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Abstract. A conceptual lumped rainfall-runoff flood event
model was developed and applied on the Gardon catchment
located in Southern France and various single-objective and
multi-objective functions were used for its calibration. The
model was calibrated on 15 events and validated on 14 oth-
ers. The results of both the calibration and validation phases
are compared on the basis of their performance with regards
to six criteria, three global criteria and three relative crite-
ria representing volume, peakflow, and the root mean square
error. The first type of criteria gives more weight to large
events whereas the second considers all events to be of equal
weight. The results show that the calibrated parameter val-
ues are dependent on the type of criteria used. Significant
trade-offs are observed between the different objectives: no
unique set of parameters is able to satisfy all objectives si-
multaneously. Instead, the solution to the calibration prob-
lem is given by a set of Pareto optimal solutions. From
this set of optimal solutions, a balanced aggregated objective
function is proposed, as a compromise between up to three
objective functions. The single-objective and multi-objective
calibration strategies are compared both in terms of param-
eter variation bounds and simulation quality. The results of
this study indicate that two well chosen and non-redundant
objective functions are sufficient to calibrate the model and
that the use of three objective functions does not necessarily
yield different results. The problems of non-uniqueness in
model calibration, and the choice of the adequate objective
functions for flood event models, emphasise the importance
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of the modeller’s intervention. The recent advances in au-
tomatic optimisation techniques do not minimise the user’s
responsibility, who has to choose multiple criteria based on
the aims of the study, his appreciation on the errors induced
by data and model structure and his knowledge of the catch-
ment’s hydrology.

1 Introduction

It is common for hydrologists to model individual storm
events at the catchment scale (e.g. Bates and Ganeshanan-
dam 1990; Zarriello, 1998; Moussa et al., 2002; Jain and In-
durthy, 2003), for flood forecasting, spillway design or flood
protection schemes. The first important challenge that awaits
the modeller in this task is to choose a rainfall-runoff model,
and to calibrate a set of parameters, that can accurately simu-
late a number of flood events and related hydrographs shapes.
Most of the models used currently for flood forecasting in
France are lumped conceptual models (Garçon, 1996; Yang
and Michel, 2000; Paquet, 2004) i.e. they have parameters
which cannot, in general, be obtained directly from measur-
able catchment characteristics, and hence model calibration
is needed. Various calibration algorithms and procedures
have been presented in the literature extensively (Rosen-
brock, 1960; Nelder and Mead 1965; Duan et al., 1992; Gan
and Biftu, 1996; Yapo et al., 1998; Vrugt et al. 2003a and
b; see a review in Gupta et al., 2003). Although they dif-
fer in the ways they seek the optimal value, they all aim at
minimising or maximising an objective function. It is im-
portant to note that, in general, trade-offs exist between the
different objective functions. For instance, when using the
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bias as an objective function, one may find a set of param-
eters that provides a very good simulation of volume, but a
poor simulation of the hydrograph shape or peak flow, and
vice versa. Conventional objective functions such as the root
mean square error, the Nash and Sutcliffe (1970) efficiency
coefficient, or the index of agreement (Willmott, 1981) tend
to emphasize the high flows, and consequently, are oversen-
sitive to extreme values and outliers (Legates and McCabe,
1999). On the opposite, the mean absolute percent error
tends to emphasize the low flows (Yu and Yang, 2000).

However, in most real world applications, models are used
to reproduce the entire shape of the hydrograph, sometimes
even to simulate more than one flow component in the catch-
ment i.e. groundwater and surface water, water and nutrient
fluxes etc. In these occurrences, the use of a single objec-
tive function may be questionable and it would be advisable
to take into account various objective functions by consider-
ing the calibration problem in a multi-objective framework
(Yapo et al., 1998; Madsen, 2000). After Pareto (1906) in-
troduced the concept of non-inferior solutions in the context
of economics, Zadeh (1963) and Stadler (1979) began to ap-
ply the notion of Pareto optimiality to the fields of engineer-
ing. Over the last three decades tremendous amount of re-
search effort has been expanded on multi-objective decision
making leading to the publication of many interesting results
in the literature (Changkong and Haimes, 1983; Miettinen,
1999; Ehrgott, 2005). One of the most widely used meth-
ods for solving multi-objective optimisation problems is to
transform a multi-objective problem into a series of single-
objective problems. When an appropriate set of solutions is
obtained by the single-objective optimisations, the solutions
can approximate a Pareto front (case of a two-objective func-
tion) or Pareto surface (case of three-objective functions). In
hydrology, most of the studies related to multi-objective cal-
ibration have investigated the use of two-objective functions
and few ones have looked into the use of three or more func-
tions (Madsen et al., 2002; Schoops et al., 2005; Parajka et
al., 2007). In this study we will use the multi-objective cali-
bration approach with three objective functions as suggested
by Madsen (2000) and Madsen et al. (2002). In addition,
while most of these studies have dealt with continuous simu-
lations, we will investigate multi-objective calibration issues
related to event based modelling.

Hence, the objective of this paper is to develop an event
based lumped conceptual rainfall-runoff model and then to
compare single-objective and multi-objective calibration ap-
proaches. The emphasis is put on the impact of the se-
lected objective functions on the actual hydrograph shapes
and simulation errors rather than on the calibration algorithm
as several studies have already investigated this issue (Yu and
Yang, 2000; Johnsen et al., 2005; Tang et al., 2006). The
Gardon catchment located in southern France is used in the
applications because of the recurrent flooding problems its
inhabitants encounter yearly. The objective functions used
in this study can be divided in two broad categories: global
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Fig. 1. Schematic of the model production function.

and relative. Given the diversity of the flood events to be
modelled such an approach was deemed necessary as the first
type of criteria gives more weight to large events whereas the
second considers all events to be of equal weight. For each
category, three different objective functions are considered:
volume conservation which is important for gauging prob-
lems, peakflow reproduction which is essential for flood ap-
plications and the root mean square error as a measure of the
global agreement between the simulated and observed curves
for high flows. The paper is organised in four sections: i)
model presentation; ii) formulation of the calibration crite-
ria; iii) presentation of the study zone, and iv) model perfor-
mance analysis based on single-objective and multi-objective
calibration.

2 The lumped conceptual rainfall-runoff model

Since the 1960s, lumped, conceptual rainfall-runoff mod-
els have been used in hydrology (e.g. Crawford and Lins-
ley, 1966; Cormary and Guilbot, 1969; Duan et al., 1992;
Bergstr̈om, 1995; Donigan et al., 1995; Havnø et al., 1995).
These models consider the catchment as an undivided entity,
and use lumped values of input variables and parameters. For
the most part (for a review, see Fleming, 1975; Singh, 1995),
they have a conceptual structure based on the interaction be-
tween storage elements representing the different processes,
with mathematical functions to describe the fluxes between
the stores.
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The modelling approach followed herein will be lumped
and the catchment will be considered as a single entity. A
two-reservoir-layer model has been developed to represent
the catchment on the basis of the CREC model (Cormary
and Guilbot, 1969) and the Diskin and Nazimov (1995) pro-
duction function (Fig. 1). Evaporation is not represented
since the purpose of the model is to simulate individual flood
events during which evaportanspiration is negligible. The
first layer, denoted “soil-reservoir”, represents the upper soil
layer and controls surface runoff, infiltration, interflow and
percolation. The second layer, denoted “aquifer-reservoir”,
represents the aquifer where mainly base flow occurs. A unit
hydrograph transfer function is used to route flows to the out-
let. The output of the model will be a simulated hydrograph
which will be compared to the original measured hydrograph
to assess model performance. A general description of each
procedure is given below.

