was
selected to be the common parent and a representative of the indica
subspecies (Figure 1). The diversity donor parentals were selected (1)
for resistance and physiological traits and (2) to represent the genetic
diversity present in tropical japonica. Azucena was chosen in particular
for plant physiological traits such as days to heading; panicle and root
architecture; grain traits such as aroma, shape, size, and zinc and iron
content; tolerance to drought and aluminum; and resistance to Striga,
Xanthomonas oryzae pv. oryzae, Rice yellow mottle virus, and Magna-
porthe grisea. The IR64 · Azucena population, developed by Institut de
Recherche pour le Développement (IRD), France, has been previously
genotyped and described by Simple Sequence Repeats (SSRs) (Bourgis
et al. 2008; Djedatin et al. 2016) and Genotype-by-Sequencing (GBS)
(Spindel et al. 2013). The other nine diversity donors were chosen to
complement mapping of the above traits in IR64 · Azucena crosses,
and to expand upon the polymorphism between IR64 and Azucena.
These additional diversity donors were selected from a phylogeny gen-
erated from microsatellite genotyping of representative tropical japon-
ica lines in the International Center of Tropical Agriculture (CIAT) rice
collection exhibiting drought resistance (E. Torres, unpublished data).
Tropical japonica parentals were then chosen to represent as many
individual clades of this phylogeny as possible.

Each of the 10 tropical japonica diversity donors were crossed with
the common indica parent IR64. About three hundred F2 individuals
were derived from each F1 cross. Whenever possible, all 300 samples
were taken from a single F1 plant, with additional F1 plants used only
when necessary. Approximately 3000 F2 plants were advanced to the F7
generation by single-seed descent, and to the F10 generation for the
IR64 · Azucena population. Due to environmental conditions in the
field and to partial genetic sterility in indica · japonica-wide crosses,
some of the plants exhibited reduced fertility at different generations.
As a result, just under 200 NAM lines were created for each lineage
(Table 1). In total, 1879 NAM plants were generated. Outcrossing
was minimized in each generation by covering inflorescences with
pollination bags prior to anthesis. Table 1 indicates the population
numbers for each of the 10 sets of RIL populations that were created
to generate the larger NAM population.

GBS libraries
Modified flexible and scalable GBS (fsGBS) libraries were prepared
according a published protocol (Heffelfinger et al. 2014). The Heffel-
finger fsGBS protocol, which uses blunt-end restriction enzymes and
employs standard Illumina Y-adapters, facilitates greater multiplexing
through dual-indexed barcodes and discourages concatamer forma-
tion. Approximately 200 ng of genomic DNA was digested with RsaI,
a 4 bp restriction enzyme, to achieve highmarker density andmaximize
the number of restriction fragments for Illumina sequencing. Illumina
libraries were paired-end sequenced at the Yale Center for Genome
Analysis. Based on read coverage, a subset of samples was selected for
additional resequencing to achieve a minimum coverage threshold for
all NAM lines.

Genomics dataset protocol
GBS paired-end reads were aligned with Novoalign (Hercus 2012) to
version 7 of the Nipponbare reference genome (Ouyang et al. 2007).
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Variant calling was performed with GATK (McKenna et al. 2010;
DePristo et al. 2011; Auwera et al. 2013), and a custom algorithm was
used for filtering raw variant calls and filtering imputation results, as
described in Heffelfinger et al. (2014). Variant calling and imputation
was performed on a population-by-population basis (Figure 2). LB-
Impute (Fragoso et al. 2016) was first used to impute missing paren-
tal markers that were sequenced in the offspring. A second round of
parental variant filtering was executed to remove any heterozygous pa-
rental markers and to confirm that each marker was polymorphic be-
tween the parentals. Next, offspring imputation was performed based on
the imputed parental genotypes (parameters for all of the above programs
are described in Supplemental Material, Note S1 in File S1). LB-Impute
was chosen for its ability to perform parental imputation and for its high
imputation accuracy in regions of low-coverage residual heterozygosity.

The final imputed dataset represents high-confidence markers present in
each population with low-confidence markers left as missing.

The missing, low-confidence markers were often present in transition
regionsof recombinationbreakpoints.Therefore, a secondalgorithm,Break-
point Imputation (BP-Impute,NoteS2 inFileS1),wasdeveloped to improve
the precision of genotyping in regions containing recombination break-
points. BP-Impute calculates a Markov chain across the missing regions,
with chains in either direction constrained to the flanking parental state.
The transition probability was the proportion of recombinant genotypes
across each interval. Emission probabilities were the binomial probabilities
of emitting genotypes given read coverage and the constrained parental
state. The probabilities from both chains were normalized to sum to one,
and theweighted average genotype is thus summed from these probabilities.

In each BP-Impute population dataset, a limited number of lines with
excess heterozygosity (. 10%), representing potential outcrossing, were
removed so that estimations of recombination would be more representa-
tive of the rest of the population. The resulting dataset was comprised of
genotype probabilities, with each data point representing the probability of
a genotype being homozygous for the diversity donor allele. The genotype
probabilities were used formeasuring segregation distortion and trait map-
ping. Formeasuring local recombination rates and the geneticmap, discrete
genotypes were assigned to genotype probabilities by applying least squares
through a separate, custom R script (BP-Impute, Note S2 in File S1).

