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Abstract

Background: Understanding the mechanisms that influence the population dynamics and spatial genetic structure of the
vectors of pathogens infecting humans is a central issue in tropical epidemiology. In view of the rapid changes in the
features of landscape pathogen vectors live in, this issue requires new methods that consider both natural and human
systems and their interactions. In this context, individual-based model (IBM) simulations represent powerful yet poorly
developed approaches to explore the response of pathogen vectors in heterogeneous social-ecological systems, especially
when field experiments cannot be performed.

Methodology/Principal Findings: We first present guidelines for the use of a spatially explicit IBM, to simulate population
genetics of pathogen vectors in changing landscapes. We then applied our model with Triatoma brasiliensis, originally
restricted to sylvatic habitats and now found in peridomestic and domestic habitats, posing as the most important
Trypanosoma cruzi vector in Northeastern Brazil. We focused on the effects of vector migration rate, maximum dispersal
distance and attraction by domestic habitat on T. brasiliensis population dynamics and spatial genetic structure. Optimized
for T. brasiliensis using field data pairwise fixation index (FST) from microsatellite loci, our simulations confirmed the
importance of these three variables to understand vector genetic structure at the landscape level. We then ran prospective
scenarios accounting for land-use change (deforestation and urbanization), which revealed that human-induced land-use
change favored higher genetic diversity among sampling points.

Conclusions/Significance: Our work shows that mechanistic models may be useful tools to link observed patterns with
processes involved in the population genetics of tropical pathogen vectors in heterogeneous social-ecological landscapes.
Our hope is that our study may provide a testable and applicable modeling framework to a broad community of
epidemiologists for formulating scenarios of landscape change consequences on vector dynamics, with potential
implications for their surveillance and control.
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Introduction

Human-induced landscape changes are increasingly recognized

as important drivers of infectious disease outbreak and emergence

events, resulting in significant threats to public health [1–3].

Worldwide the rapid modification of natural habitats has triggered

intense research on the landscape epidemiology of vector diseases

to describe how the temporal dynamics of host, vector, and

pathogen populations interact spatially within heterogeneous and

changing environments to enable transmission (see [4] for a

review). Landscape changes not only affect the transmission of

endemic infections by modifying contact patterns between hosts

and vectors [5], but also have an effect on selection pressure,

leading to the dominance of pathogen strains and vector

populations adapted to new environmental conditions [4]. While

evolutionary ecologists have increasingly recognized the impor-

tance of evolutionary processes (e.g., local adaptive genetic

variation in pathogen vectors) to predict population response to

changing landscape conditions [6], this issue has received relatively

little attention among landscape epidemiologists. As a result, we

are lacking spatially and temporally explicit quantitative ap-

proaches required to understand the key causal mechanisms (e.g.,
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habitat selection and adaptation, migration and resulting gene

flow) involved in pathogen vector response to landscape changes

[7]. This is particularly true for pathogen vectors in tropical

regions where landscape changes (deforestation, urbanization)

occur at an accelerated rate [8] putting at risk human populations

with limited resources to face disease-related challenges.

The main objective of this study is to propose a methodological

framework to simulate spatial population genetics of pathogen

vectors in heterogeneous and changing landscapes, in order to link

observed patterns with processes. We adapted the SimAdapt

simulation software [9] to simulate the evolution of both neutral

and adaptive genotypes of diploid, sexually reproducing pathogen

vectors introduced into a landscape. This genetic model accounts

for vector dispersal and adaptation to local conditions and is

coupled to a cellular automaton allowing the representation of

land-use and land-cover changes. It includes landscape features

known to influence vectors’ genetic structure (e.g., roads, domestic,

peridomestic and sylvatic habitats linked to possible loci under

selection). Model simulations can be compared to field data of

vector’s spatial genetic structure. As a step further, the model can

be used to simulate the evolution of vector spatial genetic structure

in changing landscapes (e.g., prospective scenario of deforestation

or urbanization).

