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Abstract

One major challenge in the emerging field of movement ecology is the inference of behavioural modes from movement
patterns. This has been mainly addressed through Hidden Markov models (HMMs). We propose here to evaluate two sets of
alternative and state-of-the-art modelling approaches. First, we consider hidden semi-Markov models (HSMMs). They may
better represent the behavioural dynamics of foragers since they explicitly model the duration of the behavioural modes.
Second, we consider discriminative models which state the inference of behavioural modes as a classification issue, and may
take better advantage of multivariate and non linear combinations of movement pattern descriptors. For this work, we use a
dataset of .200 trips from human foragers, Peruvian fishermen targeting anchovy. Their movements were recorded
through a Vessel Monitoring System (,1 record per hour), while their behavioural modes (fishing, searching and cruising)
were reported by on-board observers. We compare the efficiency of hidden Markov, hidden semi-Markov, and three
discriminative models (random forests, artificial neural networks and support vector machines) for inferring the fishermen
behavioural modes, using a cross-validation procedure. HSMMs show the highest accuracy (80%), significantly
outperforming HMMs and discriminative models. Simulations show that data with higher temporal resolution, HSMMs
reach nearly 100% of accuracy. Our results demonstrate to what extent the sequential nature of movement is critical for
accurately inferring behavioural modes from a trajectory and we strongly recommend the use of HSMMs for such purpose.
In addition, this work opens perspectives on the use of hybrid HSMM-discriminative models, where a discriminative setting
for the observation process of HSMMs could greatly improve inference performance.
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Introduction

Movement paths result from the interaction between the

behaviour of an organism and the spatial structuring patterns of

its environment [1–5]. Those paths result from the succession of

distinct types of behavioural modes (e.g., travelling from one area

to another, searching for cues or preys, pursuing and eating a

prey), each one associated with the fulfilment of a particular goal.

The knowledge of these modes provides rich information on the

processes underlying movement, but they are not directly

accessible through the sole observation of the sequence of positions

recorded by GPS or other position-logging artefacts. The inference

of the behavioural modes from movement paths remains a

challenging issue in the emerging field of movement ecology [6].

Hidden Markov models (HMMs) have become increasingly

popular to address this issue (for examples in classifying activities

such as foraging, searching, encamping, cruising, migrating and

bedding, see [7–18]; in navigation strategies, see [19–21]; and in

types of movement orientation, see [22]). HMMs rely on

probabilistic inference of the behavioural modes, stated as hidden

states, from the in situ observed series. Those series are typically

sequences of positions or associated features such as distances,

speeds or turning angles along the movement paths [8]. The key

feature of HMMs is to account for the temporal dynamics of the

behavioural modes, mostly based on state transitions between steps

(two consecutive positions define a step). Such first-order HMMs

comprise computationally efficient inference procedures [23,24].

However, it may be unrealistic to consider that a forager takes a

decision about changing its behavioural mode at each step, and

regardless of any behaviour dating from more than one step back.

In this respect, hidden semi-Markov models (HSMMs), recently

investigated in movement ecology [8], may be more appealing.

While HMMs characterize behaviour at the step scale, HSMMs

characterize behaviour at the segment scale; a segment is

composed of consecutive steps associated with a same state.

HSMMs do account for transitions between consecutive but

distinct states and for durations of state segments corresponding to

one behavioural mode.

For most living organisms studied in ecology, groundtruthed

datasets – samples of tracks or positions for which behavioural

modes are known – are hardly available. Therefore, inference

issues are generally stated within a non-supervised framework.

Furthermore, rigorous model validation (e.g. by cross-validation as

in [25,26]) cannot be performed. Model validation mainly relies

on some expert-driven evaluation of the ecological or behavioural

plausibility of the behavioural modes inferred. Fishermen had long
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been the only foragers whose true behavioural modes were

available. Actually, on-board observers can provide direct

observations of the vessels’ activities during fishing trips, allowing

for model validation [11]. In pelagic ecosystems, water masses and

fish schools are constantly moving [27] so that precise prey

localization is unpredictable regardless of the predator, human or

animal [28]. Foraging movements for all those predators aim at

the same goal, i.e. dealing with uncertainty on prey localization

and maximizing prey encounters. As a result, fishermen deploy

similar foraging strategies to those of other animal predators [28],

therefore the same statistical methods used for other foragers are

applied to them (for instance, see [28,29] for a characterization on

their diffusive movement through Lévy walks; and see [10–12] for

applications of HMMs for identifying their behaviour). Nowadays,

tracking data on non-human foragers can be enriched by

concurrent deployment of additional devices that explicitly record

activities, at least for a sample of individuals (e.g. time-depth

recorders for diving as in [9,30–32], video-cameras as in [33,34]

and tri-axial accelerometers as in [35]). Given such partially

groundtruthed datasets, we are no more in a fully non-supervised

context, but rather in supervised or semi-supervised ones [36,37].