Parental sequencing, clade assignment, and allele
frequency analysis
The 11 parental lines were sequenced as part of the International Rice
Genomic Initiative (IRIGIN), a France Genomique project by whole-
genome Illumina paired-end sequencing at an average coverage of 35 ·.
Whole-genome sequencing (WGS) datasets of parental lines were subject
to the same read alignment, variant calling, and variant filtering as the
GBS data, but with slightly different parameter settings (Note S1 in File
S1). The filteredWGS variant data were trimmed by randomly selecting
amarkerwithin bins of 5 kb. For this set of 72,193markers, the SNP-Seek
database (Alexandrov et al. 2015) was queried to extract the trimmed
marker data for the (3000 Rice Genomes Project 2014). In total, 49,431
markers and 2656 lines were extracted from SNP-Seek. Only markers
that were homozygous in the NAM parentals were selected from the
SNP-Seek marker set in order to exclude false heterozygous regions
arising from poor read mapping in repetitious genomic regions. Lines
annotated as indica, temperate japonica, and tropical japonica were
merged with the NAM parental dataset and were imputed using the
FILLIN algorithm (Tassel 5 version 20160428) (Swarts et al. 2014). Then,
the imputed dataset was filtered for missingness (lines and markers with
missingness .0.1 were removed, then the set of complete, nonmissing
markers was extracted), and pruned for linkage disequilibrium (LD)
(markers in bins of 100 kb with pairwise correlation .0.3 were re-
moved). The final merged, imputed, complete, and LD-pruned dataset
consisted of 2655 lines (including the 11 NAM parentals) genotyped at
7152 markers. Principal component analysis (PCA) was performed on
this dataset, using the prcomp R library, to elucidate the placement of the
NAM parentals in the greater population structure of rice.

The parental contribution of IR64:DD alleles was determined for
each marker in the NAM populations using the BP-Impute dataset.
Statistical evidence of deviation from the 1:1 expected segregation ratio
was measured with a x2 goodness of fit test.

Recombination analysis
Thegeneticmap for eachpopulationwas calculated fromtheLB-Impute
(Fragoso et al. 2016) datasets (imputed with the –keep flag), with three
differentmethods. The –keep flagwas used so that both unimputed and

Figure 1 Nested Association Mapping (NAM) population design. The
greater NAM population is comprised of 10 separate Recombinant
Inbred Line (RIL) populations, with each population being derived from
a cross between a diversity donor parent and an IR64 indica parent
common to all 10 populations. Each RIL population consists of roughly
200 replicates of the initial cross. Therefore, there were 1879 total lines
in the greater NAM population (�200 lines · 10 RIL populations). After
the F1, each line was self-pollinated for nine generations (IR64 · Azucena)
or six generations (all other crosses) by single-seed descent (SSD).
Selfing by SSD facilitates the shuffling of parental haplotypes through
recombination and the fixation of haplotypes through homozygosity.
Each selfing generation reduces heterozygosity by half, so a F7 NAM
line would yield a heterozygous proportion of 0.56 = 0.016. This figure
is adapted from Yu et al. (2008).
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missing variants remain in ambiguous regions surrounding recombi-
nation breakpoints. In method 1, multipoint genetic maps were calcu-
lated with Mapmaker/EXP3.0 (Lincoln et al. 1993). The LB-Impute
datasets were filtered for unique markers, and multipoint maps were
calculated with Lincoln and Lander error detection method (Lincoln
and Lander 1992) both on and off. In method 2, two-point maps were
estimated from full imputation of the LB-Impute data with argmax
from R/QTL (Broman et al. 2003; Broman and Sen 2009). The argmax
function was used to impute the LB-Impute datasets in order to further
resolve breakpoints. The Mapmaker and R/QTL analyses were per-
formed in MapDisto 2.0 (Lorieux 2012; Heffelfinger et al. 2017). These
three calculations were compared with the genetic maps generated with
method 3 based on BP-Impute datasets.

In method 3, the assign genotypes function was used to identify
breakpoints in BP-Impute datasets and reach full imputation. Then, the
genetic distance between each pair of adjacent markers was calculated
through two-point analysis. The recombination rate per meiosis be-
tween adjacentmarkers, r, was calculatedwith the unbiased estimate for
RILs self-pollinated by single seed descent, as described by Martin and

Hospital, r̂ ¼ mðN2m2 1Þ
2ðN2mÞ2 , where m is the number of recombinants

among N RILs (Martin and Hospital 2006). Transitions into heterozy-
gous states from homozygous variants, or vice versa, were either set as
missing (weighted as 0, with all other transitions weighted as 1) or were
weighted as 0.5 (with all other transitions weighted as 1). This was
performed to examine the effect of heterozygosity on the genetic map
sizes, while taking into account the theoretical fixation of heterozygous
regions as homozygous after infinite selfing generations. From esti-
mates of r with all methods, the Kosambi mapping function was used
to measure the genetic distance between each pair of adjacent markers.

A joint genotypedatasetwas also created tocompare the joint genetic
map size with individual population genetic maps. The union of all
markers in the 10 populations was taken, imputed with the R/QTL
algorithm argmax function (Broman and Sen 2009) (double recombi-
nant probability set as 0.005), then the joint two-point map was calcu-
lated with the Martin and Hospital (2006) r̂ estimate in MapDisto 2.0
(Lorieux 2012; Heffelfinger et al. 2017).

The Gaussian kernel method was then applied to smooth the
BP-Impute two-point genetic distances for analysis of local recombi-
nation rate. The kernel method was chosen to reduce the effects of any
possible errors introduced through genotyping or breakpoint imputa-
tion. A similar analysis performed by Spindel was used as a guide
(Spindel et al. 2013). For each measurement of genetic distance, a
Gaussian (normal) density function with s = 0.5 was centered on the
physical position, in mega bases, of the corresponding marker. The
kernel was set to 0 where markers were off the queried chromosome,
and the density was then renormalized so it would sum to 1. Each
marker pair’s two-point genetic distance was then recalculated accord-
ing to the weights determined by the kernel.