After providing general guidelines on our model, we applied

SimAdapt to explore local adaptation processes of pathogen

vectors in a real-world landscape using Triatoma brasiliensis
Neiva, 1911 (Hemiptera, Reduviidae, Triatominae) as a study

model. T. brasiliensis is a blood sucking bug vector of the pathogen

responsible for the Chagas disease (American trypanosomiasis),

caused by a parasite Trypanosoma cruzi (Kinetoplastea, Trypano-

somatidae). This disease affects approximately 10 million people in

Latin America and Caribbean [10], and is recognized by the

World Health Organization as one of the world’s most neglected

tropical disease [11]. T. brasiliensis represents the most important

vector of T. cruzi in Northeastern Brazil [12,13]. As for several

species of native Triatominae (e.g., Rhodnius equatorialis, [14]; T.
pseudomaculata, [15,16]), T. brasiliensis was originally restricted

to sylvatic habitats but since its description it has been increasingly

found invading and establishing in peridomestic and domestic

habitats [17–20]. Among all Brazilian triatomines, T. brasiliensis is

the one that exhibits the highest pressure for re-infestation after

insecticide house spraying. As a consequence, six months

(sometimes longer) after chemical treatment, human dwellings

start being re-infested [21,22]. As a native vector, its eradication

would require significant logistical and technical investment in the

long term, and, therefore, control efforts are kept on insecticide

house spraying and improvement.

Here, we used SimAdapt to explore three parameters related to

the dispersal of T. brasiliensis: i) the migration rate; ii) the dispersal

distance (i.e. the maximum distance covered by an individual

during its life cycle, including passive and active dispersal); and iii)

the attraction by domestic habitat (i.e. the strength that avoid

individual from emigrating, as a consequence of attraction by light

or availability of hosts to feed on). Model simulations were then

compared to field data of T. brasiliensis population genetic

structure and prospective scenarios of landscape change effects on

T. brasiliensis adaptation were run.

Materials and Methods

The SimAdapt model
Digital representation of the landscape. The first step to

perform simulations in SimAdapt is to build a digital representation

of the study landscape. To achieve this goal, the landscape is

categorized into habitat types. Optionally, as SimAdapt selection

submodel can be set to consider that being adapted to a given

habitat is considered advantageous while the individual is in this

habitat, but disadvantageous in others habitats (see [23] for a

discussion on alternative selection models), the categorization of

habitat type can reflect a selective pressure resulting in a differential

reproductive fitness of individuals. Once categorized into habitat

types, the landscape is converted into a matrix representation. In

this matrix, habitat types are converted into a discrete variable made

of grid cells (raster representation, see Figure 1 in the study case

below) unlike in a geographic information system (GIS), where

delimited areas (here habitat types) are typically drawn continuously

(vectorial representation). The tessellation defines the resolution of

the landscape which should be defined according to the ecological

characteristics of the vector model, in particular its dispersal

capabilities. At this point, each cell of the grid corresponding to a

habitat type can be parameterized with a carrying capacity and a

resistance to vectors’ emigration. The carrying capacity defines the

maximum number of individuals that can be located into a cell, and

the resistance for migration defines the permeability of the

landscape (sensu [24]) ranging from 0 (i.e., no resistance) to 100

(i.e., impermeable barrier) 2 see [1,25] for reviews on the effects of

Figure 1. Study landscape (A) and matrix representation of the
landscape in simAdapt (B). The different habitat types, roads and
lakes are represented by different colors. The black triangles represent
the location of sample points from the field data in the Caicó
municipality in Northeastern Brazil.
doi:10.1371/journal.pntd.0003068.g001

Author Summary

Worldwide, humans are modifying landscapes at an
unprecedented rate. These modifications have an influ-
ence on the ecology of pathogen vectors, yet this issue has
received relatively little input from modeling research. The
current study presents guidelines for the use of a
modeling framework for the representation of the
dynamics and spatial genetic structure of pathogen
vectors. It allows considering spatiotemporal landscape
modifications explicitly, to represent human-altered mod-
ifications and consequences. We applied this modeling
framework to Triatoma brasiliensis, vector of the pathogen
Trypanosoma cruzi responsible for the Chagas disease, in
the semi-arid Northeastern Brazil. Using field data of
pairwise fixation index (FST) from microsatellite loci, we
found that migration rate, maximum dispersal distance
and attraction by domestic habitat were all key parameters
to understand vector spatial genetic structure at the
landscape level. At the interface across disciplines, this
study provides to the community of epidemiologists a
testable and applicable framework to foresee landscape
modification consequences on vector dynamics and
genetic  structure, with potential implications for their 
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landscape resistance on infectious diseases and vectors. Technically,

any GIS software provides the necessary features to define areas

(habitat types), as well as additional layers for carrying capacity and

resistance for migration. This information can be exported into

SimAdapt as three different ‘‘ascii’’ files at a chosen resolution.

