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Abstract. Intensity–duration–area–frequency (IDAF) curves

are increasingly demanded for characterising the severity of

storms and for designing hydraulic structures. Their compu-

tation requires inferring areal rainfall distributions over the

range of space scales and timescales that are the most rele-

vant for hydrological studies at catchment scale. In this study,

IDAF curves are computed for the first time in West Africa,

based on the data provided by the AMMA-CATCH Niger

network, composed of 30 recording rain gauges having op-

erated since 1990 over a 16 000 km2 area in south-western

Niger. The IDAF curves are obtained by separately con-

sidering the time (intensity–duration–frequency, IDF) and

space (areal reduction factor, ARF) components of the ex-

treme rainfall distribution. Annual maximum intensities are

extracted for resolutions between 1 and 24 h in time and from

point (rain gauge) to 2500 km2 in space. The IDF model used

is based on the concept of scale invariance (simple scaling)

which allows the normalisation of the different temporal res-

olutions of maxima series to which a global generalised ex-

treme value (GEV) is fitted. This parsimonious framework

allows one to use the concept of dynamic scaling to describe

the ARF. The results show that coupling a simple scaling

in space and time with a dynamical scaling that relates to

space and time allows one to satisfactorily model the effect of

space–time aggregation on the distribution of extreme rain-

fall.

1 Introduction

Torrential rain and floods have long been a major issue for

hydrologists. For one, defining and computing their proba-

bility of occurrence is a scientific challenge per se, largely

because it is a scale-dependent exercise. Second, and equally

important, is the fact that they cause heavy environmental,

societal, and economical damages – including human casu-

alties – thus being a major concern for populations and deci-

sion makers.

The request of providing both an objective assessment

of the probability of occurrence of high-impact rainfall and

a tool for civil engineering structure design has found an an-

swer through the calculation of intensity–duration–frequency

(IDF) curves. These curves, generally computed from rain-

gauge data, are intended to characterise the evolution of ex-

treme rainfall distributions at a point when the duration of

rainfall accumulation changes. However, rainfall at point lo-

cation is not of the greatest interest when it comes to the

hydrological and socio-economic impacts of extreme events,

since it is essentially the convolution of the rainfall intensi-

ties over a catchment that characterises the severity of storms

and creates the real threat.

This is why intensity–duration–area–frequency (IDAF)

curves were conceived as a spatial extension of the IDF

curves. Generally established by combining IDF curves and

areal reduction factors (ARFs), they provide an estimation

of extreme areal rainfall quantiles over a range of timescales

and spatial scales.

Theoretical studies on IDF and ARFs have been an active

research topic over the past 20 years or so (Koutsoyiannis

et al., 1998; Menabde et al., 1999; De Michele et al., 2001,

2011, among others). IDF practical studies are also numer-

ous but focused on regions where long series of sub-daily

rainfall are available (e.g. Borga et al., 2005; Gerold and

Watkins, 2005; Nhat et al., 2007; Bara et al., 2009; Ben-Zvi,

2009; Overeem et al., 2009; Awadallah, 2011; Ariff et al.,

2012). On the other hand, when ARFs are computed from
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rain-gauge networks (Bell, 1976; Asquith and Famiglietti,

2000; Allen and DeGaetano, 2005), it requires a fair den-

sity of rain gauges in order to obtain accurate estimates of

areal rainfall. The computation of IDAF curves must there-

fore deal with two major data requirements: (i) a high-density

network of rain gauges and (ii) an array of long sub-daily

rainfall series. In addition to these requirements, scientists

face the challenge of producing coherent ARF and IDF mod-

els, if they wish for their IDAF model to be statistically con-

sistent. This explains why there are so few studies dealing

with the implementation of an IDAF model over a given re-

gion (e.g. De Michele et al., 2002, 2011; Castro et al., 2004;

Ceresetti, 2011).

In fact, in some regions of the world there are virtually

no IDF, ARF, and IDAF models that have ever been con-

ceived because of data limitations. This is especially the case

in many tropical regions, such as West Africa; in fact, one

reason being that a harsh environment and resource scarcity

have made it very challenging to operate recording rain-

gauge networks. The few IDF studies available in the re-

gion (Oyebande, 1982; Mohymont et al., 2004; Oyegoke and

Oyebande, 2008; Soro et al., 2010) are essentially empirical

with no theoretical background that allows for the upgrade

of their results in order to produce IDAF curves. ARF stud-

ies are still fewer, the most noticeable being an attempt by

Rodier and Ribstein (1988) and Ribstein and Rodier (1994)

at computing ARF values for a return period of 10 years,

with no explicit inference of the areal rainfall distributions.