Trait mapping
Thenumberofdays toheading(the emergenceof the rice inflorescences)
since sowing date was selected to demonstrate the utility of the NAM
design for trait mapping in individual populations, and jointly across all
10 populations. Days to heading was phenotyped at CIAT between
2011 and 2013, with sowing dates in January, February, March, May,
June, July, andNovember.All populationswerephenotyped for the trait;
two lines were excluded fromQTLmapping for erroneous data entries.

The genotype probability dataset from BP-Impute (each genotype
representedby theprobabilityof representing thehomozygous,diversity
donor state) was used for trait mapping. With single marker linear
regression, each marker in each population was tested for the nulln
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hypothesis of no additive genetic effect at the locus (the y intercept as the
best explanation of the phenotype). The alternative hypothesis was that
the genotypes explain some variance of the phenotype. The F statistic
value (henceforth referred to as the F value), from the R lm function,
was stored for each marker. The F value is asymptotically equivalent to
the LOD score (Broman and Sen 2009) and is convenient for its easy
and rapid extraction from the lm function. Linear regression was used
to fit the null and alternate hypotheses so that continuous genotype
probabilities may be used. Given the saturation of the genetic map, use
of interval mapping (Lander and Botstein 1989) was not required.

The methodology of Peirce regarding permutation, linear interpo-
lation, locus-specific P values, and joint analysis (Peirce et al. 2007) was
applied through custom R scripts written for trait mapping in the
10 populations. In order to facilitate downstream significance testing,
the phenotypes were permuted 1000 times, and each permutation was
regressed on the markers. In order to calculate locus-specific P values,
the probability of encountering an F value as large as the observed value
in the 1000 permutations was determined for each marker.

Joint analysis for trait mapping and allelic frequency
For F value peaks jointly segregating in the QTL analysis, and regions of
segregation distortion present in multiple populations, joint analysis

was used to pool test statistics from the respective populations. To this
end, Fisher’s combined probability test (Fisher’s method) was applied
to P values from x2 goodness of fit tests (1:1 parental allele segregation)
and to locus-specific P values from trait mapping. According to Fisher’s
method, the natural logs of P values were summed for each of the
markers in the local joint marker set. This sum, when multiplied
by 22, has a x2 distribution with degrees of freedom equal to twice
the number of summed log P values under the null hypothesis. In order
to create the joint marker set for these analyses, P values (segregation
distortion) or F values (trait mapping) were linearly interpolated by
physical position. This allowed for each population to have a test sta-
tistic at the same set of positions representing the region of interest.
Joint analysis was performed on a targeted basis at these specified
regions.

For the joint trait mapping analysis, genome-wide adjusted P values
were calculated. This refers to the proportion of pooled P values
obtained from random permutations that are as extreme as the ob-
served pooled value. For each of the populations subject to pooling,
locus-specific P values were calculated for every permuted F value at a
given marker. A locus-specific P value was then randomly selected at
every marker, from each population, to create a random pooling. This
permuted pooling was performed 1000 times, and the genome-wide

Figure 2 Stages of processing GBS variant data. After variant calling with GATK, variant calling data (vcf format) undergoes four stages of
processing. (A–D) represent chromosome 1 of the IR64 · Azucena population, with each row representing each NAM line, and each column a
marker. Red markers are homozygous for the IR64 state, blue for Azucena, yellow heterozygous, and black missing. The first stage (A) involves
variant filtering with custom software described by Heffelfinger et al. (2014), (B) parental imputation and filtering with LB-Impute, and (C) offspring
imputation with LB-Impute. Since LB-Impute may leave variants adjacent to transitions in parental state as missing, BP-Impute is applied in (D) to
infer the most likely breakpoint location (red box). Genotypes may be left as probabilities or can have discrete genotypes assigned through least
squares. BP-Impute is designed to prepare datasets for joint trait mapping and genetic map construction; NAM lines with excessive heterozy-
gosity are also removed. In (E) phenotypes are regressed on each marker, then permuted phenotypes are also used to calculate locus-specific P
values. The locus-specific P values can be used in joint analysis. (F) and (G) represent the entire LB-Impute dataset for the IR64 · Azucena and
IR64 · CT10035-26-4-2-M NAMs, with each concentric circle depicting a separate NAM genome. For (G), blue is the homozygous CT10035-26-4-
2-M state. GBS, genotype-by-sequencing; NAM, Nested Association Mapping.
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adjusted P value was estimated by the proportion of the permuted
pooled values larger than the pooled observed data. The threshold for
significance was the 95th percentile of permuted poolings.

In order to create a support interval for the joint QTL peaks, the
consensus support interval among population-specific 1.5-F value or
3-F value support intervals [comparable to the 1-LOD, 1.5-LOD, or 1.8-
LOD interval commonly used (Peirce et al. 2007; Broman and Sen
2009)] were calculated. This method was used as an approximation
to a true C.I. comparable across populations. A similar approach was
used for support intervals surrounding segregation distortion loci, ex-
cept the support intervals were only calculated for the pooled x2 values,
not for each individual population-specific value.

All analyses, including studies of recombination, segregation distor-
tion, and trait mapping, were performed with custom R scripts. These
programswere tested and runwith R version 3.3.2 (RCore Team 2014).

Data availability
NAMparental and offspring germplasm and genotypes are available by
request. Genotypes are offered through a material transfer agreement
(MTA) from Yale University via stephen.dellaporta@yale.edu and the
germplasm through a MTA from the International Center of Tropical
Agriculture, via the corresponding author. LB-Impute (Fragoso et al.
2016) and BP-Impute are available through a license on the Dellaporta
Laboratory Github site https://github.com/dellaporta-laboratory and
MapDisto v2 (Lorieux 2012; Heffelfinger et al. 2017).