Alternatively, the map can be built entirely from the graphical user

interface (see Appendix S1 in [9]).

Initialization of the simulation model. The second step is

to initialize the parameters of the model as presented in Table 1.

Depending on available knowledge on vector species, unknown

parameters can be estimated within a range of possible values

(referred as ‘‘parameter space’’), and sensitivity analyses performed to

evaluate the influence of parameter variation on simulations output

results.

Optimization. The third step is to optimize model param-

eterization using field data. It consists in the comparison of studied

parameters in their range of possible values (parameter space),

with observed data. Parameter optimization can take several forms

depending on available data. It can vary from standard genetic

algorithms [26], or random search [27], to the use of simulations

previously performed as sensitivity analysis.

Prospective scenarios. Once the model has been optimized,

SimAdapt can perform prospective simulations to represent the

effects of landscape changes (based on scenarios of land-use

changes) on local adaptation of vector species. Technically, a user-

defined scenario of land-use change is established in SimAdapt

using the landscape cellular automaton submodel (see [9] for more

details).

The case of Triatoma brasiliensis in Northeastern Brazil
As an example of application of our model in the context of

vector-borne tropical diseases, we used genetic field data on T.
brasiliensis (vector of the pathogen responsible for the Chagas

disease) in the Caicó municipality in Northeastern Brazil (Rio do

Grande do Norte state). Triatomine individuals were sampled

during a field work performed in March 2011. Domestic habitats

consisted in houses, peridomestic habitats of the area 50 meters

around houses and sylvatic habitats of areas at a minimum of 200

meters from any house. In total 126 individuals were collected in

five different locations (populations) chosen to cover a range of

distance between sampling points and habitat types (three

sylvatic, one peridomestic and one domestic populations; see

Figure 1A). All individuals were genotyped according to seven

microsatellites as neutral markers [21], and pairwise fixation

index (FST), allelic diversity and observed heterozygosity

computed using Arlequin version 3.5 [28]. A detailed description

is available in supporting information S1, and FST results in

Table 2.

Table 1. Initialization of state variables in the SimAdapt model.

Description Value Justification/References

Population dynamics submodel

Growth rate of the logistic model 0.3 [13]

* Migration rate (m) [0.1:1.0] [18]

* Maximum dispersal distance (d) [1:5] [29]

* Attraction by domestic habitat (l) [1:10] [15,51]

Genetic submodel

Number of microsatellites loci 7 [21]

Heterozygosity at initialization (H0) 0.560.2 To fit the field sample

Mutation rate for microsatellites 10e-4 Default value [46]

Number of loci under selection per habitat type 1 Default value [9]

Coefficients of selection (s and h) s = 0.2
h = 0.5

Assumption for codominance and strong selection
(prospective scenarios only)

Landscape representation

Carrying capacity matrix for the logistic growth
model (adults)

50 Based on field sample [30,31]

Resistance matrix for emigration Heterogeneous To fit the landscape

Habitat type matrix for natural selection [1:3] To fit the landscape

Location and number of individuals at initialization everywhere
(50 adult individuals)

To fit the field sample

Scenario of landscape change Deforestation and urbanization [8,44,45]

Sampling submodel

Virtual sampling Population sampled without replacement According to field sampling design

Number of individuals sampled per sampling point 25 According to field sampling design

Number of points sampled 5 According to field sampling design

Simulation

Number of repetitions per simulation 30 To account for stochasticity

Number of generations per simulation 100 Time to stabilize FST

Output files format ARLEQUIN (Arlecore) To fit the field sample analyzes

The three variables studied in this paper are highlighted with an asterisk at the beginning of the first column.
doi:10.1371/journal.pntd.0003068.t001
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As the main objective of our study case was to explore the effect

of vector dispersal on observed population genetic structure (using

FST values), we focused our analysis on three specific variables: i)

vector’s migration rate (m); ii) vector’s dispersal distance (i.e., the

maximum distance covered by an individual during its life cycle,

including passive and active dispersal (d)); and iii) vector’s

attraction by a specific habitat type (i.e., the strength that impedes

individual from emigrating when they are located in a specific

habitat type (l)). Note that all output files from simulations were

designed as input files for Arlequin (genotypes of individuals from

the 7 microsatellite loci), using the same sampling method, so that

observed and simulated FST values could be compared.