Markovian models may apply in such supervised setting.

Nevertheless, alternative models may also be considered, particu-

larly because Markovian models are limited for handling multiple

observed variables. Choosing and fitting the most appropriate

multivariate distribution may be delicate. A simplifying hypothesis is

commonly adopted to solve this issue: observed variables condi-

tioned on states are assumed mutually independent, so the

multivariate distribution becomes the product of the univariate

conditional distributions of each variable. By contrast, discrimina-

tive models, such as random forests (RFs), artificial neural networks

(ANNs) and support vector machines (SVMs), provide robust

solutions for non-linear discrimination in high-dimensional spaces.

They have been shown to be highly efficient for a wide range of

applications [38–42]. Their availability in several software without

the need of strong computational skills makes them attractive for

applications to ecological datasets [43,44]. This includes a few

studies dedicated to behavioural modes [45–47]. This context of

technological advances for data collection enables a wide range of

supervised models. Hence, evaluating and comparing models

accuracy for inferring behavioural modes becomes necessary.

Here, we consider as study case the foraging movement of 50

Peruvian purse-seiners targeting anchovy. More than 200 of their

fishing trips were documented by a Vessel Monitoring System and

their behavioural modes simultaneously registered by on-board

observers. This unique and large groundtruthed dataset allows

performing, via cross-validation, a comprehensive evaluation and

comparison of Markovian (HMMs and HSMMs) and discrimina-

tive models (random forests, artificial neural networks and support

vector machines) for inferring the behavioural modes of a moving

forager. We show that HSMMs provide the most accurate

inference of the behavioural modes with 80% of global accuracy.

We also show via simulation that this result could be greatly

reinforced with position records of higher frequency.

Materials and Methods

The purse-seine Peruvian anchovy fishery is the world largest

mono specific fishery [48]. Satellite tracking by Vessel Monitoring

System (VMS) is mandatory for the whole Peruvian industrial

fishing fleet (.1000 vessels) since 2000. Vessel positions (6100m

of accuracy; ,1 record per hour) for tens of thousands of fishing

trips are thus available for scientific purposes since (e.g., [28–

30,46,47,49]). Although most records are given according to one-

hour intervals, some irregularities (e.g. 0.17, 0.99, 12) seldom

occur. Since there is no straightforward optimal interpolation

method for these cases [8], we work with the records as they are.

Therefore, the considered VMS data consist in tracks (i.e., series of

positions) with non-regular steps. For each VMS track, several

observed variables are computed at each step: speed (sp), heading

(h), changes of speed and turning angles between the previous and

the current step (Dsp{1 and Dh{1) and between the current and

the next step (Dspz1 and Dhz1).

In addition, IMARPE (Peruvian Marine Research Institute)

runs a program of observers on-board for a ,1% sample of the

fishing trips. They record the location and time of the different

behavioural modes occurring during the trips: fishing, searching,

cruising (i.e. travelling following a predetermined course), drifting,

helping other vessels, and receiving or giving fish to other vessel.

For the remaining 99% of the fishing trips, behavioural modes are

unknown.

Based on the criteria described in [28,29,47], a groundtruthed

dataset gathering tracking data and their corresponding behav-

ioural modes is built. Overall we consider three behavioural

modes, fishing, searching and cruising. Fishing trips involving

‘helping’, ‘receiving/giving’ and ‘drifting’ modes are discarded,

due to the low number of occurrences of these modes. Together

they represent less than 6% of the groundtruthed dataset. We work

with a dataset corresponding to 2008, consisting of 242 fishing

trips (,36000 fishing trips were performed in total that year). Fig. 1

shows an example of a trip with each VMS record associated with

a behavioural mode.

For hidden state inference, two different approaches are

investigated and evaluated. Markovian models, which take into

account the sequential nature of data; and discriminative models,

remarkably popular in the pattern recognition and machine

learning domain [50–52]. Henceforth, we will denote by St the

state variable at time t taking a discrete value st, which encodes a

behavioural mode (fishing, searching or cruising). A state sequence

starting at time 0 and ending at T is then denoted by

ST
0 :S0,S1, . . . ,ST , taking discrete values sT

0 . Likewise, X T
0

represents the sequence of continuous observed variables taking

values xT
0 . Under the two approaches, the goal is to infer sT

0 .

We perform a quantitative evaluation of the models perfor-

mance using a classic cross-validation procedure. It proceeds as

follows. The groundtruthed dataset is split into two sub-samples.

The first partition is used for training the models, i.e., learning

from the data and estimating the parameters. The second partition

is used for validating the models, i.e., evaluating model perfor-

mance. Training and validation partitions gather each 50% of the

original sample of trips and are built by repeated random sub-

sampling (20 repetitions). This parameter setting provides us with

a trade-off between the performance evaluation and computa-

tional efficiency.