All in all, there has never been any IDAF model derived for

West Africa or sub-regions of West Africa. Yet, flood man-

agement – for which IDAF curves are a very useful tool – is

now a major concern for West African countries. As a matter

of fact and despite that West Africa is known for having ex-

perienced a major lasting drought over 1970–2000, numer-

ous severe floods and exceptional inundations have struck

the region over the last 2 decades (Tarhule, 2005; Descroix

et al., 2012; Samimi et al., 2012). Moreover, flood damages

in the region have been constantly increasing since 1950 (Di-

Baldassarre et al., 2010).

While operational networks of the West African National

Weather Services do not allow the establishment of IDAF

curves in a consistent way – because they do not provide any

long-term sub-daily rainfall series – there are other sources of

data that can be used for that purpose. Among them are the

5 min rainfall series of the long-term AMMA-CATCH ob-

serving system covering a 16 000 km2 area in south-western

Niger from 1990 to present (Fig. 1). In this study we will

make use of 30 series providing continuous 5 min rainfall

records from 1990 to 2012.

This unique data set enables us to characterise the rela-

tionship between extreme rainfall distributions computed at

various spatio-temporal scales and to propose IDAF curves

for this characteristic Sahelian region.

Figure 1. Study area. The background maps displays the elevation

(metres).

2 IDAF curves in a generalised extreme value distribu-

tion and scale invariance framework

IDAF curves provide an estimate of areal rain rates – aver-

aged over a given durationD and a given areaA – for a given

frequency of occurrence (currently expressed in term of re-

turn period Tr). In practice, IDAF curves are generally ob-

tained by aggregating a temporal component and a spatial

component represented respectively by the IDF computed at

a point (A= 0) and by the ARF computed for a range of du-

rations. In this framework, the most general formulation of

an IDAF equation is as follows:

IDAF(D,A,Tr)= IDF(D,Tr)×ARF(D,A,Tr). (1)

Assessing IDAF curves requires (i) inferring appropriate

statistical distributions of rainfall to estimate the return peri-

ods and (ii) describing the statistical links between the distri-

butions obtained at different space scales and timescales.

Several recent studies have confirmed that the generalised

extreme value (GEV) distribution (Coles, 2001) provides

a suitable framework to describe the distribution of extreme

rainfall at a point (e.g. Overeem et al., 2008; Panthou et al.,

2012; Papalexiou and Koutsoyiannis, 2013). Also, many au-

thors have shown that rainfall displays scale invariance prop-

erties (Schertzer and Lovejoy, 1987; Gupta and Waymire,

1990; Burlando and Rosso, 1996; Bendjoudi et al., 1997;

Veneziano et al., 2006), both in space and time. The tem-

poral scaling properties give access to a direct analytical for-

mulation of IDF curves (Menabde et al., 1999; Borga et al.,

2005; Ceresetti, 2011), while the spatial scaling properties al-

low one to upscale IDF curves into IDAF curves (De Michele
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et al., 2002, 2011; Castro et al., 2004), thus providing an inte-

grated space–time characterisation of extreme rainfall distri-

butions. Under certain assumptions, namely the GEV distri-

bution of point annual rainfall maxima and simple scaling in

both time and space, an analytical formulation of the various

components of Eq. (1) may be obtained, as will be detailed

below.

2.1 GEV distribution

Let us define I (D,A) as a random variable representing the

annual maxima of rainfall accumulated over a given dura-

tion D and area A, and i(D,A) a sample of I (D,A). In the

general framework of the block maxima sampling scheme

(Coles, 2001), working on annual maxima generally ensures

that the block size is large enough for the maxima distribu-

tion to follow a GEV distribution (Coles, 2001), written as

G(i;µ,σ,ξ)= exp

{
−

[
1+ ξ

(
i−µ

σ

)]− 1
ξ

}
(2)

for 1+ ξ

(
i−µ

σ

)
> 0,

where i is a generic notation for any value associated with

a realisation of I (D,A), µ being the location parameter, σ >

0 the scale parameter, and ξ the shape parameter of the GEV

distribution. The shape parameter describes the behaviour of

the distribution tail: a positive (negative) shape corresponds

to a heavy-tailed (bounded) distribution. When ξ is equal to

0, the GEV reduces to the Gumbel distribution (light-tailed

distribution):