Study landscape and its digital representation. The

study landscape, in the semi-arid Northeastern Brazil, part of

the municipality of Caicó, was represented as a matrix of 11 per 15

grid cells (see Figure 1). In this tessellation, one grid cell is

equivalent to 2*2 km. Grid cells were categorized according to T.
brasiliensis ecology [12,19] to include domestic habitats, perido-

mestic habitats, and sylvatic habitats (see [18] for a description and

discussion). Physical barriers to dispersal and establishment (lakes)

and potential factors of passive dispersal by human (roads), were

also considered and georeferenced. This allowed us to apply a

matrix of landscape resistance to our grid. Based on previous

studies on T. infestans by [29], the maximal active dispersal

distance was set to 2 km per generation over the entire landscape.

To simulated passive dispersal, the dispersal distance on roads was

fixed to a maximum of 10 km per generation (corresponding to

d = 5, with d varying from 1 to 5 grid cells in our simulations).

Initialization of the simulation model. We set up our

landscape with 50 adult individuals per grid cell, within the range

of Triatominae densities documented in the literature ([30,31]).

Note that using more individuals per grid cell reduced the variance

in simulation results, due to a reduction in genetic drift, but did not

change observed patterns. Individuals were attributed genotypes

using 7 microsatellite loci with alleles randomly chosen in a normal

distribution. We did not account for selection as analyses

performed from F-statistics on field data suggested no loci under

selection (using Arlequin based on [32]). The other parameters

were set to their default value in SimAdapt or according to

available literature (see Table 1). The three variables related to

dispersal (m, d, and l) were defined as ranges of potential values

(parameter space; see Table 1) and then further explored through

a sensitivity analysis (see below).

Model validation. Validation is an important process in

model development, and consist in the demonstration that the

model meets performance standards under specific conditions

[33,34]. To validate SimAdapt initialization for T. brasiliensis, we

calculated FST using Arlequin (based on genotypes from the 7

microsatellite loci and assuming no selection for habitat type) and

compared its values with FST from theoretical expectation in an

island model [35]. In an island model, the theoretical response of

FST to migrant number fits a curve of the form FST < 1/(4Nm+
1), where N is the effective population size and m is the migration

rate between populations. Our case slightly differed from the

island model as it included a finite number of populations and

dispersal mechanisms partially driven by the habitat types. We

consequently expected different FST values than those predicted

by theory [36,37]. We found a significant relationship between

FST and Nm using a nonlinear least squares model for migration

rate from 0.1 to 1 (FST = 1/(5.85Nm+1.24), p,0.05, see

Figure 2). This result confirmed that, within the range of

parameters’ space, our simulation model behaved according to

theoretical expectations thereby validating its use for T. brasi-
liensis.

Sensitivity analyses. Sensitivity analyses were performed to

explore the effect of three variables related to vector dispersal on

triatomine genetic differentiation coefficient (FST): i) the effect of

migration rate from m = 0.1 to 1 per generation; ii) the effect of

Table 2. Pairwise fixation index (FST) between sampling points A, B, C, D and E (in bold italic when the associated p-value was
below 0.05), for the observed dataset in the Caicó municipality in Northeastern Brazil.

A B C D E

A 0

B 0.02130 0

C 0.01513 0.02265 0

D 0.00635 0.00852 0.02791 0

E 0.00000 0.03253 0.02440 0.01609 0

doi:10.1371/journal.pntd.0003068.t002

Figure 2. Validation of the model initialization using the
response of FST to migration rate. FSTs between sampling points
(from left to right for each migration rate: AB, AC, AD, AE, BC, BD, BE,
CD, CE, DE), are represented as a function of migration rate from 0.1 to
1. Simulated results are represented using boxplots of 30 repetitions, for
all values of dispersal distance (d ranging from 1 to 5 by 1), i.e. 150
pairwise FST values per boxplot. The theoretical expectation is
represented by a solid grey line (FST < 1/(4Nm+1) with N = 50 and m
ranging continuously from 0 to 1).
doi:10.1371/journal.pntd.0003068.g002
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maximum dispersal distance from d = 1 to 5 grid cells per

