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Abstract

In Tunisia, cases of zoonotic cutaneous leishmaniasis caused by Leishmania major are
increasing and spreading from the south-west to new areas in the center. To improve the
current knowledge on L. major evolution and population dynamics, we performed multi-
locus microsatellite typing of human isolates from Tunisian governorates where the disease
is endemic (Gafsa, Kairouan and Sidi Bouzid governorates) and collected during two peri-
ods: 1991-1992 and 2008-2012. Analysis (F-statistics and Bayesian model-based
approach) of the genotyping results of isolates collected in Sidi Bouzid in 1991-1992 and
2008-2012 shows that, over two decades, in the same area, Leishmania parasites evolved
by generating genetically differentiated populations. The genetic patterns of 2008—2012 iso-
lates from the three governorates indicate that L. major populations did not spread gradually
from the south to the center of Tunisia, according to a geographical gradient, suggesting
that human activities might be the source of the disease expansion. The genotype analysis
also suggests previous (Bayesian model-based approach) and current (F-statistics) flows
of genotypes between governorates and districts. Human activities as well as reservoir
dynamics and the effects of environmental changes could explain how the disease pro-
gresses. This study provides new insights into the evolution and spread of L. major in Tuni-
sia that might improve our understanding of the parasite flow between geographically and
temporally distinct populations.

Author Summary

In Tunisia, zoonotic cutaneous leishmaniasis (ZCL) constitutes a significant public health
problem. Since 1884, the Gafsa, Kairouan and Sidi Bouzid governorates are the most
endemic areas of ZCL. This study used a multi-locus microsatellite typing approach to
study the evolution and the population dynamics of Leishmania major in Tunisia. Within
the same area, in twenty years, parasite populations evolved by producing a genetically
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differentiated population, probably better adapted to the ecosystem. In agreement with the
reported human cases of ZCL, the genetic data on samples from the three governorates
shows that the disease did not spread according to a geographical gradient. Furthermore,
L. major flows seem to still occur between governorates and neighboring districts. This
study suggests that environmental changes, human activities and reservoir systems have
influenced the spread and evolution of L. major populations. Our findings provide impor-
tant knowledge on the epidemiology of L. major in Tunisia and might help understanding
why the disease is still spreading from the south to the center, despite the control measures
that have been put into place.

Introduction

In Tunisia, zoonotic cutaneous leishmaniasis (ZCL), also known as “Le Bouton de Gafsa” (the
pimple of Gafsa), was first described in 1884 by Déperet and Boinet in the Gafsa governorate
(south-west of Tunisia) [1]. ZCL represents a typical model of emerging and reemerging zoo-
nosis [2]. ZCL can cause substantial morbidity because of the presence of chronic skin ulcers
and the psychological effect of disfigurement [3]. No vaccine is available yet and the current
treatments (mainly intra-lesion injections) are expensive and not easy to administer, particu-
larly to children and patients with multiple lesions. For this reason, an international research
partnership was launched in 1995 to focus on clinical trials of topical preparations, mainly par-
omomycin ointments, as new treatments of ZCL caused by Leishmania major [4,5,6]. More-
over, epidemiological studies have attempted to determine the spatial and temporal dynamics
of ZCL epidemics to improve the prediction of their occurrence and consequently their control
[7,8]. ZCL has been endemo-epidemic in the Gafsa region for many years, and in 1982 an epi-
demic was recorded in the Kairouan governorate for the first time [9]. Then, the disease spread
to Sidi Bouzid, where it emerged as an epidemic in 1991 (see map of Tunisia in Fig 1 to localize
these regions) [10,11]. Since then, the disease is maintained in these areas and has expanded
also to other governorates in the center and south of Tunisia [12].

L. major is transmitted by the sand fly vector Phlebotomus papatasi [13] and rodents are the
reservoir, including Psammomys obesus (fat sand rat) and Meriones shawi (Shaw’s jird) [14,15].
The majority of L. major strains isolated in Tunisia belong to the MON-25 zymodeme
[11,16,17]. It is largely recognized that the population structure of pathogens is influenced by
different evolutionary factors, particularly during invasion of new ecosystems [18]. However, it
is not known how their geographical distribution and temporal emergence affected the genetic
structure and evolution of Tunisian L. major populations, mainly because multi-locus enzyme
electrophoresis (MLEE), which has been widely used for phylogenetic typing of parasites, is not
discriminative enough. On the other hand, microsatellite markers in combination with recent
statistical methods represent a powerful tool for studying the population structure and moni-
toring the dynamics of these pathogens in time and space because of their high discriminating
power and their presumed neutrality [19,20]. Nevertheless, no detailed study has been carried
out on the population structure of L. major in Tunisia with these powerful markers.