2.1 The production function

A regulating elementf separates the precipitationP into sur-
face runoffR, and infiltrationI . The soil-reservoir element
has one input, the infiltrationI , and two outputs, the lateral
interflowq, and the vertical flow g which represents the per-
colation from the upper soil layer to deeper layers. The state
variable of the regulating element, denotedf , is determined
by the magnitude of the reservoir state variableS according
to the Diskin and Nazimov (1995) relationship

f = f0 + (fc − f0)
S

Sm

(1)

wheref0 [ms−1] is the maximum infiltration capacity (cor-
responding to S=0),fc [ms−1] the minimum infiltration ca-
pacity (corresponding toS=Sm), andSm [m] the maximum
storage in the soil-reservoir layer. The value offc charac-
terises the soil’s infiltration capacity at saturation, and the
term (S/Sm) characterises the relative soil moisture. The two
outputsI and R of the regulating element depend on the
value of the state variablef and on the value of the input
P , at the same instant according to the following equations

If P<f thenI=P andR=0 (2)

If P>f thenI=f andR=P − f (3)

The two outputs of the soil-reservoir, q and g, are calcu-
lated as function of a parameterb (with 0≤b≤1) and the term
(S/Sm)

q=fcb
S

Sm

andg=fc (1−b)
S

Sm

(4)

It should be noted that the sumq+g=fc
S
Sm

is indepen-
dent of the parameterb and verifies the soil-reservoir output
of the Diskin and Nazimov (1995) model. As the storageS

approaches the threshold value Sm, both the infiltration ca-
pacityf and the sum q+g tend to the same valuefc.

The aquifer-reservoir has one input, the percolationg, and
one output, the base flowB [ms−1], which is calculated as
function of the aquifer-reservoir level Sb using a linear rela-
tion

B=kSb (5)

where k [s−1] is a constant characterizing the recession curve
of the aquifer. In order to reduce the number of parame-
ters, the aquifer-reservoir does not have a maximum stor-
age depth. The value of the state variableSb of the aquifer-
reservoir is obtained using the continuity equation

dSb

dt
= g(t) − B(t) (6)

2.2 The transfer function

A transfer function is used to route the rainfall excess to the
catchment outlet. A unit hydrograph linear model, based on
a Hayami (1951) kernel function, which is an approxima-
tion of the diffusive wave equation, was used to simulate the
transfer of the sum of (R + q + B) to the outlet (Moussa and
Bocquillon, 1996). Let I(t) [m3s−1] be the input hydrograph

I (t) = (R + q + B) A (7)

whereA [m2] is the catchment area. LetO(t) be the routed
hydrograph at the outlet

O(t) =

t∫
0

I (τ ) H (t − τ) dτ (8)

with H(t) the Hayami kernel function defined as

H(t) =

(wz

π

) 1
2 expz(2−

t
w

−
w
t )

(t)3/2
with

∫
∞

0
H(t)dt = 1 (9)

wherew[s] is a time parameter that represents the centre of
gravity of the unit hydrograph,z [dimensionless] a form pa-
rameter,π=3.1416 andt the time [s]. For low values of z (i.e.
z=1, 2 or 5), the unit hydrograph represents both translation
and diffusivity (approximation of the diffusive wave equa-
tion), while for high values of z (i.e.z=20, 50 or 100), the
unit hydrograph tends to represent only a translation equal to
w (approximation of the kinematic wave equation).

2.3 Model properties and parameters

The input rainfallP is usually given as a function of time
in the form of a histogram using a fixed time interval. Con-
sequently, the other variables are also presented as functions
of time, and the computations are carried out for the same
fixed time interval. The regulating elementf and the soil-
reservoir element are linked by a feedback path transmitting
information about the state of the storage element to the reg-
ulating element. The regulating element is related to the soil-
reservoir element by the fact that one of its outputs is the
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input of the soil-reservoir element. It is also related to the
transfer function by the fact that its outputR is one input of
the transfer function.

Computations start at an instant adopted as zero time
t=0, with a known, or an assumed, initial value of the soil-
reservoir S0 and the aquifer-reservoir Sb0 at the start of that
time interval. Initial conditions can considerably influence
modelling results. However, our model is more sensitive to
the ratio between the initial and maximum storage capaci-
ties than to the value of the initial condition. The 5-day
antecedent rainfall index is frequently used in hydrological
modelling (i.e. Chevallier, 1983; Fedora and Beschta, 1989;
Heggen, 2001; Peugeot et al., 2003; Brocca et al., 2008). Al-
though some studies have used wider time spans to calculate
this index (Anctil et al., 2004), the 5-day rainfall is consid-
ered as a standard. For each flood event, the value of S0 is
defined according to the 5-day antecedent rainfallR5d cor-
responding to three classes representing dry, normal and wet
soil moisture initial conditions as suggested by the Soil Con-
servation Service-USDA (1972) method.

If R5d<10 mm thenS0 = 0.25Sm (10)

If 10 < R5d<30 mm thenS0 = 0.50Sm (11)

If R5d>30 mm thenS0 = 0.75Sm (12)

At the beginning of the rainfall event, the measured dis-
charge Qo(0) att=0 is the sum of the lateral interflow q and
the base flowB. Using Eq. (4) and (5), and substitutingS by
S0, the initial value of the aquifer-reservoirSb0 is calculated
as

Sb0 =
1

k

(
Qo(0)

A
− fcb

S0

Sm

)
(13)

For each time interval, the three state variablesf (t) which
separates rainfall into surface runoff and infiltration, the level
S(t) in the soil-reservoir and the levelSb(t) in the aquifer-
reservoir are calculated from the known values of the vari-
ables at the beginning of the time interval and the rainfall in-
put to the model during the interval. The values of the other
variables at the end of the computation time interval are de-
rived from the value of the three state variables by using the
equations above.

The model needs : i) five parameters for the production
function, the minimum value of the infiltration capacityfc,
a coefficient “a” that relates the maximum and minimum in-
filtration capacities i.e.f0=afc (with a>1), the maximum
level of the soil-reservoirSm, the parameter b of the lateral
interflow, and the parameter k of the aquifer-reservoir’s re-
cession curve, ii) two parameters for the transfer function,
the lag time w and the shape parameter z and iii) two ini-
tial conditionsS0 andSb0 calculated as function of the 5-day
antecedent rainfallR5d and the measured discharge Qo(0) at
t=0.