RESULTS

Selection of NAM parentals
The 10 tropical japonica diversity donors and IR64 indica common
parent were genotyped through 35 · WGS. We explored the genetic
relationship between the NAM parental lines and the general diversity
found in the indica and japonica rice subspecies in the 3000 Rice
Genomes Project (Rice Genomes Project 2014). PCA on this dataset
revealed three clusters of rice lines, corresponding to the indica sub-
species, and temperate japonica and tropical japonica groups of the
japonica subspecies (Figure 3). The first principal component, repre-
senting 48% of the variance in the dataset, described the japonica–
indica axis in rice. The second principal component, representing 3%
of the variance, coincided with the separation between temperate and
tropical japonica. IR64, the indica common parent, clustered with the
other indica lines on the far right of the indica axis. Although all of the
diversity donors were chosen as tropical japonica lines, two of these
lines were located closer to indica along the japonica–indica axis (PC1).
Azucena and ITA164 clustered as expected with tropical japonica at the
far left of the japonica axis, whereas CT8556-37-1-3-1-M and
CT10035-26-4-2-M were located within the indica cluster closer to
the right of the axis.

Population summary
The 1879NAM lines were sequenced and genotyped with a customized
GBSmethod and informaticspipelineof variant calling, variantfiltering,
and imputation. Ten genotype datasets were created, one for each
tropical japonica diversity donor · IR64 indica recombinant inbred
population. Genotyping metrics describing these populations were
summarized in Table 1. Genomic DNA from the NAM lines was
digested by RsaI to create GBS libraries (Heffelfinger et al. 2014), multi-
plexed according to population membership, and subjected to paired-
end Illumina sequencing. Multiplexed sequencing reads were next
deconvoluted by molecular barcoding, aligned to the Nipponbare ref-
erence genome version 7 (Ouyang et al. 2007), then further processed

through variant calling, variant filtering, and imputation (seeMaterials
and Methods for details). The first round of imputation resulted in
�99% of variants being imputed via LB-Impute (Fragoso et al. 2016);
a final stage of imputation was required to genotypemarkers surround-
ing recombination breakpoints to create a complete dataset (BP-
Impute, Note S2 in File S1) for each population. These complete datasets
were used for trait mapping and genetic map construction.

Dense genotyping was achieved in all 10 populations (Table 1). There
were 1879 total lines, ranging from 184 to 190 per population. Average
coverage per filtered variant in each population ranged from 1.94 to 2.56.
The range of LB-Impute imputed variants ranged from 5,454,213 (among
188 lines) to 16,094,325 (among 188 lines). The greatest average hetero-
zygosity was in IR64 · CT10035-26-4-2-M, at 5%. BP-Impute removed
any line with . 10% heterozygosity, so after this processing step, the
number of lines in each of the 10 populations ranged from 177 to 186.

Distribution of parental alleles
We examined whether each genomic region of the diversity parent was
present in at least one member of the respective NAM subset. In all
10 NAM populations, there was no fixation of IR64 reference parent
alleles at any genotyped location (Figure 4 and Figure S1 in File S1).
Diversity donor alleles were present at all sites, indicating a full capture
of genetic diversity from our tropical japonica parental lines.

We did find evidence of shared and population-specific signals of
segregation distortion when examining parental contributions in the
10 NAM populations. The proportion of diversity donor to reference
parent alleles deviated from the expected 1:1 in several locations.
Depending on the diversity donor of a respective NAM population,
some of the population exhibited shared or unique trends in the
segregation ratio. There were shared signals of IR64 alleles being
favored in chromosomes 3, 7, and 9. In these regions, many of the
populations experience diversity donor allele proportions , 15%
(Table S1 in File S1).

Applying Fisher’s method to pool P values from x2 tests of a 1:1
segregation ratio confirmed segregation trends among the NAM popu-
lations (Figure 4 and Figure S1 and Table S1 in File S1). For populations
exhibiting similar trends in segregation distortion, the natural logs of x2

P values were summed for each of the markers in the joint marker set.

Identification of segregation distortion loci
The strongest evidence of segregation distortion was found on chromo-
somes 3, 6, 7, and 9 (Table S1 in File S1). These regions all experienced
distortion favoring the IR64 allele. There existed a population-specific
locus on chromosome 6 and shared peaks on chromosomes 7 and 9.
The minimum diversity donor allele frequencies for markers at these
peaks ranged from 0.07 to 0.15. Finally, only chromosomes 1, 4, and
6 presented substantial evidence of segregation distortion in the direc-
tion of the diversity donor allele, with extended regions of distortion for
one of the 10 populations.

There were two peaks of segregation distortion on chromosome 3;
one was specific to IR64 · CT10045-5-5-M-1 and the other was shared
between six populations (Figure 4 and Figure S1 in File S1). The 1.5 x2

interval for the population-specific peak was 94,269 bp, containing
16 genes centered at 7.6 Mb. At this population-specific peak, the
minimum diversity donor allele frequency at a genotyped marker was
0.13. Two genes in this interval that could potentially contribute to
pollen tube growth include the ras-related protein LOC_Os03g13860
(Cheung and Wu 2008; Szumlanski and Nielsen 2009), and the actin
depolymerizing factor LOC_Os03g13950 (Dong et al. 2001; Feng et al.
2006; Zhang et al. 2007; Li et al. 2010). Expanding support to 3-x2 did
not greatly increase the interval.
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In the shared peak, the 1.5-x2 support interval was 16,015 bp, con-
taining two genes centered at 13.3 Mb. The minimum diversity donor
allele frequency at the pooled peak was 0.10. One of the two genes in
this interval is a rice homolog of the maize aberrant pollen transmission
1 gene, which influences the speed of pollen tube germination in maize
(Xu and Dooner 2006). Increasing the support to 3-x2 expanded the
support interval to 173.5 kb.