Therefore, the aim of this study was to analyze the spatio-temporal organization of L. major
in the three main endemic areas of ZCL in Tunisia (Gafsa, Kairouan and Sidi Bouzid governor-
ates) by using a multi-locus microsatellite typing approach and population genetic statistical
methods. Human isolates collected in the three governorates between 2008 and 2012 were used
to assess the population dynamics of L. major according to the geographical distribution and
the chronological emergence of leishmaniasis epidemics in human populations. Moreover,
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Fig 1. Map of Tunisia and schematic illustration of gene flow between the study areas. (A1) Location of Tunisia, North Africa. (B1) Location of the
Gafsa, Sidi Bouzid and Kairouan Governorates within Tunisia. (C1) Zoom of the area under study to show Chrarda and Mnara (Nasrallah delegation) (Mnara
and Chrarda are shown in the map with red asterisks) in the Kairouan Governorate.

doi:10.1371/journal.pntd.0004017.g001

human isolates collected in Sidi Bouzid governorate in the 1991-1992 and 2008-2012 periods
were compared to provide information on the evolution of L. major populations in the same
area over twenty years.

Material and Methods
Ethics statement

Research included in this study was subject to ethical review by the International Review Board
of the Pasteur Institute of Tunis and approved as part of a research project submitted in
response to a “call” from the National Institutes of Health for funding Tropical Medicine
Research Centers. The Pasteur Institute of Tunis, the study sponsor, took out an insurance pol-
icy in accordance with the Tunisian law concerning clinical research. All clinical or biological
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investigations were performed in the Health Centers of each governorate to guarantee the
patients’ safety, confidentiality and respect. All human samples of Leishmania were isolated
from patients after collection of the written informed consent at the time of the clinical exami-
nation. Human isolates were anonymized and the associated information coded for privacy-
preserving data mining.

Geographical origin and collection time of the biological samples

A total of 172 parasite samples, taken from the swollen edge of cutaneous lesions, were col-
lected from patients in different governorates of Tunisia. Isolates from Sidi Bouzid governorate
were collected during the 1991-1992 (historical isolates) and the 2008-2012 (recent isolates)
periods, whereas isolates from Gafsa and Kairouan were only from the 2008-2012 period
(recent isolates) (Table 1). Isolates were stored in the cryobank of the Department of Medical
Epidemiology, Pasteur Institute of Tunis. Samples were isolated and typed in the framework of
different research projects related to ZCL in Tunisia. Isolates were identified as L. major by
sequence analysis of the gene encoding RNA polymerase II [21] in combination with the
MLEE technique [22] at the Centre National de Référence des Leishmanioses (CNRL) of Mont-
pellier, France.

Population dynamics were investigated at the: i) spatial scale, using recent isolates from
Gafsa (GF2008-2012) (66 strains), Kairouan (KR2008-2012) (46 strains) and Sidi Bouzid
(SBZ2008-2012) (25 strains) and ii) temporal scale, using the recent isolates (SBZ2008-2012,

n = 25 samples) and the historical isolates (SBZ1991-1992, n = 35 samples) from the Sidi Bou-
zid governorate. Furthermore, the recent isolates from the Kairouan governorate (KR2008-
2012, 46 strains) were subdivided in two groups based on the history of leishmaniasis infection
in the area: 15 isolates from the historical focus of Mnara (MN2008-2012), where the first out-
break occurred in 1982, and 31 isolates from the recent focus of Chrarda (CH2008-2012),
where the epidemic started only in 2005 (Fig 1 and Table 1).

DNA extraction and microsatellite genotyping

For all samples, total genomic DNA was extracted from parasite mass cultures (promastigotes)
using DNA extraction kit, according to the manufacturer’s protocol. DNA quality was checked
by agarose gel electrophoresis and the concentration measured with a NanoDrop spectropho-
tometer. Amplification was carried out using fluorescent-labeled primers for ten polymorphic
microsatellite markers and the PCR conditions previously described for L. major [20]. 1l of
PCR product was added to a standard loading mix with 0.5pl of internal lane size standard, and
13.5ul of formamide. Genotyping was performed by capillary electrophoresis using an

Table 1. Geographic sites, year of isolation and number of L. major isolates included in the study.