Markovian Models
HMM. HMMs are the classic models for inferring hidden

state sequences from observed variables [53]. A HMM combines

the two following processes. An underlying first-order Markov

process of the hidden state sequence, where the probability of

currently being at state st only depends on the immediately

preceding state st{1. And a state-dependent observation process,

where the probability of Xt~xt only depends on the current state

st and not on previous states or observations. Assuming

homogeneity, a HMM can be fully characterized by (1) the initial

probabilities pi~P(S0~i), (2) the transition probabilities

pij~P(St~jjSt{1~i), and (3) the state-dependent observation

probability density functions (pdfs) bj(xt)~f (xtjSt~j), where

HMMs: The Best Models for Forager Movements?
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f (xtjSt~j) denotes the conditional pdf of Xt at xt given St~j.
When observations are multivariate, under mutual independence

bj(xt)~P
e~1

E

bje(xte)

where E is the number of observed variables included in the

model. The likelihood of a HMM can be written as

P(ST
0 ~sT

0 ,X T
0 ~xT

0 )~ps0
bs0

(x0) P
t~1

T
pst{1st bst (xt)

� �

In our case study, several observed variables are available

(sp,h,Dsp{1,Dh{1,Dspz1 and Dhz1). Over all possible combina-

tions of observed variables, the subset (combination) of variables

giving the highest state-inference accuracy is chosen –the

computation of accuracy as well as other performance indicators

are described in section ‘Indicators of model performance’. For

each observed variable, we test several probability distributions

based on a supervised maximum likelihood (ML) fit. When ML

estimation cannot be derived analytically, a numerical optimiza-

tion is used. Goodness-of-fit (GOF) is tested using the robust

Cramér-von Mises statistic [54]. In cases where two or more

distributions provided significant fits, the AIC criterion [55] is used

for selection among them. All fishing trips start in cruising mode,

so initial probabilities are set to one for cruising and zero for the

other states. Given the training partition, the ML estimation of the

transition probabilities resorts to computing the relative frequen-

cies of the transitions between successive states [36]. Using all

these elements, the inference of the sequence of hidden states sT
0 is

done by global decoding via the Viterbi algorithm [23]. Hidden

Markov Model toolbox for Matlab [56] is used.

HSMM. A first-order Markov state process may not be,

however, the most natural choice for the interpretation of

movement patterns. It implicitly assumes that time spent at a given

state is distributed according to a geometric distribution. This

distribution is memoryless; it means that at a given time t, the

waiting time for switching from one state to a distinct state is

independent from the time already spent in the former state.

However, in practice, a forager’s behaviour is not memoryless. A

semi-Markov process may therefore be more suitable. It explicitly

models the state duration distribution and may consider any

distribution function. HSMMs are thus generalizations of HMMs.

They combine two processes: a state-dependent observation process

as in HMMs, and an underlying semi-Markov state process. A semi-

Markov process is determined by the duration distributions

dj(u)~P(Stzuz1=j,Stzu
tz2~jjStz1~j,St=j) and transition prob-

abilities between distinct states pij~P(St~jjSt=i,St{1~i). For

the last visited state, a survival function of the duration is used:

Dj(u)~
P

vƒu dj(v). The likelihood of a HSMM [57] can be

written as

P(ST
0 ~sT

0 ,X T
0 ~xT

0 )~ps0
ds0

(u0) P
R{1

r~1
psr{1sr dsr (ur)

� �
psR{1sR

D(uR)I
XR

r~0

ur~T

 !
P
T

t~0
bst (xt)

� �

where Rz1 is the number of visited states, ur is the duration at state

sr, and I() denotes the indicator function.

Figure 1. Fishing trip with VMS records and their corresponding behavioural modes.
doi:10.1371/journal.pone.0071246.g001
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Therefore, compared to HMMs, HSMMs provide a model of

the state process at a higher scale: the segment scale (Fig. 2;

[58,59]). This segment scale is potentially more relevant for

interpreting and discriminating distinct behavioural modes in

foraging movement.

The selection of observed variables, the fit of state-dependent

observed variable distributions and the estimation of transition

probabilities (between distinct states) follow the same criteria as for

HMMs. Although state durations are inherently discrete, contin-

uous distributions provide flexibility under certain irregularities on

the frequencies of positioning of satellite records. They enable the

incorporation of those data directly into the model. Extensive

literature on the use of continuous distributions for modelling

duration is available (e.g., [58–61]). Here we examine seven

continuous probability distributions for modelling the duration of

each of the three behavioural modes. Their parameters are

estimated by maximum likelihood using the training dataset.

Then, GOF is tested using Cramér-von Mises statistic and AIC

criterion is used for selection among distributions not rejected by

the test. Using all these elements, the inference of the sequence of

hidden states sT
0 is done by global decoding via the forward-

backward Viterbi algorithm [62]. A code in Matlab for this Viterbi

algorithm is given in Text File S3.