generation; and iii) the effect of attraction by domestic habitat

from l = 0 to 10 (l representing a factor that reduce emigration

from domestic habitat, i.e. when l = 10, m = m/10). The resulting

sets of simulations were repeated 30 times to account for

stochasticity. We performed an additional set of 30 repetitions to

ensure that the number of repetitions was representative of

stochastic processes (Student tests, Tmean = 0.39, dfmean = 296.65,

pmin.0.23). All analyses were performed on a random sampling of

25 individuals at the five sampling locations (i.e., 125 individuals in

total; see [38] for a discussion on virtual sampling). Genotypes of

sampled individuals for the 7 microsatellite loci were analyzed to

calculate FST after 100 generations using Arlecore from Arlequin

version 3.5 [28]. This time was sufficient to observe a stabilization

of the FST for all sets of simulations. Analyses of variance

(ANOVA) were run to evaluate the effect of migration rate (m),

dispersal distance (d) and domestic habitat attraction (l) on the

FST using R software [39].

Model optimization. Model outputs from the sensitivity

analysis were compared to those obtained from field data using

least-square optimization [40] between simulated and observed

FST. The optimization procedure generated 300 FST values (10

migration rates values x 5 dispersal distances values x 6 domestic

habitat attraction values), repeated 30 times. Based on this data,

we determined the values of migration rate, maximum dispersal

distance and attraction by domestic habitat that minimized the

difference between simulated and observed FST data. Addition-

ally, we plotted a ternary plot using an Akima interpolation [41]

on the mean values of the 30 repetitions to visualize the

topography of the least-square optimization. To evaluate the

goodness of fit of our simulation, we compared simulated and

observed FST values using one-sample Student tests (see [42,43]

for examples of FST comparisons). The values that minimized

difference between simulated and observed data were then used to

initialize the prospective scenario.

Prospective scenarios. We performed forward-time simula-

tions of the potential effects on T. brasiliensis population genetics of

landscape change (urbanization) within the next 50 years. Our

simplified scenario of urbanization consisted in the progression of

peridomestic and domestic habitats over sylvatic habitats (1 km per

year to mimic worst case scenario of deforestation, see [44,45] for a

discussion).The prospective scenarios included selection considering

one locus under selection per habitat type (domestic, peridomestic

and sylvatic), with two alleles (‘‘generalist’’ and ‘‘specialized’’, see [9]).

As selection coefficient and degree of dominance (s and h, see [46])

were unknown and because our field sampling did not allow to infer

such parameters (no time series of alleles frequencies, see [47]), the

degree of dominance was represented to reproduce co-dominance

(h = 0.5), and the selection coefficient to reproduce strong selection

(s = 0.2) (see [46]). T. brasiliensis dispersal variables were set up using

results from the optimization procedure (m = 0.6; d = 3; l = 2; see

Figure 3). The simulations were run over 100 triatomine generations,

with one generation equivalent to approximately 6 months ([13]).

Individuals were sampled every generation at all sampling points, and

FST computed over time using Arlecore (see Table 1 for parame-

terization). Four scenarios were compared using two factors (land-use

change and selection) and two states (with/without) using two-way

analysis of variance of FST after 100 generations.

Results

Sensitivity analyses
As expected, we found a significant effect of migration rate (m)

on the FST values (see Table 3). The effect of dispersal distance (d)

was also significant except between two sampling sites (A and C)

that were very close from each other (Euclidian distance; FAC(1,

8991) = 1.4, p = 0.24). Dispersal distance explained much less

variance in the ANOVA than migration rate (see differences in F-
values in Table 3). The same result was found when testing for the

effect of domestic habitat attraction on FST. On average, for all 10

couples of sampled locations, 58%67 of the variance of FST in

the ANOVA models was explained by migration rate, dispersal

distance, and domestic type attraction.

Optimization
The optimization procedure revealed that the difference

between observed and simulated FST was lowest at high migration

rates, average dispersal distances and low domestic habitat

attractions (see the redder zone of the ternary plot, Figure 3).