Site (governorate) Recent isolates (2008-2012) Historical isolates (1991-1992)
Metlaoui (Gafsa) 49 0
M’dhila (Gafsa) 17 0
Chrarda (Kairouan) 31 0
Mnara (Kairouan) 15 0
Oueled Haffouz (Sidi Bouzid) 24 0
Sidi Bouzid Centre (Sidi Bouzid) 0 35
Hania (Sidi Bouzid) 1 0

Total = 172 isolates

doi:10.1371/journal.pntd.0004017.t001
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automatic DNA sequencer. Fragment size was determined automatically using the GeneMap-
per 4.0 software.

Microsatellite data analysis

The FSTAT Version 2.9.3.2 software [23] updated from [24] was used to compute estimates
and to test the significance of the various population genetic parameters. Genetic polymor-
phism was measured based on the allelic richness (A) and the Nei's unbiased estimate of genetic
diversity within subsamples (Hs) [25]. The observed heterozygosity (Ho) and expected hetero-
zygosity (He) were also calculated. The Wright's F statistics [26] were estimated with the Weir
and Cockerham's method [27]: Fig measures the relative inbreeding of individuals due to the
local non-random union of gametes in each subpopulation, and Fs1 measures the relative
inbreeding in subpopulations attributable to the subdivision of the total population into sub-
populations of limited size. Therefore, Fst also measures the genetic differentiation between
subpopulations. The significant departure from 0 of these parameters was tested by 10,000 ran-
domization procedures with FSTAT. The genetic differentiation between historical and recent
populations, between governorates (Gafsa, Kairouan and Sidi Bouzid) and between the two
sub-populations (historical and recent focus) in the Kairouan governorate was explored. The
significance of these estimates was confirmed by p-values <0.05. The gene flow or migration
rate between populations was also estimated using FSTAT, as Nm = 1- Fgy/4 Fsr [28]. A neigh-
bor-joining tree [29], based on the Cavalli-Sforza and Edward’s chord distances [30], was used
to cluster the genotypes. Data were computed using the POPULATION software to build the
distance matrix (version 1.2.28; CNRS, UPR9034, Langella, O.) and the tree was generated
using FigTree, version 1.4.1 [31].

Finally, data were analyzed using a Bayesian model-based approach implemented in
STRUCTURE, version 2.3.4 [32], to explore the structure of the L. major populations. STRUC-
TURE uses Bayesian Monte-Carlo Markov Chain (MCMC) sampling to identify the optimal
number of clusters K for a given multi-locus dataset, without requiring the identification of the
population subunits a priori. The parameters used were the admixture model with the length
of burn-in period of 200,000 iterations, followed by 200,000 MCMC repeats after burn-in.
Based on the multi-locus genotype data, isolates were divided into K subpopulations with K
ranging from 1 to 10 and ten independent runs were performed for each value of K. The K
optimal value (i.e., the optimal number of clusters in the dataset) was calculated using STRUC-
TURE HARVESTER, web version [33]. Two approaches were used to choose K. First, AK,
which measures the second-order rate of change in the log likelihood of the data between suc-
cessive values of K, was estimated [34]. Second, posterior probabilities for the values of K with
the highest Ln P(X|K) were compared. STRUCTURE 2.3.4 was also used to identify migrants.
In this case, prior population information was used in the USEPOPINFO option of STRUC-
TURE. Populations defined according to geographic and temporal criteria (GF2008-2012,
KR2008-2012 and SBZ2008-2012, SBZ1991-1992, MN2008-2012 and CH2008-2012) were
used as prior population information for this test. Run conditions for this analysis were as
mentioned above. As no information was available about migration, a range of migration rates
was assigned (MIGPRIOR = 0.01, 0.05, 0.1), as a sensitivity test during the analysis.

Results
Analysis of L. major population structure in the different governorates

The data obtained from the ten polymorphic microsatellite markers [20] were used to assess
and compare the genetic variability of isolates collected from patients in the three Tunisian
governorates between 2008 and 2012. The Gafsa isolates (GF2008-2012; n = 66) included 48
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Table 2. Genetic diversity indices, estimated from microsatellite data (10 loci), for the 172 L. major isolates analyzed in this study.