Discriminative Models
Discriminative models are alternative approaches for inferring

behavioural states within recorded trajectories. In contrast to

Markovian approaches, discriminative models do not rely on the

explicit modelling of the joint likelihood of observation and state

sequences. The inference of the behavioural mode sequence sT
0 is

stated as a classification issue, i.e. the determination of the class

(behavioural mode) attached to any position along the trajectory.

Within a supervised framework, discriminative models learn a

classification rule to predict a class from an observed vector xt.

Random forests [63], support vector machines [64] and artificial

neural networks [65] are among the state-of-the-art techniques in

the machine learning domain [41]. These models differ in the way

classification rules are stated and learned. For SVMs, the goal is to

maximize the margin around the hyperplane that separates classes.

For ANNs, the objective is to minimize the classification error.

And for RFs, discrimination is achieved by the simultaneous

minimization of the within-group variances and maximization of

the between-group variances. The relative performances between

these methods are application-dependent and vary according to

the structure of the observation space [66]. A key feature of

discriminative models is that they do not require any assumption

on the nature of the observed variables, their distributions or

covariances. To prevent over-fitting during the learning stage, a

cross-validation procedure can be applied. Still, it requires

sufficiently large and representative groundtruthed datasets.

As for HMMs and HSMMs, the subset of observed variables

giving the highest inference accuracy is selected. The selected

subsets may differ among the three discriminative models.

Architecture and parametrization of each discriminative model is

described below.

RFs. A random forest involves a set of N decision trees. A

decision tree discriminates patterns recursively in a tree-like

structure. At each tree node, m variables are randomly selected

among the subset of observed variables. Data are split following

certain conditions on those m variables, so that within-group

variance is minimized and between-group variance is maximized.

For each observed vector xt, a tree’s output is its classification in a

behavioural mode. Consequently, a random forest’s output is the

statistical mode of the classification outputs of N trees. We test

N~f50,100,500,1000g and m~f1,2, . . . ,Yg, where Y is the size

of the subset of observed variables. The Matlab implementation of

the random forest library [68] is used.

SVMs. Support vector machines are based on linear discrim-

ination. A Gaussian kernel is used here for mapping the originally

observed vectors into a new space in which classes (i.e.,

behavioural modes) may be linearly separated. Tested values for

the scale parameter of the Gaussian kernel are

f10{4,10{3,0:1,0:5g. SVMs also involve a regularization param-

eter C. Increasing the value of C increases the cost of

misclassifying points and decreases generalization power of the

model. We test C~f0:1,1,10,100g. The MatlabTM implementa-

tion of the Libsvm library [68] is used.

ANNs. Multilayer perceptrons (MLPs) are the most widely

used architectures of ANNs. Neurons are organized in layers. The

first layer is composed of the observed variables and the last layer

is composed of the model classification output. Between those first

and last layers, one or more hidden layers can exist. Here, we use a

MLP with one hidden layer as in [47]. Considered options for the

number of hidden neurons range from one to ten. The Matlab

neural network toolbox is used for the analysis.

For each discriminative model, we determine the optimal

parameter setting according to the classification accuracy.

Indicators of Model Performance
Overall, we aim at accurately reconstructing the sequence of

states associated with each foraging trip. We consider two scales of

analysis. First, we evaluate the accuracy of the inference at the step

scale, and define the accuracy indicator as the percentage of

individual steps where the inferred states correspond to the real

ones. Second, we assess model performance at the segment scale

(Fig. 2), which best characterizes behavioural modes. We use three

indicators for each behavioural mode:

N The segment-level precision, defined as the percentage of

inferred segments where the inferred behavioural mode

corresponds to the true one.

N The segment-level recall, defined as the percentage of real

segments where the true mode is correctly inferred.

N The F-measure or F1, which combines precision and recall

performances [69]. It is defined as the harmonic mean of

precision and recall, and reported here in terms of percentage

similarly to precision and recall indicators.

Accuracy, precision, recall and F1 are standard performance

evaluation measures in supervised contexts [70]. Beyond these

Figure 2. Schematic representation of a HSMM. At each step, an
observed feature X is related to a state, which encodes a behavioural
mode (C: cruising, F: fishing, S: searching). The state process is modelled
at the segment scale and it is characterized by durations and transitions
as shown above.
doi:10.1371/journal.pone.0071246.g002
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performance measures, we also investigate the extent to which the

considered models deliver a relevant global characterization of

foraging patterns, particularly regarding the shape of the

distributions of the behavioural mode durations. In this respect,

we define a fourth indicator at the segment scale, called duration.

This auxiliary indicator is computed as the mean squared

difference between the empirical cumulative distribution functions

of both real and inferred mode durations. Its values range from 0

to 1, where 0 refers to an error-free inference.

Formulas for the computation of all these indicators are shown

in Table 1. Further details as well as an illustrative example on the

computation of accuracy, precision, recall and F1 are described in

Text File S1.

Results

The selected distributions for the state-dependent observation

process (for HMMs and HSMMs) and for the duration of the

states (for HSMMs) are shown in Table 2. For further details, AIC

values of distributions with significant fits for observed variables

and durations corresponding to the HSMM (Table 3) are

indicated in Table S1.