Recombination analysis
To assess the accuracy of our genotyping and imputation methods, we
surveyed the number of recombination events in each NAM line, and
used this information to calculate total genetic maps for every popu-
lation. Across all NAM lines, the average number of recombination
events was 18.9 with a SD of 10.9 (Figure S2 in File S1). When we
examined the average number of recombination events in the 10 pop-
ulations, ANOVA suggested that the differences between the popula-
tionmeans were significant, with an F value of 4.5 and a P value of 6.8 ·
1026. The population with the greatest average number of recombina-
tion events was IR64 · CT10006-7-2-M-2, with 21.6 events. The fewest
average number was IR64 · Azucena, at 16.1 events.

Of the three genetic map construction strategies, multipoint
Mapmaker/EXP3.0 (Lincoln et al. 1993) produced the largest maps,
averaging across the 10 populations, at 2177.0 cM (6 SD 352.8 cM)
without error correction, and were significantly shortened with error
correction, at 1494.2 cM (6 SD 218.2 cM) (Figure 5). R/QTL argmax
(Broman et al. 2003; Broman and Sen 2009) imputation produced an
average two-point map size of 1554.5 cM (6 SD 161.7 cM).
BP-Impute resulted in 1210.2 cM (6 SD 91.2 cM) without counting
heterozygous–homozygous transitions and increased to 1430.8 cM
(6 SD 94.4 cM) with counting transitions (Table S2 in File S1).
The population with the greatest map with BP-Impute and heterozy-
gosity was IR64 · CT10006-7-2-M-2 at 1612.0 cM and the smallest
was IR64 · CT10035-26-4-2-M at 1255.8 cM.

In the joint population dataset, where all NAM lines from the
10 populations were imputed together by R/QTL argmax (Broman
and Sen 2009) as a single dataset, the original size of the union of
markers was 170,000. This value was collapsed to 50,079 markers
by removing loci with no recombination with other loci. Then, after

R/QTL argmax imputation, the dataset consisted of 50,006 complete
markers with no missing values. The two-point genetic map (Martin
Hospital estimate for r̂) produced a total map size of 1348.7 cM for the
joint dataset (Table S3 in File S1).

Although the genetic maps calculated from imputed data of each
population globally approximated themap size for rice, there were local
variations in recombination rate. Each of the 10 populations demon-
strated deviations from the expected average recombination rate [1 cM
per 0.244 Mb, or 4.1 cM:Mb (Chen et al. 2002)], with local hotspots
being both unique and shared among the NAM subsets (Figure 6). As
expected, all populations experienced a decrease in recombination at
the centromere (Cheng et al. 2002; Ouyang et al. 2007). However,
throughout the remainder of the genome, the cM:Mb ratio remained
close to the expected value of 4.1 cM:Mb (Chen et al. 2002).

Joint QTL analysis
Days to heading, defined as the number of days from sowing until the
emergence of inflorescences, is a complex trait of agronomic signifi-
cance. The short arm of chromosome 3 features four genes, the CCCH-
type zinc finger gene LOC_Os03g02160, early heading date 4 (Ehd4)
(Gao et al. 2013), MIKC-type MADS-box 50 gene (OsMADS50)
LOC_Os03g03070 (Lee et al. 2004), DNA-binding with one finger 12
(OsDof12) LOC_Os03g07360 (Li et al. 2009), and rice phytochrome B
(OsPhyB) LOC_Os03g19590 (Takano et al. 2005). Our goal was to
determine whether a joint mapping approach in the NAM population
could reveal the complex genetic architecture in this region. The entire
NAMpopulation was phenotyped for a number of traits including days
to heading. The global mean of days to heading, among all NAM lines,
was 91.86 d, with a SD of 6.69 d (Figure S3 in File S1). The greatest
mean days to heading, for an individual population, was IR64 ·
CT10035-26-4-2-M at 99.90 d. The fewest mean days to heading was
IR64 · Azucena at 88.82 d. ANOVA suggests that differences between
the population means were statistically significant, with an F value of
55.00 and a P value , 2.2 · 10216.

The joint analysis of days to headingQTL (Figure 7A) revealed three
joint peaks that correspond closely with Ehd4, OsMADS50, and
OsDof12. The peak that aligned with OsMADS50 had the smallest P
value encountered through joint permutation testing; Ehd4was located

Figure 3 Principal Component Analysis (PCA) of
2644 indica and japonica lines and 11 Nested Asso-
ciation Mapping (NAM) parental lines. PCA was per-
formed on 1789 indica, 371 temperate japonica,
and 484 tropical japonica lines of the 3000 Rice Ge-
nomes Project merged with 11 NAM parental lines.
The first principal component (PC), demonstrating
an indica–japonica axis in the dataset, describes
47% of the total variance. The second PC describes
the differences between the two japonica subtypes
and 3% of the total variance. IR64, the indica com-
mon parent, clusters with indica, while the diversity
donors appear on a gradient of indica–tropical ja-
ponica admixture. Two diversity donors in particular,
CT8556-37-1-3-1-M and CT10035-26-4-2-M, cluster
with indica, potential evidence admixture in the ped-
igree of these two lines. Azucena and ITA164, on the
other hand, cluster tightly with tropical japonica.
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adjacent to a nearby subpeak of OsMADS50. OsDof12, located further
downstream, aligned to the second highest peak. The OsPhyB gene
coordinates were positioned beneath the 17.79 (2log10; 1.25) 95th
percentile of permuted pooling replicates. In order to identify gene
candidates, the MSU Rice Genome Annotation Project (Ouyang
et al. 2007) was consulted for gene locus locations and the BLAST
(Altschul et al. 1990) tool was used to search for homologs in other
plant species.