Population (Area/number of isolates) Descriptive statistics
Hs Ho He Fis

Historical population (Sidi Bouzid/35) SBZ1991-1992 2.4 0.129 0.1311 0.128 0.514
Recent population (Sidi Bouzid /25) SBZ2008-2012 2 0.236 0.056 0.233 0.797
Governorate 1 (Gafsa/66) GF2008-2012 3.2 0.321 0.059 0.319 0.816
Governorate 2 (Kairouan/46) KR2008-2012 2.7 0.306 0.054 0.303 0.823
Governorate 3 (Sidi Bouzid/25) SBZ2008-2012 2.0 0.236 0.048 0.233 0.797
Historical focus (Mnara-Kairouan/15) MN2008-2012 2.2 0.278 0.033 0.271 0.880
Emerging focus (Chrarda-Kairouan/31) CH2008-2012 23 0.316 0.064 0.314 0.796

Whole sample (172)

L. major isolates were included in the different subpopulations: historical (SBZ1991-1992) and recent populations (SBZ2008-2012) from the Sidi Bouzid
governorate; recent populations from Gafsa (GF2008-2012), Kairouan (KR2008-2012) and Sidi Bouzid (SBZ2008-2012); the (KR2008-2012) population
was further divided in samples from Mnara (MN2008-2012, historical epidemic focus) and from Chrarda (CH2008-2012, emerging epidemic focus).

A = allelic richness per population based on the standardized minimal sample size; Hs = gene diversity; Ho = observed heterozygosity; He = expected
heterozygosity; Fis = inbreeding coefficient.

doi:10.1371/journal.pntd.0004017.t002

genotypes (genotypic diversity = 0.73), the Kairouan isolates (KR2008-2012; n = 46) 35 geno-
types (genotypic diversity = 0.76) and the Sidi Bouzid isolates (SBZ2008-2012; n = 25) 24 dif-
ferent genotypes (genotypic diversity = 0.96). This finding shows the high L. major genotypic
diversity in these three areas where ZCL is endemic. Unique genotypes and original microsatel-
lite profiles were identified in 18 GF2008-2012 isolates, in four SBZ2008-2012 isolates and in
11 KR2008-2012 samples (S1 Table). Comparisons of the genetic diversity data for the three
geographic groups revealed that intraspecific genetic diversity (H;) was highest in the Gafsa
and lowest in the Sidi Bouzid isolates (Table 2). Similarly, the allelic richness (A) and the mean
observed heterozygosity (H,) decreased progressively from Gafsa to Sidi Bouzid (Table 2).

The mean expected heterozygosity (H.) values were much higher than the H, values in all
three populations (Table 2). These results were confirmed by the inbreeding coefficient (Fig)
values estimated for each locus and in each population, revealing a deficit in heterozygosity in
all three populations (Table 2). The Fgr values, which are used as a measure of genetic differen-
tiation between populations, were very low, but significantly different between the GF2008-
2012 and SBZ2008-2012 isolates and between the GF2008-2012 and KR2008-2012 isolates.
Conversely, the Fsr values were not significantly different between the KR2008-2012 and
SBZ2008-2012 populations (Table 3). Accordingly, the highest migration rate (Nm) value was
between the KR2008-2012 and SBZ2008-2012 populations, whereas the Nm values were much

Table 3. Differentiation measures (Fst), probabilities (P-value) and migration rate (N,,) between subpopulations.

Subpopulation (Area) (Number of isolates) Fst P-value* Nm (migrant/population)
Historical (Sidi Bouzid) (35) versus Recent (Sidi Bouzid) (25) 0.213 0.05 0.923
Governorate 1 (Gafsa) (66) versus Governorate 2 (Kairouan) (46) 0.034 0.05 7.03
Governorate 1(Gafsa) (66) versus Governorate 3 (Sidi Bouzid) (25) 0.082 0.016 2.78
Governorate 2 (Kairouan) (46) versus Governorate 3 (Sidi Bouzid) (25) 0.008 0.083 31

Emerging focus (Chrarda-Kairouan) (31) versus Historical focus (Mnara-Kairouan) (17) 0.014 0.05 17.60

*Data were considered significant when P-value < 0.05.

doi:10.1371/journal.pntd.0004017.t003
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lower between the GF2008-2012 and KR2008-2012 and between the GF2008-2012 and
SBZ2008-2012 populations (Table 3).