For evaluating and comparing the two Markovian and the three

discriminative models, we selected, for each model, the subset of

observed variables which led to the greatest inference performance

in terms of accuracy rate. Performance indicators at step and

segment scales are reported for each of these models (Table 3). All

models infer states with an accuracy greater than 75%. By a small

though significant difference (pv10{5 in paired-sample random-

ness tests; [71]), the HSMM’s accuracy is the highest.

Regarding behavioural modes, cruising seems to be the easiest

mode to identify. All models show greater F1 scores for the

cruising mode (between 74% and 89%). Likewise, the greatest

recall and precision values correspond to cruising for all models.

Relevant F1 scores are also reached for fishing mode inference

(between 73% and 77%). By contrast, the identification of the

searching mode appears difficult for all models (F1 between 54%

and 67%). This behavioural mode involves relatively large

confusion rates with both fishing and cruising modes (between

15% and 19% of the searching states are classified as fishing, and

between 25% and 34% are classified as cruising, among all

models).

For each behavioural mode, the HSMM outperforms all the

other models (greatest F1 scores of 77%, 67% and 89% for fishing,

searching and cruising, respectively). The second best model is the

HMM. Differences between F1 scores of the HSMM and the

HMM are significant for all behavioural modes (pv10{5 in all

cases). Among the discriminative models, the ANN is the best

model, followed closely by the SVM.

The analysis of the distribution of the inferred durations for

each behavioural mode leads to similar conclusions. In Fig. 3 it can

be observed that all three discriminative models show higher

empirical densities for low duration values than the Markovian

models and the groundtruth. Discriminative models, i.e. RF, SVM

and ANN, which do not consider state transitions nor durations,

tend to under-estimate the duration of modes due to over-

segmentation. By contrast, the Markovian models, particularly

HSMM, provide more accurate estimates of these durations.

Whereas the distribution of the durations for fishing and cruising

modes are clearly better represented with the HSMM (duration

statistics of 4|10{4 and 1|10{4 for fishing and cruising,

respectively; Table 3), the HMM gives slightly better results for the

searching mode (duration of 1|10{4).

The over-segmentation problem is illustrated for one trajectory

sample when comparing the sequences of behavioural modes

inferred by the HSMM and the RF with the true sequence of

modes (Fig. 4). There is strong over-segmentation in the sequences

inferred by the RF, leading to under-estimation of the duration of

the segments. By contrast, the HSMM achieves relevant repre-

sentation of the mode sequences through time (Fig. 4, low panel)

and thus also through space (Fig. 4, right panel).

Regarding computational cost, we compare all five models in

Table 3 for one replica where 121 tracks were randomly selected

for training and the remaining 121 for validation. The HMM

shows the lowest computational time (16.78 seconds), followed by

Table 1. Indicators of model performance.

Scale Indicator

Step
Accuracy~

inferred\true

#states
|100%

Segment
Recall~

inferred\true

#true
|100%

Precision~
inferred\true

#inferred
|100%

F1~
2|Precision|Recall

PrecisionzRecall
|100%

Duration~

Pn
i~1 (Fi{Gi)

2

n

Notes: F and G represent empirical cumulative distributions for the real and
inferred durations of a given behavioural mode, respectively.
doi:10.1371/journal.pone.0071246.t001

Table 2. Distributions for each observed variable and duration conditioned on states.

Observed Variable Searching Fishing Cruising

sp generalized Pareto generalized extreme value Gaussian mixture

h uniform wrapped Cauchy Laplace-Gaussian mixture

Dh{1 Kumaraswamy uniform loglogistic

Dhz1 Beta uniform loglogistic

Dsp{1 Laplace Gaussian mixture Student’s t

Dspz1 Laplace Gumbel Student’s t

Duration generalized extreme value lognormal generalized extreme value

Notes: When Beta and Kumaraswamy distributions are used, data is transformed to scale from 0 to 1.
doi:10.1371/journal.pone.0071246.t002

HMMs: The Best Models for Forager Movements?
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Table 3. Performance of all models for their corresponding best subsets of observed variables.