3 Formulation of calibration criteria

The objective of model calibration is to select parameter val-
ues so that the model simulates the measured hydrograph as
closely as possible. Our aim is to consider multiple objec-
tives that measure different aspects of the hydrological re-
sponse (Madsen, 2000): i) a good agreement between the
average simulated and observed runoff volume (i.e. a good
water balance); ii) a good overall agreement of the hydro-
graph shape; iii) a good agreement of the peak flows.

When a calibration procedure is used, the quality of the
final model parameters will depend on the structure of the
model, the power of the optimisation algorithm, the qual-
ity of the input data, and the estimation criteria or objective
functions used in the optimisation procedure (Gan and Biftu,
1996). It is beyond the scope of this paper to address all the
above factors. We will focus on the last one only and dis-
cuss the definition of objective functions and multi-objective
calibration procedures.

3.1 The objective functions

The objective functions used in this study include both rel-
ative and absolute error measures as suggested by Legates
and McCabe (1999). The selected criteria can be divided in
two broad categories: “global” which gives more weight to
larger flood events and “relative” which considers all events
to be of equal weight. For each category, three different ob-
jective functions were considered: volume conservation, the
root mean square error (RMSE) (which is related by a one-to-
one relationship to the widely used Nash and Sutcliffe (1970)
efficiency measure) and the peakflow prediction:

1. The global volume errorVg and the relative volume er-
ror Vr

Vg =

∣∣∣∣∣∣∣∣∣
N∑

i=1
(Lsi − Loi)

N∑
i=1

ni

∣∣∣∣∣∣∣∣∣ andVr =
1

N

N∑
i=1

∣∣∣∣Lsi − Loi

Loi

∣∣∣∣ (14)

whereN is the total number of flood events used for cali-
bration,i an index representing a flood event (1≤i≤N ), and
for each flood eventi: ni the number of time steps,Loi the
observed runoff depth andLsi the simulated runoff depth.

2. The global root mean square error RMSEg and the rela-
tive root mean square error RMSEr

RMSEg =


N∑

i=1

ni∑
j=1

(
Qoij − Qsij

)2

N∑
i=1

ni


1/2

and (15)

RMSEr =
1

N

N∑
i=1

[
1

ni

ni∑
j=1

(
Qoij − Qsij

)2

] 1
2
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where ni is the number of time steps in the flood eventi,
j is an index representing the time step in a flood eventi

(1≤j≤ni), Qoij the observed discharge at timej in the flood
event i and Qsij the simulated discharge at timej on the
flood eventi.

3. The global peakflowPg and the relative peakflowPr

Pg =
1

N

N∑
i=1

∣∣(Qxsi − Qxoi)
∣∣ andPr =

1

N

N∑
i=1

∣∣∣∣Qxsi − Qxoi

Qxoi

∣∣∣∣ (16)

where Qxoi is the observed peak flow of discharge in the
flood event i and Qxsi is the simulated peak flow of discharge
in the flood event i.

The six objective functions,Vg, Vr , RMSEg, RMSEr , Pg

andPr , are positive functions, and the optimum value of the
parameters corresponds to the minimum value of each “0”. A
single-objective calibration procedure was undertaken sepa-
rately with each of the six criteria. Most model calibration
procedures suffer from the same problems, namely the exis-
tence of multiple optima and the presence of high interaction
or correlation between subsets of fitted model parameters. A
coupled manual and automatic calibration procedure, similar
to adaptive cluster based methods (Solomatine, 1999) was
used. In the first phase, the manual method is used on the ba-
sis of expert knowledge of the hydrological model structure
and the catchment characteristics (rainfall, discharge, events
type). The manual calibration method is based on the re-
sults of previous sensitivity analysis, and uses a trial and er-
ror method to obtain a set of parameters for each flood event
separately (Moussa, 1991; Moussa et al., 2007). The man-
ual calibration is followed by a collective calibration using
all the flood events simultaneously (Chahinian et al., 2005,
2006). Through this first phase, the lower and higher limits
of each parameter range are obtained. The second phase con-
sists in an automatic calibration procedure based on model
simulations using a progressively finer grid in space. The
second phase aims at exploring the whole space of parame-
ters, especially around the optimum obtained during the first
phase. The initial grid is obtained by subdividing the interval
of variation of each parameter into steps, not necessarily reg-
ular, on the basis of the results of the first phase. Different
local minima can appear; around which, smaller grid steps
are defined. This approach enables the exploration of a larger
space, but is limited by the difficulties due to non-linearities
and thresholds in the model which can produce local minima
in the objective functions space. The procedure is repeated
iteratively and guides the grid adaptation to focus on more
promising regions in the space of parameters. The number of
simulations was limited to 50000 runs. In the applications,
this procedure was first used for single-objective calibration
runs.

3.2 Multi-objective calibration procedures

When using multiple objectives, the calibration problem can
be stated as follows (Madsen, 2000)

min {F1 (θ), F2(θ), ..., Fm(θ) ] with θε2 (17)

where Fi(θ) (i=1, 2 . . . , m) are the different objective func-
tions. The optimisation problem is constrained becauseθ

is restricted to the feasible parameter space2. The param-
eter space is usually defined as a hypercube by specifying
lower and upper limits on each parameter. These limits are
chosen according to physical and mathematical constraints,
information about physical characteristics of the system, and
from modelling experiences (Kuczera, 1997; Madsen, 2000,
2003; Madsen et al., 2002).

The solution of Eq. (17) will not, in general, be a single
unique set of parameters but will consist of the so-called
Pareto set of solutions according to different trade-offs be-
tween the different objectives (Gupta et al., 2003). The pa-
rameter space can be divided into “good” (Pareto optimal)
and “bad” solutions, and none of the “good” solutions can
be said to be “better” than any of the other “good” solutions
(Madsen, 2000). A member of the Pareto set will be better
than any other member with respect to some of the objec-
tives, but because of the trade-off between the different ob-
jectives it will not be better with respect to other objectives.
In practical applications, the entire Pareto set may be too ex-
pensive to calculate, and one is only interested in part of the
Pareto optimal solutions.

Generally, when dealing with the multi-objective cali-
bration, the problem is usually transformed into a single-
objective optimisation problem by defining a scalar that
aggregates the various objective functions (Madsen, 2000;
Parakja et al., 2007). However herein, the balanced optimum
Pareto criterion was calculated using the simulation results
obtained by the single-objective calibration. The procedure
was first undertaken for each of the couples within the same
function type i.e. (Vg andVr ), (RMSEg and RMSEr ) and (Pg

andPr ). Then, we crossed two “global” criteria i.e. (Vg and
RMSEg), (Vg andPg), (RMSEg andPg), and two “relative”
criteria (Vr and RMSEr ), (Vr andPr ) and (Vr and RMSEr ).
In the last step, the calibration was carried out using all func-
tions of the same type (Vg, RMSEg andPg) and (Vr , RMSEr

andPr ).