The Bayesian model-based clustering analysis implemented in STRUCTURE indicated that
our dataset (GF2008-2012, KR2008-2012 and SBZ2008-2012 isolates) could be organized in
four (maximum L(K)) or two (maximum AK) clusters (K) (Fig 2A and 2B). For K = 2, 92% of
L. major isolates from Gafsa, 10% from Kairouan and 38% from Sidi Bouzid were included in
one of the inferred clusters and the remaining samples in the second one (Fig 2C.1). Based on
the Q-matrix bar plots obtained for each isolate by calculating the posterior probabilities of
belonging to each K cluster, the SBZ2008-2012 population showed a mixed membership to the
inferred clusters (Fig 2C.1). For K = 4, the Q-matrix bar plots showed an increased separation
of the L. major sample substructure. Although the most likely number of groups here suggested
a total of four populations no strains were fully assigned to the fourth putative group (yellow
group) (Fig 2C.2), suggesting that this was not a valid population for this set [34,35]. This
“phantom” population suggesting a wider and deeper clinical sample collection may discover
new diversity even in this small geographic area [36]. Based on the bar plots for the two
assumptions, K = 2 seems to be the most probable partition for our data set. In agreement with
the very low genetic differentiation between governorates, the analysis carried out with the
STRUCTURE program did not divide the three populations according to their geographical
origin. Nevertheless, most isolates from Gafsa and from Kairouan were grouped in cluster 1
and cluster 2, respectively, and the samples from Sidi Bouzid were distributed in the two clus-
ters (38% in cluster 1 and 62% in cluster 2). Strains showing mixed membership were observed
in each population, probably due to the low level of differentiation among populations. The
occurrence of gene flow between GF2008-2012 and SBZ2008-2012, as well as between
SBZ2008-2012 and KR2008-2012 can be clearly observed in Fig 2C.1. In the STRUCTURE
assignment tests, we only reported the results for MIGPRIOR = 0.1, because migration
appeared to occur frequently between governorates, thus the optimal MIGPRIOR value was
likely to be the highest one [32]. Furthermore, when running the migration model at K=3
(equal to the number of predefined populations), ten samples were identified as migrants.
Among these migrants, two GF2008-2012 samples were assigned to the KR2008-2012 popula-
tion and one GF2008-2012 sample to the SBZ2008-2012 group. Among the KR2008-2012 sam-
ples, only two showed a posterior probability of having recently migrated from Sidi Bouzid. In
the SBZ2008-2012 group, five samples were assigned to both Gafsa and Kairouan. These results
show a recent connectivity between localities. According to the Q-values of the samples, the
KR2008-2012 and SBZ2008-2012 populations seemed to be more inter-connected than the
GF2008-2012 population with either SBZ2008-2012 or KR2008-2012.

The low genetic differentiation (F-statistical approach), the recent migration events (Bayes-
ian analysis), the gene flow over the years (F-statistical approach) and the absence of clear sepa-
ration (Bayesian analysis) between governorates were also confirmed by the finding that the
phenetic tree did not highlight any subdivision of the strains according to their geographical
origin. (S1 Fig).

Analysis of the L. major population structure in historical and recent
isolates

The data of the ten microsatellite markers were used also to compare the 35 historical
(SBZ1991-1992) and 25 recent (SBZ2008-2012) isolates from Sidi Bouzid governorate. Two of
the microsatellites were monomorphic in the SBZ1991-1992 population, revealing 26 geno-
types in the 35 isolates (0.74). Analysis of the SBZ2008-2012 isolates revealed three polymor-
phic microsatellites that generated 24 genotypes (0.96). The number of alleles per locus ranged
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Fig 2. Estimated population structure of L. major in Tunisia as inferred by the STRUCTURE software on the basis of the data on 10 microsatellite
markers obtained for 137 recent isolates from the Gafsa (GF2008-2012; n = 66), Kairouan (KR2008-2012; n = 46) and Sidi Bouzid (SBZ2008-2012;
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n = 25) governorates. (A) Plot of the mean posterior probability (LnP(D)) values per clusters (K), based on 10 replicates per K, generated by the
STRUCTURE software, and (B) delta-K analysis of LnP(K). (C) STRUCTURE plots grouped by Q-matrix (estimated membership coefficient for each sample)
showing the distribution of genetic variation (C.1) at K=2 and (C.2) at K = 4. Each strain is represented by a vertical line, which is partitioned into the colored
segments that represent the parasite estimated membership fractions in K. The same color indicates that the isolates belong to the same group. Different
colors for the same isolate indicate the percentage of the genotype shared with each group. Gene flow between populations is indicated with arrows.