Mode Model HSMM HMM SVM RF ANN

Subset sp,Dsp+1 sp,Dsp+1 sp,Dsp”1,Dsp+1 sp,Dsp”1,Dsp+1,h,Dh+1 sp,Dsp”1,Dsp+1,Dh+1

Accuracy 80.3% 79.1% 79.0% 76.4% 79.2%

F Recall 86.6% 84.7% 88.3% 85.5% 88.5%

Precision 69.3% 69.4% 65.8% 64.5% 65.7%

F1 77.0% 76.3% 75.4% 73.5% 75.4%

Duration 4 14 17 29 22

S Recall 37.5% 64.9% 56.3% 62.0% 59.5%

Precision 56.9% 56.1% 57.6% 47.5% 54.3%

F1 66.7% 60.2% 56.9% 53.7% 56.9%

Duration 7 4 33 41 26

C Recall 91.0% 87.4% 89.6% 76.9% 88.7%

Precision 87.3% 86.4% 71.9% 72.0% 75.2%

F1 89.1% 86.9% 79.8% 74.3% 82.1%

Duration 1 2 7 25 7

Notes: In bold, the highest values of accuracy and F1. F: fishing; S: searching; C: cruising. Duration values are scaled by (10{4).
doi:10.1371/journal.pone.0071246.t003

Figure 3. Distribution of the duration of each behavioural mode. For each model, an empirical distribution of the duration of each mode is
estimated based on the duration of all inferred segments encoding the mode. RF: random forest. SVM: support vector machine. ANN: artificial neural
network. HMM: hidden Markov model. HSMM: hidden semi-Markov model. Real: known behavioural modes.
doi:10.1371/journal.pone.0071246.g003

HMMs: The Best Models for Forager Movements?
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the RF and the SVM models (22.09 and 23.07 seconds,

respectively). Next it is the HSMM (64.04 seconds) and finally

the most expensive one is the ANN (140.14 seconds). For the

HMM and the HSMM, the computational time comprised the

estimation of the probability density function parameters and

Viterbi algorithm application. For the SVM, the RF and the

ANN, it comprised the optimal parameter setting, as described in

the Methods section. The high computational cost of the ANN

could be greatly affected by the call to a graphical interface as

automatically performed by the Neural Network toolbox of

MatlabTM. This computational analysis should only be regarded

in relative terms. Optimized implementations of these models

could be expected to provide important computational gains (by a

factor of 10 or more).

Discussion

With a representative groundtruthed dataset composed of 242

fishing trips, we perform a comprehensive cross-validation

evaluation of different Markovian and discriminative models for

inferring behavioural modes from trajectory data. Our results

show that the HSMM is the best model and enlighten several

critical issues.

State Dynamics are Key Information
Markovian models have the strength of considering the

sequential nature of the data: state transitions are explicitly

modelled and the sequence of states is inferred as the most likely

sequence given the performed trajectory. However, they present

Figure 4. A fishing trajectory. Left upper panel: track with real behavioural modes. Right upper panel: track with inferred modes using the HSMM.
Lower panel: temporal representation of the behavioural mode sequences, real and inferred, where 0 in the x-axis represents the beginning of the
trip.
doi:10.1371/journal.pone.0071246.g004
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limitations for incorporating the information contained in the

observed variables, especially in cases of non-Gaussian multivar-

iate observation spaces. Practical applications of Markovian

models often involve simplifications such as independence and/

or Gaussianity assumptions for modelling the multivariate

distribution of the observed features given the behavioural modes.

In contrast, discriminative models state the inference of behav-

ioural modes as a classification issue. They use powerful non-linear

and multivariate classification rules. At the step scale, the HSMM

surpassed the discriminative models by small differences (+1% of

accuracy with respect to the ANN and the SVM, and +4% with

respecto to the RF; Table 3). At the segment scale, the surpassing

outperformance of the HSMM was clearer (differences in F1

scores between +1.6% and +9.8% regarding both the ANN and

the SVM, and between +3.5% and 14.8% regarding the RF;

Table 3). This evidences that the information contained in the

state sequence is key for accurately inferring the behavioural

modes.

HSMMs are Recommended for Behavioural Mode
Inference

To our knowledge, our study presents the first application of

HSMMs to foraging tracks using groundtruthed data on

behavioural modes. For this study case, with steps of ,1 hour,

the HSMM performed slightly better than the HMM. A

simulation study on high-resolution data (one-second steps) is

described in Text File S2. We applied HSMMs and HMMs to

sub-sampled versions of these sequences. The performance of each

model was assessed by the mean accuracy (MA), which is the

average of the accuracy for each behavioural mode (Fig. 5). For

one-minute steps, the HMM performed very poorly, whereas for

30-minute steps it was by far more relevant (50% vs 78% of MA).

By contrast, MA rates for the HSMM remained above 80% for all

time steps. The HSMM actually benefited from high-resolution

sequences – when available – to significantly improve inference

performance (100% of MA for one-minute steps). These additional

results clearly illustrate that the relevance of the first-order Markov

state process embedded in HMMs greatly depends on the time

steps of the trajectory data. By contrast, we show that the

relevance of the HSMM does not decrease with smaller time steps.

Likewise, [72] showed that reducing time steps severely decreased

the performance of first-order Markov processes for estimating

animal spatial distributions from tracking data.

Alternatively, higher-order (nth-order) hidden Markov models

account for additional complexity in the dynamics of the state

sequence. They comprise a nth memory, i.e. the state value st

depends on the state values taken at the n preceding states. They

implicitly involve more general distributions on state segment

durations than geometrical distributions. Therefore, they should

outperform first-order HMMs for high-resolution sequences.