Of the individual population locus-specific P values (Figure 7B),
IR64 · Azucena and IR64 · CT10035-42-4-4-M experienced the min-
imum possible P value (1023) for entire interval containing the three
jointly segregating genes, Ehd4, OsMADS50, and OsDof12. The other
populations either demonstrated weaker peaks or troughs in between
the three genes. No population exhibited clear evidence for a peak at
the OsPhyB gene.

The F values differed greatly among the populations (Figure S4 in
File S1). IR64 · Azucena had the greatest F values by far, with a
maximum of 69.79, and a complex QTL peak structure in the vicinity
of Ehd4 and OsMADS50. IR64 · CT10035-42-4-4-M had the second
highest F values and a similar QTL peak structure. Other populations,
despite demonstrating clear peaks in the permutation analysis, had
much smaller F values as compared to IR64 · Azucena.

The joint peak corresponding toOsMADS50was subjected to more
in depth analysis to better understand the individual contributions of
each population to the joint peak (Figure 7C). The analysis interval was
chosen to avoid inclusion of the minor peak near Ehd4. The greatest F
value for each population, between 0.82 and 1.90 Mb on chromosome
3, was determined, and the 3 and 1.5-F value support interval was
overlaid on the joint peak. Each set of support intervals was then

summed to calculate a consensus interval. The two summations
were plotted above the individual support intervals in Figure 7C,
with the 1.5-F value as a solid line and the 3-F value as a dotted line.
The OsMADS50 gene is upstream of the 1.5-F value consensus
(85,226 bp) within this interval. IR64 · Azucena was the primary
driver of this consensus region. Homeobox genes and protein
kinases are found in this region, including a receptor-like protein
kinase LOC_Os03g03280 homologous to CURVY1 that controls
flowering time in Arabidopsis (MSU rice BLAST: e score 102160,
top query coverage 96.32, top Id 38.57) (Gachomo et al. 2014). From
the 3-F value support intervals, the consensus region is 235,514 bp
and contains OsMADS50.

DISCUSSION
We have developed and characterized the genetic structure of
10 recombinant inbred populations of rice that combined for a total
of 1879NAM lines. These populations represent a genetic resource for
mapping traits relevant to tropical agriculture and for the study of the
genetic properties of indica · tropical japonica-wide crosses. Through
the power of joint analysis, we show that regions of complex genetic
architecture or segregation distortion can be finely dissected and
characterized. By applying newly developed variant filtering and im-
putation methods, and combined with the improved fsGBS method
(Heffelfinger et al. 2014), our results combine both dense genotyping
and accurate detection of recombination events, without the trade-off
of excessive erroneous recombination events. The average map size of
our BP-Impute datasets, 1430.8 cM (Table S2 in File S1), deviates 90.8
cM from the expected map size of 1521.6 cM (Harushima et al. 1998).
A previous estimate of the genetic map of the IR64 · Azucena RIL

Figure 4 Segregation distortion in chromosome 3. Chromosome 3 exhibits strong segregation distortion, in the direction of favoring the IR64
allele, for two loci. One locus is specific to IR64 · CT10045-5-5-M-1, the other loci has a shared signal in six populations. The left panel is the color
code key; a heatmap from blue to red representing the position of the respective diversity donor on the japonica–indica axis from principal
component (PC) 1. The center panel features the diversity (div.) donor allele proportion at each marker (top) with the dashed line across 0.5
reflecting the expected segregation ratio. The bottom plot on the panel shows P values from a x2 test of the 1:1 null hypothesis. The right panel
focuses on the two loci of distortion encountered on the chromosome. Full lines represent the population(s) used in the joint analysis and dashed
lines were excluded populations. For the population-shared locus, the P values were pooled via Fisher’s method. The black line over the peaks
shows the 1.5-x2 support interval for the peak, the gray line is the 3-x2 support interval. Asterisks reflect potential gene candidates for distortion
factors. They were chosen for their previously described role in pollen tube growth in rice or other plants. There were 16 genes in the 1.5-x2

support interval for the population specific locus and two genes for that of the shared locus.
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population was 1862 cM, an overestimate of the expected map size by
331 cM (Spindel et al. 2013).

It is likely that the BP-Impute genetic maps (method 3) are slightly
shorter (1430.8 cM6 SD 94.4 cM) than expected, because BP-Impute
assumes that there is only one recombination event within an ambig-
uous interval and it is possible that in some intervals there are multiple
recombination events. R/QTL (Broman et al. 2003; Broman and Sen
2009) imputes the missing regions via the Viterbi algorithm (method
2), and may introduce additional breakpoints absent in the BP-Impute
datasets. This results in the larger average two-point genetic maps for
R/QTL, at 1554.5 cM (SD 6 161.7 cM). Mapmaker/EXP3.0 (Lincoln
et al. 1993), with multipoint genetic maps (method 1), produced the
largest maps at 2177.0 cM (SD 6 352.8 cM) without error detection
(Lincoln and Lander 1992). Method 1 was shorter than method 2 and
comparable to method 3, at 1494.2 cM (SD 6 218.2 cM) with error
detection (Figure 5). The large disparity between the error-corrected
datasets indicates that many of the variants within the ambiguous and
unimputed regions, if not checked for accuracy, may induce erroneous
recombination results.