doi:10.1371/journal.pntd.0004017.9002

from 1 to 8, with an allelic richness (A) of 2.4 in the historical population and of 2 in the recent
isolates (S1 Table). The pattern of unbiased gene diversity (Hs) increased over time (Table 2).
Comparison of the mean H, and H, values showed a departure from the expected values in
SBZ2008-2012 population, whereas both observed and expected heterozygosity were highly
similar for SBZ1991-1992 population and no departure from expected values was detected for
these strains (Table 2). Indeed, as reported in previous studies, H, was much lower than H,
and the inbreeding coefficient Fig revealed a strong heterozygote deficiency in both populations
(Table 2). The Fsr value (Fsr = 0.213) showed an important genetic differentiation between
historical and recent isolates and the migration rate Nm was very low (0.923) (Table 3).

The Bayesian model-based clustering analysis indicated two clusters as the most probable
genetic structure of these two populations. The first cluster included most of the historical sam-
ples (98.8%), which shared a common genetic background based on the genotyping results,
and 19.3% of the recent isolates. The second cluster was mainly (80.7%) composed by recent
isolates. STRUCTURE identified 0.42 and 4.82 misclassified samples for the historical and
recent populations, respectively. However, as the migration model used different prior and
modeling assumptions for identifying migrants, three SBZ2008-2012 isolates showed contrast-
ing patterns of assignment, suggesting high genetic connectivity over time. The Neighbor Join-
ing tree revealed no strict partition between the historical and recent populations (see Fig 3).
The tree included five main clusters that corresponded to the two populations obtained with
the STRUCTURE analysis: the two upper clusters matched the first STRUCTURE population,
while the three remaining clusters corresponded to the second STRUCTURE population.

Analysis of the L. major population structure relative to the two ZCL
emergence periods in Kairouan

The recent isolates from the Kairouan governorate (KR2008-2012, n = 46) came from the his-
torical focus (1982) of Mnara (MN2008-2012, n = 15) and from the emerging focus (2005) of
Chrarda (CH2008-2012, n = 31). Analysis of the genetic data of these two sub-populations
showed that six of the ten tested microsatellite loci were polymorphic (4GTG, 39GTG, 45GTG,
1GC, 71AT and 1GACA) in both populations. The remaining four markers (27GTG, 36GTG,
28AT and 1CA) were monomorphic in one or the other population (S1 Table). The allelic rich-
ness (A) ranged from 2.2 (MN2008-2012 isolates) to 2.3 (CH2008-2012 isolates) (Table 2). Hj,
H,, H. and F;s were higher in the CH2008-2012 (emerging focus) than in the MN2008-2012
population. As in all the populations assessed in this study, the mean H,, values in the two sub-
populations were extremely low compared to the H, values. The heterozygosity deficit (mea-
sured by Fys) was very high in both populations (Table 2).

The Fgr value showed that the genetic divergence in the two foci was very low, but signifi-
cant (Table 3), indicating a genotype flow between populations. Quantification of the migra-
tion events in the two districts using F-statistical approaches, revealed 17 migrants per
population. The Neighbor joining analysis confirmed that there was no genetic structuring
between populations (S2 Fig). The posterior probabilities of belonging to a K cluster and the
corresponding AK values calculated with the STRUCTURE software showed a peak at K = 2,
indicating that two genetic clusters were the best solution for this dataset. The STRUCTURE
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10

Fig 3. The unrooted neighbor-joining tree inferred from pair-wise Cavalli-Sforza and Edwards’ chord distances based on the 10 microsatellite data
of 60 Leishmania major isolates (SBZ1991-1992 and SBZ2008-2012) shows that the historical isolates (SBZ1991-1992, n = 35; orange labels) and
the recent isolates (SBZ2008-2012, n = 25; green labels) can be subdivided in five clusters.

doi:10.1371/journal.pntd.0004017.9003

analysis did not detect any recent migrant over the last generations between the partitions
defined by the software. The different migration rates observed with the two methods can be
explained by the fact that STRUCTURE only identifies very recent migrants, whereas the F-
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method may highlight migration events that occurred hundreds or thousands of years ago
(Pritchard, personal communication).