The best set of parameter values from this zone explained 50% of

the FST values observed in the field (see Table 4, using m = 0.6;

d = 3; and l = 2). Note that overall, the combinations of migration

rate, dispersal distance and domestic habitat attraction could

significantly explain 70% of FST values.

Prospective scenarios of land-use change
The dynamics of the spatial genetic structure of T. brasiliensis

populations strongly differed between the urbanization and the

"no land-use change" (control) scenarios (see Figure 4 for FST

Figure 3. Goodness of fit between observed and simulated FST
for T. brasiliensis in Northeastern Brazil. The red from blue color
gradient represents an Akima interpolation of the least-square
optimization between observed and simulated FST for different values
of vector migration rate, dispersal distance and domestic habitat
attraction. FST were computed using Arlequin over the 10 couples of
sampled points. Sets of simulations were repeated 30 times for each
value of migration rate (m index ranging from 0.1 to 1 by 0.1), dispersal
distance (d ranging from 2 to 10 km by 2 km) and domestic habitat
attraction (l index ranging from 0 to 10 by 2). The plot is represented
using mean values with a gradient from blue (high value, i.e., poor fit),
to red (low value, i.e., good fit).
doi:10.1371/journal.pntd.0003068.g003

Landscape Genetic Simulations of Pathogen Vectors

PLOS Neglected Tropical Diseases | www.plosntds.org 5 August 2014 | Volume 8 | Issue 8 | e3068



between individuals located at sampling points A and B). In the

control scenarios, FST reached a threshold and stabilized within

100 generations for all couples of sampled locations (e.g., mean

FST threshold value of 0.021 between A and B with and

without selection, see Figure 4). Contrastingly, FST values did

not reach such threshold in the urbanization scenarios (e.g.,
mean FST threshold value of 0.030 and 0.027 between A and B

with and without selection, respectively), except between

individuals at sampling locations A, C and E. We found a

significant effect of land-use change on FST after 100

generations (e.g., between A and B: F = 24.6, df = 1, p,0.05).

Contrastingly, the effect of selection was not significant, even if

FST values were generally higher in the scenarios including

selection.

Discussion

Understanding the dispersal behavior of vector arthropods is a

central issue in the control and surveillance of vector-borne

tropical diseases [48,49]. Although dispersal studies on vectors

have been conducted since the eighties (e.g., [29]), accurate

descriptions of the spatio-temporal distribution of most tropical

pathogen vectors are still lacking. Along with recent advances in

spatially explicit models [48], our study proposes a contribution to

better characterize the dispersal behavior of the vectors of T. cruzi,
responsible for Chagas disease. This characterization is exempli-

fied in this study with a generic platform providing a natural

description of the dispersal mechanisms [50], adapted to the

social-ecological system inhabited by T. brasiliensis. Our study

Table 3. Analysis of variance (ANOVA) of the effect of migration rate, dispersal distance, and domestic habitat attraction on FST.

Df Sum Sq Mean Sq F value p-value

migration rate (m) 1 22.725 22.725 67252 ,0.05

dispersal distance (d) 1 0.097 0.097 288 ,0.05

domestic habitat attraction (l) 1 2.960 2.960 8759 ,0.05

interaction m:d 1 0.012 0.012 35 ,0.05

interaction m:l 1 0.053 0.053 157 ,0.05

Residuals 89982 30.406 0.0003

FST were computed between the 10 couples of locations for the 300 parameters combinations, with 30 repetitions per combination.
doi:10.1371/journal.pntd.0003068.t003

Table 4. Comparison of FST values between simulated and observed data using One-sample Student tests.