4 The study site

4.1 Catchment description

The Gardon d’Anduze is a 543 km2 Mediterranean catch-
ment located in Southern France. It has a highly marked
topography consisting of high mountain peaks, narrow val-
leys, steep hillslopes and a herring-bone shaped channel net-
work. The highest point is the Mont Aigoual at 1567 m a.s.l.
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and the outlet is located at Anduze at 123 m a.s.l. The catch-
ment’s soils developed essentially on metamorphic (64% of
the catchment area) and granitic terrains. The substrate is
made of shale and crystalline rocks overlain by silty clay
loams (83% of the catchment area) and sandy loam top soil.
The vegetation is dense and composed mainly of beech and
chestnut trees, holm oaks and garrigue, conifers, moor, pas-
ture and cultivated lands. These vegetation classes are typical
of Mediterranean forests.

Rainfall data for the 1977–1984 period were obtained
on paper medium from the “Direction Départementale de
l’Equipement du Gard” of the French Ministry of Equipment
on seven rain gauge stations. The “Direction Départementale
de l’Equipement du Gard” provided also analogue stream-
flow hydrographs at the outlet at Anduze (Moussa, 1991).
The Gardon region is characterized by the highest rainfall in-
tensities recorded in France e.g. a maximum daily rainfall of
608 mm was recorded on the Mont Aigoual during 24 h on
30–31 October 1963. The analysis of long rainfall time se-
ries shows that a daily rainfall of 70 mm has a return period
of 1 year and daily rainfall of 170 mm has a return period of
100 years. The conjunction of high intensity rainfall, shallow
soils and steep slopes produce devastating floods in autumn.

Mean rainfall was calculated as the arithmetic mean of the
seven rain gauges. It is true that a mean value of rainfall can-
not fully express rainfall heterogeneity. However, in lumped
hydrologic models, one cannot distribute rainfall without al-
tering the model structure into a semi-distributed scheme.
Herein the number of rain gauge is seven, and the mean
precipitation can be calculated using either simple graphi-
cal methods or more elaborate techniques based on spline
functions or kriging methods. However, Lebel et al. (1987)
showed that on this catchment, for a small number of rain-
fall gauges, the arithmetic mean and the Thiessen models
yield comparable results to more complicated methods such
as kriging and spline.

4.2 Characteristics of the studied flood events

Flood events from the 1977–1984 period were selected based
on a continuous rainfall greater than 50 mm. All correspond-
ing hyetographs and hydrographs were digitised at an hourly
time step (Moussa, 1991). In total, 29 events were retained:
the event durations range between 24 h and 108 h, the to-
tal rainfall between 50 mm and 300 mm, the total runoff be-
tween 9 and 166 mm, the runoff coefficients between 15%
and 67%, and the initial discharge between 3 and 92 m3s−1.
Figure 2 shows the relations between the total rainfall, the to-
tal runoff depth, runoff coefficient, peakflow, and the initial
discharge. No clear correlation can be seen between them
i.e. the most important rainfall events in terms of precipita-
tion volume are not necessarily those that have the highest
runoff coefficients or peakflow. The initial discharge value
which represents the catchment’s moisture condition does
not seem to yield linear trends either. This finding is typical
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Fig. 2. Relationships between total rainfall, total runoff, peak flow,
initial disccharge and runoff coefficient for the calibration (+) and
validation (o) events.

of Mediterranean climatic conditions where short duration
and high intensity rainfall events are often the cause of the
most important runoff events in terms of both runoff depth
and peakflow.

Fifteen events, corresponding to the 1977–1979 period,
were chosen for calibration and the remaining fourteen, cor-
responding to the 1980–1984 period, were used for valida-
tion (Fig. 2). Both data sets are representative of the various
hydrological behaviours observed on the catchment. They
cover all climatic seasons and display a large spectrum of
rainfall intensity, peakflow and runoff coefficient values.

5 Single- and mutli-objective calibration and validation
results

For the fifteen events of the calibration period, a number of
tests were carried out in order to optimise the parameters
first using single-objective functions, and then to estimate the
Pareto front and analyse the trade-offs between the different
objectives when using two- or three-objective approaches.

5.1 A priori ranges for the model parameters

We defined a lower and an upper variation bound for each
parameter. The hypercube search space shown in Table 1
was used for all the numerical tests:

– The soil-reservoir maximum capacitySm represents the
storage in the root zone for a soil depth of approxi-
mately 1–2 m, and was estimated equal to 365 mm on
the Gardon d’Anduze by Moussa (1991) and Moussa et
al. (2007).Sm’s variation range was set between 0 and
1000 mm.

– “fc” represents the soil’s infiltration capacity at natural
saturation. As a first approximation, this parameter was
considered equal to the hydraulic conductivity at natu-
ral saturation using Rawls and Brakenseik’s pedotrans-
fer functions (1989). Based on soil and geology maps,
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Table 1. Parameter ranges applied for the different automatic calibration together with the single-objective calibration and the balanced
multi-objective Pareto optimum solution.

Objective Function Sm (m) a fc (×10−5) (ms−1) b k (×10−5) (s−1) w (h) z

a. Parameter ranges
[0–1.0] [1–70] [0–30] [0–1] [0–30] [0–72] [0.01–100]

b. Single-objective calibration
Vg 0.015 1.39 2.634 0.809 0.361 23.03 13.71
Vr 0.009 19.92 0.112 0.024 0.249 21.29 11.03
RMSEg 0.051 12.94 0.289 0.260 0.103 5.68 3.48
RMSEr 0.053 12.52 0.295 0.267 0.111 5.79 3.24
Pg 0.029 1.70 1.313 0.462 0.789 3.06 17.16
Pr 0.071 17.84 0.737 0.064 0.342 4.32 4.20

c. Pareto optimum with two objective functions
c.1. Crossing one “global” and one “relative” objective function

(Vg)–(Vr ) 0.076 1.44 5.695 0.010 0.278 20.83 4.93
(RMSEg)–(RMSEr ) 0.051 12.94 0.289 0.260 0.103 5.68 3.48
(Pg)–(Pr ) 0.158 5.89 5.206 0.010 3.592 3.16 15.78

c.2. Crossing two “global” objective functions
(Vg)–(RMSEg) 0.315 5.10 0.051 0.474 9.867 7.82 11.43
(Vg)–(Pg) 0.120 24.25 0.011 0.700 5.620 5.23 0.22
(RMSEg)–(Pg) 0.040 9.68 0.129 0.634 0.112 11.65 0.42

c.3. Crossing two “relative” objective functions
(Vr )–(RMSEr ) 0.212 27.07 0.036 0.955 0.820 6.08 15.01
(Vr )–(Pr ) 0.223 13.69 0.041 0.792 0.602 8.53 13.38
(RMSEr )–(Pr ) 0.075 16.80 0.637 0.065 0.382 4.62 5.10

d. Pareto optimum with three objective functions
(Vg)–(RMSEg)–(Pg) 0.172 10.549 5.547 0.220 0.2375 4.36 28.2
(Vr )–(RMSEr )–(Pr ) 0.225 4.289 7.372 0.055 0.367 3.03 14.1

we distinguish two soil classes (Moussa et al., 2007).
The first one corresponds to silty clay loam soils with
low permeability (estimatedfc=2.8×10−7 ms−1) while
the second one to sandy loam soils, with higher per-
meability values (estimatedfc=1.4×10−6 ms−1). fc’s
variation range was set between 0 and 300×10−6 ms−1.