Discussion

The Sidi Bouzid, Gafsa and Kairouan governorates are the areas where ZCL is most endemic in
Tunisia. Despite the cyclic occurrence of outbreaks [8], the annual reported incidence

was > 500 cases in Kairouan, and > 1000 cases in Gafsa and Sidi Bouzid in 2004 [37]. In this
study, we carried out the first genetic substructure analysis of L. major populations in Tunisia
based on genotype data to investigate the spatio-temporal dynamics and the evolution of this
species in these three governorates where most human cases are recorded.

Spatial organization of L. major genetic diversity in Tunisia

Our findings revealed the presence of a decreasing genetic gradient from Gafsa to Kairouan
and Sidi Bouzid between 2008 and 2012. According to the chronology of leishmaniasis emer-
gence in Tunisia, Gafsa is the oldest and the most well-established focus of ZCL. The first out-
break was described in 1884 in El Guettar, in the southern part of the Gafsa governorate.
Conversely, the first cases in the Kairouan and in Sidi Bouzid governorates were recorded only
in 1982 and 1991, respectively. However, we do not know whether the chronology of disease
emergence corresponds to the real spread of leishmaniasis. Furthermore, the governorate dis-
ease reports do not record the exact geographic origin of the infection.

Despite these limitations, this study shows the presence of some genetic differentiation
between Gafsa and Sidi Bouzid and Gafsa and Kairouan, but not between Kairouan and Sidi
Bouzid. Furthermore, we obtained a gradient of diversity that progressively decreases from
Gafsa to Kairouan and then to Sidi Bouzid. These results are in agreement with the chronology
of L. major outbreaks in these three governorates (see above) and do not follow a south-north
geographical gradient. It is worth noting that this genetic pattern (i.e., population structuring
according to the geography and to the ancientness of the focus) is classically observed for Leish-
mania species mainly because of the low dispersion capacity of sandflies and reservoirs [38].
Moreover, the STRUCTURE analysis could not cluster the three groups of recent isolates
according to their provenance and showed more connectivity between Kairouan and Sidi Bou-
zid than between Gafsa and Sidi Bouzid. The analyses of the genotypic data, using the Bayesian
model-based method and F-statistics, suggest that there had been and still there is a flow of
genotypes between governorates, especially between Kairouan and Sidi Bouzid. According to
the data published by Chargui et al. [18], L. infantum and L. major in Tunisia do not seem to
follow the same genetic and evolutionary pattern. Indeed, although L. infantum seems to have
spread from the north to the center of the country [16,39], more genetic diversity, particularly
high heterozygosity, was found in the center than in the north.

Two hypotheses might explain the genetic differentiation and diversity patterns: 1) leish-
maniasis spread first from Gafsa to Kairouan through human activities (economic activities or
social development projects) and then from Kairouan to Sidi Bouzid; 2) parasites have evolved
in different ways because of different ecosystems. Concerning the second hypothesis, rodent
and sandfly ecology could influence the parasite transmission. Indeed, entomologic studies
have demonstrated that in Tunisia sandfly populations vary in density and species composition
according to the ecological conditions [40]. Furthermore, rodent populations (P. obesus and M.
shawi) also show a different distribution in the different governorates linked to the food avail-
ability [11,41,42]. It is worth noting that, like for other Leishmania species (i.e., L. guyanensis,
L. braziliensis and L. donovani), we found a strong deficit of heterozygosity in all our popula-
tions, in agreement with a recently described mixed-mating system of reproduction (clonality,
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endogamy, allogamy) [43,44,45,46,47]. Concerning L. infantum in Tunisia, high level of het-
erozygosity was observed in Kairouan with evidences of hybridization events [18]. These
authors also found a deficit of heterozygosity, although they analyzed the MON-24 and MON-
1 populations separately. The different genetic patterns and especially the higher heterozygos-
ity observed in L. infantum compared to L. major could be explained by different proportions
of the three reproduction mode of Leishmania parasites [43,44,45,46,47]. Nevertheless, the
sample size in the work by Chargui et al. [18] was too small (27 strains) to do more extensive
comparisons.