However, in most practical problems the choice of the order of

the hidden Markov model is not obvious and depends on both the

time resolution of the data and the characteristic durations of the

state segments. In addition, they are computationally expensive.

HSMMs avoid the problem of choosing and fixing an order for the

Markovian process. By considering transitions between distinct

state segments and distributions on their durations, HSMMs

model the scale of a homogeneous behavioural mode. By

considering any distribution for modelling duration probability,

HSMMs explicitly model the time an individual stays in a

behavioural mode, rather than simply accepting the geometric

decay of the duration distribution imposed by standard first-order

HMMs [8]. Moreover, by considering continuous distributions,

HSMMs can directly incorporate tracking data involving some

cases with different time steps.

Overall the great flexibility of HSMMs makes them particularly

attractive for the analysis of foraging movement patterns, since

tracking data on animals are commonly available at high

resolutions and are often acquired with irregular sampling rates

[73].

Figure 5. Mean accuracy for simulated sequences for different sampling rates using HSMM and HMM.
doi:10.1371/journal.pone.0071246.g005
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Real Behavioural Modes and the Relevance of Model
Validation

The technological and methodological advances enable access

to larger amounts of data and lead to continuously elaborating and

applying new flexible modelling approaches for animal movement

[73]. While following this trend, model validation and evaluation

are often disregarded. [74] discuss this issue as a challenge in the

future of statistics in general. It is also a challenge in movement

modelling, particularly due to the conceptual and practical

difficulties for obtaining groundtruthed data on animal behaviour.

Hence, when validating models with groundtruthed data, not

only the models should be discussed but the data as well. In this

work, we had access to a groundtruthed dataset, where

behavioural modes were not chosen by us. Instead, they were

previously defined by the predators themselves (fishermen)

together with the on-board observers. This meant that states were

not chosen in a way that they would be a priori easily recognizable

(based on path geometry). On the other hand, it gave a great

opportunity for evaluating the models performance for inferring

real and complex behavioural mode sequences.

We reported 80% of global accuracy and 77%, 67% and 89%

of F1 for fishing, searching and cruising, respectively, using the

fitted HSMM model. Whereas the general performance is

satisfactory, the searching mode appears difficult to identify. It

might be explained by the nature of this behavioural mode.

Interviewed fishermen anticipated that geometrical patterns in

their tracks related to searching might vary greatly depending on

several factors, especially whether or not they presume the

inspected zone to be of high prey density. According to the

fishermen, observed patterns for fishing and cruising are more

stable. The low F1 score for searching may also be due to the time

resolution of the data. As for fishing, the activity lasts ,2 hours on

average. However, 30-minute searching modes between two

fishing modes were also reported by on-board observers. Such

short state segments result in mixed signatures at the one-hour

steps of the VMS data and can hardly be analysed. Higher-

resolution tracking data should clearly contribute to a better

identification of such searching modes, and would decrease the

confusion rates with fishing and cruising; thus improve the

inference accuracy of all behavioural modes. Moreover, as shown

by the simulation study, HSMMs would increase their inference

power if data resolution increases.

Beyond Validation: Inference in Supervised and Semi-
supervised Contexts

In supervised contexts, inferring behavioural modes is not only

useful for achieving model validation. Supervised contexts do not

necessarily imply that groundtruthed data on the behavioural

modes of the whole population of tracks are available. Known

behavioural modes may only be available for a subset of the tracks.

In the case of fishermen, for instance, there may not be enough

resources for on-board observers to register activities from all

fishing trips of the entire population of vessels with tracking

devices. For the Peruvian anchovy fishing fleet, more than 30000

fishing trips are tracked by VMS per year, but behavioural modes

of only ,300 of those trips are registered by on-board observers.

Likewise, financial limitations could make possible tagging more

individuals with GPS than with time-depth recorders (e.g. [9,30]).

Other limitations such as the memory card capacity for video-

camera devices or daily diaries (e.g. [33–35]) may enable access to

behavioural modes only at the beginning of the tracks. For all

those cases, models trained and validated over the groundtruthed

samples could be used for inferring behavioural modes over the

remaining tracks or segments of tracks.

On the other hand, the non-supervised observed data could be

used for updating the trained and validated models. In the

machine learning domain, this is generally referred to as a semi-

supervised setting. During the last years, numerous semi-super-

vised strategies have been proposed (see [37] for an extensive

classification and revision). Among them, Markovian models

naturally extend from the supervised case to the semi-supervised

one, using the EM algorithm [75]. This appears as a particularly

promising research direction for ecological studies, including the

estimation of the resources (i.e. number of on-board observers,

animal-borne electronic devices and analyses) to be allocated for

gathering an optimal groundtruthed dataset.