– “a” is an empirical parameter that relates the maxi-
mumf0 and minimumfc infiltration capacities such as
f0=afc (with a>1). f0 depends also on soil hydrody-
namic properties as stated above forfc. Its variation
range was set between 1 and 70.

– “b” is an empirical parameter used in Eq. (4) to separate
the infiltration from the soil-reservoir into interflowq
and deep percolationg (Fig. 1). “b” can vary between 0
and 1.

– “k” is an empirical parameter characterizing the ex-
ponential recession curve of the aquifer.k’s variation
range was set between 0 and 30×10−5 s−1.

– “w” is a time parameter that represents the centre
of gravity of the unit hydrograph. For the Gardon
d’Anduze, the lag time for the studied flood events

ranges generally between 3 and 9 h. The range of varia-
tion of w was set between 0 and 72 h.

– “z” is a form parameter of the unit hydrograph. For low
values ofz, the unit hydrograph represents an approx-
imation of the diffusive wave equation, while for high
values, the unit hydrograph tends to represent an ap-
proximation of the kinematic wave equation.z ranges
between 0.01 and 100 as suggested by Moussa and Boc-
quillon (1996).

Note that “z” has a feasible range that covers several
decades (0.01–100); that is why in the calibration procedure,
we used a small interval for lower values ofz (z<1) and a
larger interval for higher values (z>1). This procedure is
equivalent to a Log transformation of parameterz which al-
lows a better distinction between small and very large values.
For all remaining parameters, the initial grid is obtained by
subdividing the interval of variation of each parameter into
regular steps.

5.2 Results of the single-objective calibration procedure

The calibrated parameter values for each of the six objective
functionsVg, Vr , RMSEg, RMSEr , Pg andPr , are presented
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in Table 1. Results show that the parameters vary consider-
ably depending on the objective function used.

For the production function, the soil-reservoir maximum
capacitySm ranges between 9 and 71 mm; this appears to
be a small value if it is supposed to represent the storage
in the root zone. fc, which represents the soil’s infiltra-
tion capacity at natural saturation, varies between 0.29×10−5

and 2.6×10−5 ms−1 and compares well with the values esti-
mated when using Rawls and Brakenseik’s (1989) pedotrans-
fer function. It is interesting to note that the two empirical
parametersa andb have the widest span, probably because
these parameters are used to compensate for the errors made
on the remaining parameters of the production function. In-
deed, even when using conceptual models, modellers tend to
be less permissive with parameters that can evoke physical
characteristics or be assimilated to such. As a direct conse-
quence, such parameters, even in an un-constrained calibra-
tion procedure, will be allowed to vary in a tighter interval.

The transfer function has two parametersw and z. The
travel time values ofw obtained through the use ofVg and
Vr (w=21–23 h) are clearly overestimated both in compari-
son with the observation data (the basin response time ranges
between 3 and 9 h) and the values obtained through RMSEg,
RMSEr , Pg andPr (w=3–4 h). This is because the two vol-
ume criteriaVg andVr are less sensitive to the hydrograph’s
global shape and consequently to the parameters of the trans-
fer function. The second parameter of the transfer functionz

ranges between 3 and 17. These values highlight the impor-
tance of the diffusive factor.

For most parameters the use of RMSEg or RMSEr yields
close results. However, when usingPg or Pr , the calibrated
parameters differ from those obtained withVg, Vr , RMSEg

or RMSEr . These results highlight the differences between
the various criteria:Vg or Vr describe the mean value of the
discharge, RMSEg or RMSEr describe the whole shape of
the hydrograph, whilePg andPr refer to a single point rep-
resenting peakflow.

When overlaying the simulated hydrographs for the same
event using the calibrated parameters for each objective func-
tion, one can note major differences between the shapes of
simulated hydrographs. Figure 3 shows the simulated hy-
drographs for the event of 22 October 1977 using the cal-
ibrated parameters obtained from the single-objective cali-
bration (Table 1) for respectivelyVg, RMSEg andPg. When
using the parameters calibrated using theVg-objective func-
tion (Fig. 3, normal dotted line), we observe that the simu-
lated hydrograph reproduces the total volume of the hydro-
graph accurately but fails to represent the global shape of the
hydrograph; neither the peakflow amplitude, nor the time of
occurrence of peakflow are well reproduced. When using the
parameters calibrated using the RMSEg-objective function
(Fig. 3, bold dotted line), the global shape of the hydrograph
is well represented; as is the total volume and the peakflow
is better represented than in the previous case. Finally, when
using the parameters calibrated using thePg-objective func-

Figure 3
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Fig. 3. Simulated hydrographs for the event of 22 October 1977 us-
ing the calibrated parameters obtained from the single-objective cal-
ibration (Table 1) for respectivelyVg (normal dotted line), RMSEg
(bold dotted line) andPg (dashdot line) objective functions; the
solid bold line shows the observed hydrograph.

tion (Fig. 3, dashdot line), the amplitude and the time of oc-
currence of the peakflow are very well simulated, while the
total volume and the global shape of the hydrograph are not.
We observe that the use of each single-objective function im-
proves the simulation of some characteristics of the shape of
the hydrograph, but never the three studied criteria simulta-
neously.

Also, no unique solution to the single-objective problem
is found and an “equifinality” of parameter sets can be seen
as stated by Beven and Binely (1992) and Beven (1993) i.e.
many different parameter combinations give acceptable so-
lutions. However, it is important to distinguish equifinality
as defined by Beven and Binley (1992), and which forms
the basis for the generalised likelihood uncertainty estima-
tion (GLUE) procedure, and trade-offs between different ob-
jectives in a multi-objective optimisation framework. The
former is related to the fact that different parameter sets may
give very similar model performance measured with respect
to some likelihood measure (or single objective function),
whereas the latter is referred to as multi-objective equiva-
lence of parameter sets and defined in terms of the Pareto
criterion (see e.g. Madsen (2000) for a discussion on this).