The joint dataset has a smaller geneticmap size (1348.7 cM) than the
average of the 10 populations (1430.8 cM) (Figure 5 and Tables S2 and
S3 in File S1). Since the joint dataset was imputed with R/QTL argmax
(Broman et al. 2003; Broman and Sen 2009), residual heterozygosity
was imputed as homozygous. This results in false homozygous geno-
types and the smaller genetic map. Therefore, the joint dataset has
limitations in genotype accuracy and the number of detected recombi-
nation events that the individual population datasets do not possess.
However, because the joint dataset contains genotypes from all popu-
lations in a single flat text file, it facilitates an initial joint QTLmapping
survey.

The greatest strength of using the BP-Impute dataset is the preser-
vation of residual heterozygosity. UnlikeR/QTL argmax,which imputes

heterozygous regions as homozygous, LB-Impute and BP-Impute parse
heterozygous regions and impute their breakpoints. This could be
significant in the rice NAM datasets, as many NAM lines had residual
heterozygosity (Table 1). Including the residual heterozygosity in the
genetic map calculations allowed comparison with methods 1 and 2,
which assume infinite number of selfing generations in the RILs, and
increased the average map size from 1210.2 to 1430.8 cM (Figure 5).

Should the 3000 Rice Genomes Project data (Rice Genomes Project
2014) have been available during the creation of these NAM lines, an
improved experimental designwould have recruitedparental linesmore
representative of tropical japonica diversity and with less indica admix-
ture. A resource such as the 3000 Rice Genomes Project is essential to
ensure that a panel of parental lines fully maximizes the genetic di-
versity found in a phylogenetic group of rice. Our PCA (Figure 3)
indicates that some of the diversity donors (CT8556-37-1-3-1-M and
CT10035-26-4-2-M in particular) appear to have been heavily admixed
with indica. As long as the admixed lines harbor traits of interest also
present in the other, unadmixed parentals, the admixed lines warrant
inclusion in the founder panel to facilitate joint mapping analysis.
However, if the primary goal is to create a diversity archive as well as
a mapping population, admixture between the diversity donors and the
common, reference parent should be avoided.

The 10populations described in this study arewell suited for detailed
study of segregation distortion, on an individual or joint population
basis. As an example, we focused on two regions on chromosome 3.
Chromosome3 isknowntocontainamultitudeof segregationdistortion
loci, especially in the context of indica · japonica crosses—which are
known to segregate for multiple sterility genes—such as ga2, ga3, and
S34 (Lin et al. 1992; Harushima et al. 1996; Xu et al. 1997; Lu et al. 2000;
Matsushita et al. 2003; Zhang et al. 2005; Wu et al. 2010; Kim et al.
2014). In many indica · japonica populations, such as F2 (Harushima
et al. 1996; Xu et al. 1997), BC (Xu et al. 1997; Kim et al. 2014), and RIL

Figure 5 Genetic map sizes of 10 NAM populations. Genetic maps were calculated following (i) method 1, multipoint analysis with MapMaker/
EXP3.0 with error detection off and on; (ii) method 2, two-point analysis with MapDisto on data imputed with the R/QTL argmax function; and (iii)
method 3, two-point analysis on BP-Impute datasets, without and with integration of heterozygous–homozygous transitions. The expected map
size in rice is represented by the horizontal dotted line, at 1521.6 cM (Harushima et al. 1998). The 10 population means are shown with 61 SD.
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Figure 6 Gaussian smoothed ratio of the genetic and physical maps. Two-point genetic distances were calculated for each pair of adjacent
markers, for all populations, using method 3 with integration of heterozygous–homozygous transitions and the Kosambi mapping function. A
Gaussian kernel with s = 0.5 was placed over each marker to smooth the two-point genetic and physical distances; then the ratio was taken and
plotted. The horizontal line is the expected ratio, at 1 cM per 0.244 Mb or 4.1 cM:Mb, per Chen et al. (2002). The vertical dotted line is the
approximate location of the centromere, as defined by the presence of centromere-specific retrotransposons described by Cheng et al. (2002).
Chr, chromosome; PC, principal component.
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(Xu et al. 1997), the indica allele tends to be favored in regions of
segregation distortion. In our study, we showed that the majority of
segregation distortion loci favor the IR64 indica allele in multiple pop-
ulations (Figure S1 and Table S1 in File S1), whereas there were japonica-
favored regions on chromosomes 1, 4, and 6 that favored one pop-
ulation. In order to demonstrate the ability of the NAM populations
to identify gene candidates for distortion factors, both within an indi-
vidual population and jointly across several, we further inspected two
loci on chromosome 3. Gene candidates identified by this study may
contribute to the architecture of previously known segregation distor-
tion on chromosome 3.

The first population-specific segregation distortion peak for IR64 ·
CT10045-5-5-M-1 was found at 7.6 Mb. A second, shared segregation
distortion region among six populations was found at 13.3 Mb on

chromosome 3 (Figure 4). The 1.5-x2 support intervals for these two
regions from population-specific and pooled x2 tests were 94,269 bp
(population-specific, at Chr3:7.6 Mb) and 16,015 (shared, at Chr3:13.3
Mb). Under the assumption that there is only one shared distortion
factor in this interval, we examined the support interval for the pooled
x2 values. In the vicinity of 13.3 Mb, the pooled 1.5-x2 support interval
included two genes, one of which, LOC_Os03g23030, is homologous to
the maize pollen gene aberrant pollen 1 (Xu and Dooner 2006). The
close proximity of this pollen gene homolog to the peak distortion
signal makes it a gene of interest for further examination of a potential
role in gametic selection or sterility in rice.