Couples of sampled locations m d l pmean (% .0.05) Tmean df

AB* [0.1:1] [1:5] [0:10] 0.113 (29%) 5.67 29

0.6 3 2 0.867 20.17 29

AC* [0.1:1] [1:5] [0:10] 0.077 (20%) 4.50 29

0.6 3 2 0.06 21.96 29

AD [0.1:1] [1:5] [0:10] ,0.01 (0%) 14.18 29

0.6 3 2 ,0.01 13.03 29

AE [0.1:1] [1:5] [0:10] ,0.01 (0%) 25.14 29

0.6 3 2 ,0.01 23.06 29

BC* [0.1:1] [1:5] [0:10] 0.097 (28%) 5.38 29

0.6 3 2 0.325 21.00 29

BD [0.1:1] [1:5] [0:10] ,0.01 (0%) 14.98 29

0.6 3 2 ,0.01 12.66 29

BE* [0.1:1] [1:5] [0:10] 0.030 (9%) 8.12 29

0.6 3 2 0.624 0.49 29

CD [0.1:1] [1:5] [0:10] 0.038 (10%) 24.26 29

0.6 3 2 ,0.01 212.03 29

CE* [0.1:1] [1:5] [0:10] 0.020 (5%) 9.00 29

0.6 3 2 0.864 0.17 29

DE [0.1:1] [1:5] [0:10] 0.008 (3%) 16.37 29

0.6 3 2 ,0.01 10.08 29

For each couple of sampled locations, the first line represents average values for all combinations of parameters (m, d and l) with the percentage of significant
combinations between brackets, and the second line for m = 0.6, d = 3 and l = 2. Couples of sampled locations significantly explained by this parameterization are shown
in bold with an asterisk.
doi:10.1371/journal.pntd.0003068.t004

Landscape Genetic Simulations of Pathogen Vectors

PLOS Neglected Tropical Diseases | www.plosntds.org 6 August 2014 | Volume 8 | Issue 8 | e3068



successfully ranked parameters of T. brasiliensis dispersal and

participated in explaining observed patterns (spatial population

differentiation using FST) by linking them to processes (vectors

ecology and behavior). It thus represents a contribution in

understanding the underlying mechanisms of T. brasiliensis spatial

genetic structure and population dynamics.

Inevitably, our study made a series of assumptions and

simplifications inherent to the modeling process. If some were

attributable to the methodological framework, others pointed gaps

in the knowledge of T. brasiliensis ecology and genetics. The

selection for habitat type submodel, for instance, relied on the

theoretical basis of one locus under selection per habitat type.

Further studies of T. brasiliensis are needed and should allow the

identification candidate genes responsible for adaptation for

habitat type which would considerably refine the theoretical

submodel, and possibly lead to inference on selection coefficients.

Moreover, additional field studies, such as those conducted for

other Triatomine species (e.g., studies describing and quantifying

the influence on vectors of public street lights; [51,52]; or

describing the vectors active and passive dispersal [53]) would

help refining our results for T. brasiliensis. Additionally, the use of

a more complex population dynamic model might have permitted

to analyze the impact of other demographic parameters on

population structuring, like the density of the population or the

lifespan. Consequently, prospective scenarios, grounded on actual

knowledge and limited dataset, should be regarded as theoretical

insights. They remain pertinent tools with implications in term of

vectors surveillance and control. For example, our T. brasiliensis
prospective scenarios in Northeastern Brazil revealed a significant

influence of land-use on vector spatial genetic structure. It

suggested that in urbanized areas, where hosts are abundant,

vector population gene flow would be reduced (higher FST
between sampling points). While anthropogenic landscape distur-

bance proved to increase vector infection by T. cruzi [54], it is

more important than ever to anticipate for the effect of future

landscapes on vector dynamics and spatial genetic structure, in

order to establish efficient management strategies. This study on

T. brasiliensis and associated prospective scenarios suggest that

control techniques should be examined in their social-ecological

context, accounting for anthropogenic features to come.

Beyond our empirical study case, the objective of the paper was

to present a methodological framework for studying vectors

population genetics of pathogens which can integrate its biological,

ecological and sociological components. Although various studies

have assessed and described the emergence of zoonoses and

vector-borne diseases as the result of social-ecological interactions

(e.g., [55,56]), this approach has been disregarded in population

and landscape genetic simulations ([2,49], but see [57]). Integrat-

ing social-ecological interactions in landscape genetics remains a

key challenge, especially when considering that vectors of

pathogens are localized in areas subject to anthropogenic

disturbance across scales [58,59]. At the interface across

disciplines, this methodological framework allows the consider-

ation of different types of knowledge and takes into account the

causes of vector spatial genetic structure at multiple levels. Our

hope is that our study may provide a testable and applicable

modeling framework to a broad community of epidemiologists for

formulating scenarios of landscape change and foresee their

consequences on vector dynamics and genetic structure, with

potential implications for their surveillance and control.
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