Modelling Extensions for Improving Inference Power
We have shown and discussed the advantages of Markovian

models for taking into account the sequential nature of the data,

while discriminative models typically achieve an independent

inference of each state. Introducing past information on the

observed variables may improve the inference performance of the

discriminative models. We tested this possibility by introducing the

immediate past values of the observed variables as new observed

variables for the discriminative models. That meant adding four

observed variables: speed at the previous step (sp{1), heading at

the previous step (h{1), change of speed between the two previous

steps (Dsp{2) and turning angle between the two previous steps

(Dh{2). The immediate past values of Dspz1 and Dhz1 are Dsp{1

and Dh{1, respectively. As indicated in the Methods section, for

each model, from all the possible combinations of observed

variables, we retained the subset of variables giving the greatest

accuracy rate. Only for ANNs, a different subset of variables

(sp,sp{1,Dsp{1,Dspz1,h,h{1,Dh{1,Dhz1) gave a higher accura-

cy. The new subset of observed variables involves the subset of

variables from Table 3 plus four more observed variables. It

improves inference of cruising modes (+0.5% in F1) and the

general accuracy of the ANN model (+0.3%), although it decreases

the performance over fishing and searching modes (20.8% and

20.9% in F1, respectively).

Of course, more memory (past and future) in the observed

variables could be added. But then, we would come across with the

same memory-order dilemma than the one discussed for states in

HMMs. Moreover, when we consider nth order past (or future) of

an observed variable, the first (or last) n records will have missing

values. This could be particularly annoying for classification using

discriminative models. Another possibility would be to incorporate

binary probabilities of the past states (i.e. presence or absence of a

behavioural mode in the past states) for incremental training of

discriminative models [76]. Incremental training involves training

the model one time-step at a time, updating the model at each

step. Nonetheless, this may result in over-fitting and large

generalization errors. Besides, the direct application of this strategy

may lead to drift effect. It means that inference at time t may be

biased as it is driven by the effect of the inference at time t{1. By

contrast, Markovian models rely on a global inference, i.e.

retrieving the state sequence that maximizes the posterior

likelihood given the observed series. This global inference involves

a forward-backward procedure which guarantees that the infer-

ence of any given state equally depends on past and future features

along the trajectory.

Hence, combining the Markovian setting, which accounts for

the sequential nature of the states, and the discriminative setting,

which can achieve improved classification performance in high-

dimensional non-Gaussian observation spaces, seems highly
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appealing. Such hybrid models have been investigated for different

applications, especially speech recognition (e.g.[77–80]). They are

stated as Markovian models that rely on the definition of an

observation likelihood from the output of the chosen discrimina-

tive model (e.g. the discrimination SVM function for hybrid SVM-

Markov models; [79]). However, the parametrization of the

observation likelihood and the training of the hybrid model remain

complex issues, which should be investigated in a future work.

Another attractive extension would be to model the observation

process at the segment scale, i.e. at the same scale than that of the

semi-Markov state process. That way, at each segment, one

observation feature would be related to one state segment, which

at the same time, would depend on the immediately preceding

state segment. This modelling approach presents some potential

advantages: it would imply modelling at the behavioural mode

scale not only the state process but the observation process as well,

and it could significantly improve the robustness to the presence of

low-informative observation features.

The incorporation of informative priors could also play an

important role in improving behavioural mode inference. For

instance, predators may know a priori that the probability of

foraging success increases/decreases with daylight. Since this

knowledge affects their behaviour, hour-dependent state transition

priors can be incorporated to the model. Likewise, priors on

competition/association, as well as local climate conditions

restricting mode transitions and durations could also be introduced

in the model.

Synthesis
We have shown a pioneer evaluation and comparison of

Markovian and discriminative models for inferring behavioural

modes within movement tracks in a supervised framework. The

surpassing performance of Markovian models over the discrimi-

native models highlights the importance of modelling state

dynamics for accurately inferring the behavioural mode sequences.

HMMs have been the most common approach in movement

ecology. However, semi-Markov processes represent better the

behavioural mode sequences than first-order Markov processes,

since they explicitly model state duration and consider transitions

at a segment scale. The HSMM performance on the ground-

truthed dataset is slightly better than that of the HMM. As

discussed above, this result responds to the nature of these

particular behavioural modes as well as to the low resolution of the

data. The ,1 hour time steps are slightly below the characteristic

durations of fishing and searching segments. Hence, regarding

time steps, it is a favourable scenario for HMM. Through a

simulation experiment, it was shown that increasing time

resolution may decrease the accuracy obtained with HMMs and

conversely increase the accuracy of HSMM inference. In foraging

movement analysis, where (1) each type of behaviour contained in

a track is typically characterized by a distinct duration, (2) tracking

data are increasingly available at high resolutions, and (3)

irregularity in sampling rates is not uncommon, we highly

recommend the use of HSMMs. In addition, this work opens

perspectives on the use of hybrid HSMM-discriminative models,

where a discriminative setting for the observation process of

HSMMs could greatly improve inference performance.
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Instituto del Mar del Perú (IMARPE), the Institut de Recherche pour le
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