5.3 Results of the multi-objective calibration procedure
when crossing two objective functions

The results of the multi-objective calibration obtained when
crossing two objective functions are shown in Figs. 4, 5 and
6. The dotted plots represent the objective function values
during the calibration process; the “*” indicates the Pareto
front and the bold point indicates the balanced aggregated ob-
jective function. In Fig. 4, the calibration is based on two ob-
jective functions, the global volume errorVg and the relative
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Figure 4

Vg and Vr

RMSEg and RMSEr

Pg and Pr

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Multi-objective calibration using one “global” and one “relative” objective function.(a, c, e)Objective function values during the
calibration process; the “*” indicates the Pareto front and the bold point indicates the balanced aggregated objective function.(b, d, f)
Normalized range of parameter values along the Pareto front shown in (a), (c) and (e) respectively; full bold line indicate the parameter set
corresponding to the Pareto balanced aggregated objective function.

volume errorVr (Fig. 4a), the global RMSEg and the rel-
ative RMSEr (Fig. 4c) and the global peakflowPg and the
relative peakflowPr (Fig. 4e). Figure 4a, c and e show the
objective function values corresponding to the evaluated pa-
rameter sets for two different objective functions. The grey
dots indicate the results of the calibration runs. The Pareto
optimal front (indicated by a star “*” on Fig. 4a, c and e)
is identified, and finally the balanced aggregated objective
function (indicated by an arrow on Fig. 4a, c and e) is cal-
culated. Note that in Fig. 4c, the Pareto front collapses to-
tally because conflicts do not exist between the subsets of the
analysed objective functions (i.e. RMSEg and RMSEr ). The
single-objective optimisation provides the tails of the Pareto

front, and the optimisation based on the balanced aggregated
measure approximates the balanced central part of the Pareto
front.

The estimated Pareto front for the calibration ofVg and
Vr (Fig. 4a) presents a trade-off. A very good calibration
of Vg (corresponding toVg=0) provides a bad calibration
of Vr (Vr=16.7%), and vice-versa (Vg=0.166×10−4 m3 for
Vr=8.7%). The same comment can be made aboutPg and
Pr : Pg=40.3 m3 s−1 when Pr=18.3% andPg=58.0 m3 s−1

whenPr=13.3%. This result is not surprising as peakflow
refers to instantaneous values that are both difficult to deter-
mine and simulate. The Pareto front of RMSEg and RMSEr
shows a high correlation. This can be explained by the fact
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Figure 5
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Fig. 5. Multi-objective calibration using two “global” objective functions.(a, c, e)Objective function values during the calibration process;
the “*” indicates the Pareto front and the bold point indicates the balanced aggregated objective function.(b, d, f) Normalized range of
parameter values along the Pareto front shown in (a), (c) and (e) respectively; full bold line indicate the parameter set corresponding to the
Pareto balanced aggregated objective function.

that the majority of flood events have similar duration (48 to
96 h) and consequently the two objective functions presented
in Eq. (15) tend to be similar.

The variation of the optimum model parameter sets along
the Pareto front is shown in grey in Fig. 4b, d and e for
the multi-objective calibration of (Vg andVr ), (RMSEg and
RMSEr ) and (Pg andPr ) respectively. The parameter val-
ues are normalised with respect to the upper and lower limits
given in Table 1 so that the range of all normalised param-
eters is between 0 and 1. For the calibration ofVg andVr

(Fig. 4b), a remarkably large span is observed in the parame-
ter values when moving along the Pareto front. The range is
larger than 50% for the main parameters Sm, a, b, w andz.

The compromised solution using the Pareto front is shown in
bold on Fig. 4b, d and e, and the corresponding values of the
calibrated parameters are given in Table 1. The calibrated
parameters of the compromised solution of (Vg andVr ) in
Table 1 are within the interval delimited by the calibrated pa-
rameters ofVg andVr separately (Table 1). Similar results
are observed for (RMSEg and RMSEr ) and for (Pg andPr ).

Figure 5 shows results when crossing two “global” crite-
ria (Vg and RMSEg; Fig. 5a and b), (Vg andPg; Fig. 5c and
d) and (RMSEg andPg; Fig. 5e and f) and Fig. 6 shows re-
sults when crossing two “relative” criteria (Vr and RMSEr ;
Fig. 6a and b), (Vr andPr ; Fig. 6c and d) and (RMSEr and
Pr ; Fig. 6e and f). Note that when we calibrate the model
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Figure 6
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Fig. 6. Multi-objective calibration using two “relative” objective functions.(a, c, e)Objective function values during the calibration process;
the “*” indicates the Pareto front and the bold point indicates the balanced aggregated objective function.(b, d, f) Normalized range of
parameter values along the Pareto front shown in (a), (c) and (e) respectively; full bold line indicate the parameter set corresponding to the
Pareto balanced aggregated objective function.

using the global volume objective functionVg, the criterion
tends to zero because the calibration procedure allows the
simulation of the exact total volume; this is not the case for
the other criteria. Note also that the volume based objective
functionsVg andVr are calculated in volume per time step.
Consequently, the corresponding objective function (i.e. less
than 0.0001 m3/time step in Fig. 5) is small in comparison
with other objective functions (i.e. the relative volume error
ranges between 0.05 and 0.25 in Fig. 6). Again, we observe
significant trade-offs for the three cases of Fig. 5 :

– Vg=0 when RMSEg=65.5 m3 s−1 and Vg=5.0×10−5 m3

when RMSEg=31.0 m3 s−1 (Fig. 5a);

– Vg=0 when Pg=92.4 m3 s−1 and Vg=23.8×10−5 m3

whenPg=40.3 m3 s−1 (Fig. 5c);

– RMSEg=31.0 m3 s−1 whenPg=61.6 m3 s−1 and
RMSEg=50.9 m3 s−1 whenPg=40.3 m3 s−1 (Fig. 5e).

Comparable results are obtained with the relative criteria
in Fig. 6a, c and e. The variation of the optimum model
parameter sets along the Pareto front for the multi-objective
calibration of (Vg and RMSEg; Fig. 5b), (Vg andPg; Fig. 5d),
(Vr and RMSEr ; Fig. 6b), (Vr andPr ; Fig. 6d) are similar and
sometimes higher than those observed for (RMSEg andPg;
Fig. 5f) and (RMSEr andPr ; Fig. 6f). Figures 4 to 6 indicate
that the global volume criteria (Vg) is the most insensitive i.e.
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volume conservation can be easily respected with a number
of parameter combinations. This translates into a somehow
flat Pareto front (Figs. 4a, 5a and b). In comparison RMSE
and peakflow produce sharper fronts; RMSE seems to be the
most restrictive of the tested criteria. The relative criteria
seem to yield sharper fronts than the global criteria which
seem to be controlled by the extreme events.

In comparison with the single-objective calibration, the
use of a multi-objective calibration technique seems to yield
tighter variation intervals. These findings are in accordance
with those of Engeland et al. (2006). The variation ranges we
obtained for the multi-objective calibration are smaller than
those reported in Schoops et al. (2005) and Madsen (2000)
who had respectively 3 and 2 additional parameters to cali-
brate. However, the number of free parameters cannot be the
only explanation behind the wider variation spans as Gupta
et al. (2003) obtained tighter intervals when calibrating the
13 parameters of the SAC-SMA model.