Temporal organization of L. major genetic diversity in Tunisia

First, we explored the evolution of the L. major population in isolates from Sidi Bouzid gover-
norate between 1991-1992 and 2008-2012. The results show that the recent population is
more diverse than the historical one with a significant genetic differentiation over time. In
twenty years, L. major evolved with a change in allelic frequencies. The increase of genetic
diversity reflects the accumulation of genetic changes overtime in this population. The continu-
ous presence of some genotypes over the two decades and the grouping in the same cluster of
both the recent and historical populations (Fig 2) strongly suggest that the recent population
evolved from the historical one. This hypothesis is supported by the detection of migrants
between the old and recent population. As ZCL incidence and Leishmania genetic diversity
have been continuously increasing, we can assume that the Leishmania population has gradu-
ally adapted to the environment [7,8,48]. Furthermore, in the last twenty years, Tunisia, like
the rest of the world, went through rapid ecosystem modifications. For example, the water proj-
ect (construction of the Sid Sadd dam in the Nasrallah delegation, Kairouan governorate, in
1982) [49], the pest control program (destruction of rodent borrows and elimination of cheno-
pods) and the development of agricultural projects around the city of Sidi Bouzid (Sidi Bouzid
governorate, 1992) could have had an effect on temperature, humidity, soil and vegetation.
These anthropic modifications might have disturbed the sandfly and rodent populations and
thus impacted the evolution of the Leishmania population since the 1990’s. Nevertheless,
migration events from other regions cannot be excluded. The calculation of genetic differentia-
tion between L. major population from Sidi Bouzid and those from North Africa [20], Central
Asia [20], Middle East [20], Iran [19] and Pakistan [50] revealed considerable genetic differen-
tiation (>0.55) with highly significant p-values (<0.05) (S2 Table).

To further understand the L. major temporal/spatial dynamics in Tunisia, we also analyzed
recent isolates (2008-2012) from two districts within the Kairouan governorate: Mnara (histor-
ical focus) and Chrarda (emerging focus). Considering the long interval (23 years) between the
human outbreaks in the two districts, we expected that the more recent focus would show a
lower genetic diversity than the historical focus. However, the genetic data showed a slightly
higher genetic diversity in the more recent focus (Chrarda), despite the low sample size. In par-
allel, the low differentiation suggests that these are not isolated populations. Indeed, the F-sta-
tistics and Bayesian methods estimated that the Mnara and Chrarda isolates are closely related,
although the difference was sufficient to correctly assign most samples to their respective dis-
trict. The migration analysis using both methods suggests the existence of historical migration
events (F-statistics method), but not recent migration events (Bayesian method). These results
support the hypothesis that the outbreak in Chrarda is the result of the spread of a population,
rather than of a small set of genotypes, from Mnara several years ago. Based on the short dis-
tance between the Mnara and Chrarda districts (12 to 20 kilometers), the Leishmania popula-
tion spread could be explained by human activities and also by the vector or reservoir
dynamics. As sandflies are known to be bad flyers, Meriones shawi movements (the disease
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reservoir) and the human economic and social exchanges could be the main sources of the
emergence of L. major in Chrarda.

Conclusion

This study brings new insights into the spatial and temporal evolution of L. major in Tunisia.
Over two decades, the L. major population evolved into a new, genetically differentiated popu-
lation, probably better adapted to the environment. This could explain the increase of parasite
transmission to humans and the higher incidence of ZCL in these areas over the last years
[7,8,48].

To control the emergence of L. major in new areas in Tunisia, it is now essential to identify
the routes of spread. Our findings suggest that the parasite population dynamics do not follow
a vertical south-north gradient. Indeed, the disease seems to have spread from Gafsa to Kair-
ouan and then to Sidi Bouzid. Human activities and/or the disease reservoir dynamics might
explain this geographically non-gradual spread.

When a disease settles in a new area, it normally sources a subset of the original pathogen
population and, as a consequence, genetic diversity should be reduced in the new population.
Analysis of the Mnara and Chrarda isolates indicates that the two populations are similar with
very low differentiation and historical migration events. This genetic similarity suggests the
occurrence of high flow of genotypes between these neighboring populations that would be at
the origin of the outbreak in Mnara. The relationships between environmental changes, human
activities and reservoir systems have doubtlessly influenced the spread and the evolution of the
Tunisian L. major populations as it is largely demonstrated for Leishmania species [2]. More
work is needed to assess the influence of the movements and population structures of the
rodent reservoirs and vectors on L. major evolution.
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