For the IR64 · CT10045-5-5-M-1-specific interval at 7.6 Mb,
there are 16 genes within the 1.5-x2 support interval. At least two
are of special interest for their role in pollen tube formation. One,

Figure 7 Joint and individual population QTL analysis of days to heading on the short arm of chromosome 3. (A) Locus-specific P values from
each population were pooled through Fisher’s method. The positions of three out of four known photoperiod genes are represented by vertical
lines on the x-axis. The horizontal line is the 95th percentile of permuted poolings. (B) The locus-specific P values for each population; the
proportion of single marker regressions with permuted phenotypes yielding an F value as extreme as the observed F value. Since there were
1000 permutations, the minimum P value is 1023. The y-axis in all subplots are the 2log10 P values, on a linear scale, with the horizontal line
reflecting the 1023 minimum P value. The x-axis is the same as (A), with the vertical lines representing the four genes. (C) The peak corresponding
to OsMADS50, also green in (A), is further examined in individual populations. The colored lines are the 1.5-F value support intervals; the 3-F
value support intervals are in gray. The summations of the support intervals, indicating consensus between the individual support intervals, are
located above. The 1.5-F value consensus is the solid line, and the 3-F value consensus is the dotted line. The vertical lines are the positions of
Ehd4 and OsMADS50. The color coding in (B) and (C) for the 10 populations is consistent with the other figures, and reflects the principal
component analysis in Figure 3. QTL, quantitative trait loci.
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LOC_Os03g13860, is a ras-related protein. Ras-related proteins are in
the family of Rab GTP-binding proteins (Cheung and Wu 2008), and
the Rab GTPase RabA4d in Arabidopsis regulates pollen tube growth
(Szumlanski and Nielsen 2009). A second gene in this interval is the
Actin Depolymerizing Factor (ADF) LOC_Os03g13950. The actin cy-
toskeleton is a crucial component of pollen tube elongation (Yokota
and Shimmen 2006).

TheNAMdatasetsalsoproveduseful tool for complex traitmapping.
We examined theQTL architecture of the first 15Mbof chromosome 3,
for the trait days to heading, both in individual populations and jointly
(Figure 7 and Figure S4 in File S1). The short arm of chromosome 3 is
especially rich with photoperiod genes and days to heading QTL (Chen
et al. 2014; Lee andAn 2015a,b). Four genes in particular have beenwell
described. The CCCH-type zinc finger protein, early heading date
4 (Ehd4), has been shown to upregulate activity of the florigen genes
Ed3a and RFT1 (Gao et al. 2013). The MIKC-type MADS-box protein
(OsMADS50) is a flowering activator, and interacts with the OsGI–
Hd1–Hd3a flowering pathway (Lee et al. 2004). TheDNA-binding with
one finger 12 gene (OsDof12) is a transcription factor that controls the
expression of Hd3a (Li et al. 2009). Rice phytochrome B (OsPhyB), one
of three phytochrome genes found in rice (Takano et al. 2005), has also
been implicated in photoperiod monitoring and is also found in this
interval. In our study, we examined population-specific and shared
QTL peaks in the vicinity of these four genes.

Significant QTL peaks adjacent to three of the four known photo-
period genes in this region were identified. For one of those genes,
OsMADS50, we further investigatedwhether theremay be other genes of
interest in this region besides OsMADS50. We calculated the support
intervals for each individual population, and examined the region of
their greatest consensus. When 1.5-F value support intervals were mea-
sured for each individual population, it appeared that there was a dis-
joint QTL structure in this region, with the interval of greatest consensus
being an 85,226 bp region downstream of OsMADS50. This consensus
support interval contains a protein receptor-like kinase with homology
to Arabidopsis CURVY1 (MSU rice BLAST: e score 102160, top query
coverage 96.32, top Id 38.57) implicated in flowering time control
(Gachomo et al. 2014). When the 3-F value support intervals were used,
an expanded consensus interval of 235,514 bp containing OsMADS50
was identified. Notably, in a previous genome-wide association study of
days to heading in elite tropical rice lines, a peak association signal was
also detected 800 kb downstream fromOsMADS50 (Begum et al. 2015).
The region surrounding OsMADS50 may therefore contain additional
gene candidates that have not yet been described.

OsPhyB did not reach significant QTL thresholds in joint analysis,
and no population exhibited strong marginal effects. This lack of signal
is interesting because ofOsPhyB’s previous implication in flowering time
control by repressing flowering under long day conditions (Takano et al.
2005; Jeong et al. 2007) and the gene’s polymorphism between the
tropical japonica diversity donors and the indica common parent. Rea-
sons for a lack of QTL signal may include both environmental and
genetic factors, in addition to reduced detection power brought about
by segregation distortion. The NAM lines were grown and phenotyped
in Cali, Colombia, at a latitude of just 3.42�N, where days and nights are
nearly equal all year round. This is likely to reduce the effect of long day
flowering inhibition by OsPhyB. For genetic causes, nonadditive and
epistatic effects have been shown to mask single QTL (Yamamoto
et al. 2000). Finally, segregation distortion has been shown to reduce
QTL detection power (Xu 2008), and OsPhyB exists in a region of
segregation distortion on chromosome 3. In future studies of the
NAMpopulations, phenotyping will occur in a variety of environments,

and nonadditive genetic effects will be investigated to further explain the
genetic basis of complex traits such as days to heading.

Thegenotypesandgermplasmusedinthisstudyarefreelyavailableforuse
in research. All imputation software is available online. Any auxiliary scripts
used to process the data are also available upon request. Parental, offspring,
and breakpoint imputation used here have also been included as part of the
latest release of MapDisto 2.0 (Lorieux 2012; Heffelfinger et al. 2017).
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