5.4 Results of the multi-objective calibration procedure
when crossing three objective functions

The same methodology was extended in order to combine
three objective functions. Figure 7 shows a volumetric
view for the three-objective calibration space, when cross-
ing the three global objective functions (Vg, RMSEg and
Pg; Fig. 7a), and the three relative objective functions (Vr ,
RMSEr andPr ; Fig. 7c). Results show comparable param-
eter variation ranges for both (Vg, RMSEg andPg; Fig. 7b)
and (Vr , RMSEr andPr ; Fig. 7d). Note that Fig. 5a, c and
e give the projection on two-objective planes, respectively
(Vg, RMSEg), (Vg, Pg) and (RMSEg, Pg) of the three global
objective functions (Vg, RMSEg, Pg) of Fig. 7a. Similarly,
Fig. 6a, c and e give the projection on two-objective planes,
respectively (Vr , RMSEr ), (Vr , Pr ) and (RMSEr , Pr ) of the
three relative objective functions (Vr , RMSEr , Pr ) of Fig. 7c.
For the optimal solution (Table 1), the soil-reservoir max-
imum capacity Sm is equal to 172 mm when crossing (Vg,
RMSEg and Pg) and 225 mm when crossing (Vr , RMSEr

andPr ). This value is more representative of the storage in
the root zone. For both combinations (Vg, RMSEg andPg)
and (Vr , RMSEr andPr ), the optimal parameterfc ranges
between 5.5×10−5 and 7.4×10−5 ms−1, and compares well
with pedotransfer functions (Rawls and Brakenseik, 1989).
It is interesting to note that the two empirical parametersa

andb still have the widest span. The travel time values ofw

obtained range between 3 and 4 h and correspond to the ap-
proximate lag time of the basin during intense flood events,
while the dimensionless shape parameterz, ranges between
14 and 28. The parameter variation ranges are comparable to
those obtained when using only two functions. The parame-
ters that vary most between the two combinations areb, k and
z. Parametersb andk are clearly linked to each other as they
both control the “outward” fluxes and can be used to correct
possible flow over-estimation by increasing percolation and

interflow. Data on water levels both in the unsaturated and
saturated zones could have been useful in constraining these
parameters further. Unfortunately such data were unavailable
for the studied period.

A similar approach can be used for other sets of three-
, four-, five- or six-objective functions. However, we limit
our analysis to the three global objective functions (Vg,
RMSEg and Pg) and the three relative objective functions
(Vr , RMSEr andPr ), because the aim of this study is to con-
duct a sensitivity analysis of the calibrated parameters when
moving from single- to two- or three-objective functions, and
not to explore the whole space of the objective functions.
Also, it is not simple to analyse simultaneously all possi-
ble combinations of the objective functions due to their large
number, and because three or more objective functions could
yield very complex geometries for the Pareto front. More-
over, mathematically, the Pareto front will “collapse dimen-
sion” in subspaces if conflicts do not exist between the sub-
sets of the analysed objectives (see Fig. 4c for an example of
a dimensional collapse). Herein, the analysis was conducted
in a six-objective space, and a single analysis using all sin-
gle objective functions implicitly yields all the presented re-
sults. It was also possible to present results moving from
higher to lower dimensional analysis (i.e. from six-, to five-,
four-, three-, two- and single-objective functions). However,
it is not simple to analyse data in a six-D space and even in
three-D space due to the complex shape of functions. Con-
sequently, starting the analysis with single-, than two- and
finally three- objective functions allows the analysis of the
shape of each objective function separately and then two by
two, then three by three, etc.

The methodology presented in this paper has also its lim-
its, especially in hydrologic modelling where non-linearities
and thresholds yield non-convex Pareto fronts such as in
Fig. 6a and c. As discussed in a number of studies by
Changkong and Haimes (1983), Koski (1985), Das and Den-
nis (1997) and Messac and Mattson (2002), the traditional
approaches used in the calculation of the Pareto front have
drawbacks on non-convex parts of the Pareto front. This is
due to the fact that the weighted-sum method is often im-
plemented as a convex combination of objectives, where the
sum of all weights is constant and negative weights are not
allowed. Generally, multi-objective optimisation algorithms
perform well for bivariate problems, but scale poorly to mul-
tiple objectives (Changkong and Haimes, 1983). More re-
cently, new methods developed to generate the Pareto op-
timal solutions in non-convex regions (i.e. Kim and Weck,
2005) give promising results in the case of two-objective
functions, but further theoretical work is still needed to over-
come the limitations for multi-objective functions.

5.5 Validation and uncertainty analysis

As the “global” and “relative” criteria gave comparable re-
sults and interpretation, we choose to validate the results of
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Vg, RMSEg and Pg

Figure 7

(a) (b)

(c) (d)

Vr, RMSEr and Pr

Fig. 7. Multi-objective calibration using three “global”(a andb) and three “relative”(c andd) objective functions. a and c) Objective
function values during the calibration process; the “*” indicates the Pareto front and the bold point indicates the balanced aggregated
objective function. b and d) Normalized range of parameter values along the Pareto front shown in (a) and (c) respectively; full bold line
indicate the parameter set corresponding to the Pareto balanced aggregated objective function.
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Figure 8

Fig. 8. Comparison between measured and simulated runoff depths
(a) and peakflows(b) using the set of parameters from the multi-
objectiveVr–RMSEr–Pr procedure.

the “relative” criteria (Vr , RMSEr and Pr ) which are less
sensitive to extreme events.

To compare the calibration procedures, we computed the
value of each objective function (Table 2). It is not sur-
prising that the values ofVr , RMSEr and Pr are minimal
when single-objective calibration are conducted function of
each of these criteria :Vr=8.7%, RMSEr=26.0 m3 s−1 and

Pr=13.4%. The maximum value ofVr=19.1% is obtained
when using a single-objective calibration minimisingPr ; the
maximum value of RMSEr=43.2 m3 s−1 is obtained when
using a single-objective calibration minimisingVr ; and the
maximum value ofPr=27.8% is also obtained when using a
single-objective calibration minimisingVr . Once again the
use of a volume based criterion is restrictive while the use
of RMSE can yield relatively acceptable results for peak-
flow and vice versa. The sensitivity of the RMSE criterion to
peakflow has already been reported by many authors (Parada
et al., 2003; Yapo et al., 1998) and our findings are similar to
theirs.

When using two- or three-objective functions, the error
values fall within the intervals indicated above. However,
it is interesting to note that for all three criteria, the maxi-
mum errors values obtained with the multi-objective methods
are always lower than those obtained when using a single-
objective calibration in which the given criterion is not con-
sidered. This is essentially a consequence of the trade-offs
between objective functions. Finally, the combination of
(Vr , RMSEr and Pr ) gives a reasonable compromise be-
tween the three criteria withVr=12.6%, RMSEr=33.3 m3 s−1
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Figure 9

a. Event of 22-24/10/1977                                                         b. Event of 

Fig. 9. Example of simulated hydrographs of high intensity(a) and low intensity events(b) using the set of parameters from the multi-
objectiveVr–RMSEr–Pr procedure. The full bold line shows the measured hydrograph, and the dotted lines the simulated hydrographs.

Table 2. Values of the three objective functionsVr , RMSEr and
Pr when using the calibrated parameters with the single-objective
calibration and the balanced two-objective or three-objective Pareto
optimum solution.

Objective function used for calibration Criteria value

Vr [-] RMSEr (m3 s−1) Pr [-]
Single-objective (Vr ) 0.087 43.2 0.278
Single-objective (RMSEr ) 0.158 26.0 0.159
Single-objective (Pr ) 0.191 32.4 0.134
Two-objective (Vr )–(RMSEr ) 0.117 33.4 0.216
Two-objective (Vr )–(Pr ) 0.116 34.4 0.197
Two-objective (RMSEr )–(Pr ) 0.180 29.4 0.145
Three-objective (Vr )–(RMSEr )–(Pr ) 0.126 33.3 0.214

Table 3. MeansεV andεQ of the relative prediction error on runoff
depth and peakflow of the calibration and validation events when
using the calibrated parameters with the single-objective calibration
and the balanced two-objective or three-objective Pareto optimum
solution.

Objective function used for calibration Runoff depthεV PeakflowεQ

Single-objective (Vr ) −0.049 −0.269
Single-objective (RMSEr ) 0.047 0.129
Single-objective (Pr ) 0.172 −0.107
Two-objective (Vr )–(RMSEr ) 0.021 −0.161
Two-objective (Vr )–(Pr ) 0.026 −0.190
Two-objective (RMSEr )–(Pr ) 0.169 −0.112
Three-objective (Vr )–(RMSEr )–(Pr ) 0.014 −0.183

andPr=21.4%. These values are quite comparable to those
obtained when using just two objective functions i.e.Vr ,
RMSEr .

To further compare the performance of the calibration pro-
cedures, we computed the relative error on both runoff depth
and peakflow: for a given event i, the error on runoff depth
and peakflow are defined respectively byεvi=(Lsi−Loi)/Loi

andεQi=(Qxsi−Qxoi)/Qxoi . Let εV andεQ be the mean of
εvi andεQi respectively. The quantitiesεV andεQ represent

the bias of runoff depth and peakflow predictions. Table 3
illustrates the findings when using either the single or multi-
objective method (i.e. two or three objective functions) and
shows thatεV andεQ fall within similar ranges for two- or
three-objective functions. It is worthy to note that the great-
est errors on runoff depth are obtained through the use of a
peakflow criterion while the greatest errors on peakflow are
caused by the use of a volume criterion. Apart from two
cases, the error on runoff depth is acceptable (<5%) while,
not surprisingly, the error on peakflow is far higher (>10%)
but less than 27%. In addition, the model seems to have a
tendency to overestimate runoff depth and to underestimate
peakflow.

The best compromise between both errors is reached by
using the parameters obtained through multi-objective cal-
ibration with three functions (Vr , RMSEr and Pr ) but the
combination ofVr and RMSEr gives once again compa-
rably good results. In this instance the use of two “well”
chosen and complementary objective functions seems to be
sufficient for runoff simulation. However, the lack of soil-
moisture and groundwater data prevents us from extending
our results to the other vertical components of the model.

Figure 8 compares the measured and simulated runoff
depths (Fig. 8a) and the measured and simulated peakflows
(Fig. 8b) obtained when using the parameters of the bal-
anced aggregated objective function (Vr , RMSEr and Pr )
given in Table 1. It can be seen that the model gives sim-
ilar results both for the calibration and validation periods.
An illustration of the equifinality problem is shown in Fig. 9
where hydrographs are simulated using the parameters cor-
responding to the entire Pareto front of (Vr , RMSEr and
Pr ); the bold line shows the measured hydrograph and the
dotted lines show the various model simulations using the
multi-objectiveVr -RMSEr -Pr procedure’s parameters. The
results indicate that the hydrographs are also well simulated
for high (Fig. 9a) and low intensity events (Fig. 9b). The
figure clearly shows that many different parameter sets, may
produce equally good simulations according to the three ob-
jective functions.
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6 Discussion and conclusion

A conceptual lumped event based rainfall-runoff model, cou-
pling a production and a transfer function, was developed
and applied on the Gardon catchment in southern France.
The model has seven free parameters which need to be cali-
brated. The model was calibrated on 15 events and validated
on 14 others. The results of both the calibration and valida-
tion phases were compared on the basis of their performance
with regards to six objective functions, three global and three
relative, representing volume, the root mean square error, and
peakflow.

The results showed that the calibrated parameter values
were dependent on the type of the objective function used.
Trade-offs are observed between the different objectives and
no single set of parameter was able to optimise all objectives
simultaneously. Thus a set of Pareto optimal solutions and a
balanced aggregated objective function were calculated with
two and three objective functions.

The comparison of the single and multi-objective cali-
bration results, using two or three functions, illustrates the
“non-uniqueness problem” (Beven and Binley, 1992) since
many different parameter combinations gave acceptable so-
lutions according to a given objective. However, the vol-
ume conservation criterion seemed to be the most permis-
sive whereas the RMSE and the peakflow prediction crite-
ria yielded sharper Pareto fronts. The model was then vali-
dated with the set of optimised parameters obtained using the
“combined relative” criteria (Vr , RMSEr andPr ). The use of
a triple objective function does not seem to be justified in our
case. Indeed given the impact peakflow values have on the
RMSE, there seems to be a redundancy in their use, hence
a combination of either (Vr andPr ) or (Vr and RMSEr ) can
yield equally acceptable results.

Differences between measured and simulated hydrographs
were assessed by calculating the bias of the simulated runoff
depth and peakflow. These errors can be due to the use of
non-optimal parameter values but also to errors inherent to
the model structure and the meteorological input data. In the
model calibration herein, only the error due to the parameter
values is minimised. However, the calibration of model pa-
rameters can also compensate the other error sources. In our
case the best results in terms of bias were obtained through
multiple calibration with a volume and an RMSE criterion

The choice of an adequate objective function when mod-
elling separate flood events, emphasise the importance of the
modeller’s intervention for tailoring the model calibration to
a specific application. Attempts have already been made to
include this knowledge objectively in the model calibration
procedure (Boyle et al., 2000). Our results highlight the im-
portance of the modeller’s professional judgement as often
the criteria values and error estimates are within close bounds
and may not be significantly different from a statistical point
of view. It is therefore important to plot the hydrographs

and assess the graphical differences in the simulated hydro-
graph’s shape.

A sound hydrological knowledge is required to evaluate
data and model errors. In most real world application,
especially in an operational framework and for real-time
predictions, data quality checks could be too time consuming
and hence difficult to carry out. Thus a robust calibration
procedure becomes even more essential.

Edited by: H. Bormann
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