G(i;µ,σ)= exp

{
−exp

[
−

(
i−µ

σ

)]}
. (3)

2.2 Simple scaling in time and analytical formulation of

IDF curves

The simple-scaling framework has been extensively used for

deriving IDF curves (Menabde et al., 1999; Yu et al., 2004;

Borga et al., 2005; Nhat et al., 2007; Bara et al., 2009; Cere-

setti, 2011). An analytical formulation of the ARF was also

given by Veneziano and Langousis (2005) in a multi-scaling

framework. However, simple scaling is much more tractable

than the multi-scaling approach and is more robust in terms

of parameter inference; thus, this is the approach chosen

here.

The annual maximum point rainfall random variable

{I (D,0)} follows a simple-scaling relation for a given du-

ration D (with respect to a reference duration Dref) if

I (D,0)
d
= λη× I (Dref,0), (4)

where λ is a scale ratio (λ=D/Dref), η is a scale exponent,

and
d
= denotes an equality in distribution. Note that, for every

duration D for which Eq. (4) holds, the normalised random

variable {I (D,0)/Dη} has the same statistical distribution

as the normalised reference distribution {I (Dref,0)/D
η
ref};

this property will be used in the optimisation procedure in

Sect. 4.2. Equation (4) implies (Gupta and Waymire, 1990)

E[I (D,0)] = λη×E[I (Dref,0)] (5)

and, more generally, a scaling of all the moments that can be

written as

E[I q(D,0)] = λk(q)×E
[
I q(Dref,0)

]
(6)

or

ln{E[I q(D,0)]} = k(q) ln(λ)+ ln
{
E
[
I q(Dref,0)

]}
. (7)

The notion of simple scaling is related to how k(q) evolves

with q. When this evolution is linear

k(q)= ηq (8)

and simple scaling holds (as opposed to multi-scaling if this

relation in non-linear).

Checking whether the simple-scaling hypothesis is admis-

sible over a given range of durations is thus equivalent to

verifying through the data set whether the two following con-

ditions are fulfilled (Gupta and Waymire, 1990):

– Eq. (7): log–log linearity between the statistical mo-

ments of any given order q

– Eq. (8): linearity between k(q) and q.

Figure 2a illustrates these two conditions.

2.3 Spatial scaling, dynamical scaling, and ARF model

In its most general sense, the ARF is the ratio between areal

rainfall and point rainfall, either for a given observed rain

event or in a statistical sense. Here we are interested in de-

riving a statistical ARF that can be used for obtaining an an-

alytical formulation of IDAF curves (which implies that the

ARF does not depend on the return period considered); thus,

this ARF denotes the ratio between the areal distribution and

the point distribution of the annual rainfall maxima:

I (D,A)
d
= ARF(D,A)× I (D,0). (9)

Note that Eq. (9) implies the following relationship:

ARF(D,A)=
E[I (D,A)]

E[I (D,0)]
. (10)

In this study, the ARF model proposed by De Michele

et al. (2001) is used. This model is based on two assumptions

(which will have to be verified; see Sect. 5):

1. The studied rainfall variable is characterised by

a simple-scaling relationship both in time and space.
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Figure 2. Visual model checks: (a) simple scaling; (b) ARF.

2. Time and spatial scales are linked by a so-called

dynamic-scaling property written as(
D

Dref

)
=

(
A

Aref

)z
, (11)

where z is the dynamic-scaling exponent.

When these assumptions are verified, De Michele et al.

(2001) show that the ARF can be written as

ARF(D,A)=

[
1+ω

(
Aa

Db

)]η/b
=

[
1+ω

(
Az

D

)b]η/b
,

(12)

where η is the scaling exponent characterising the temporal

simple scaling, a and b are two positive constant-scaling ex-

ponents linked by the relation z= a/b, and ω is a factor of

normalisation.

This ARF formulation implies that iso-ARFs are lines in

the plane {ln(A), ln(D)} as shown in Fig. 2b (De Michele

et al., 2001).

2.4 GEV simple-scaling IDAF model

By assuming that the maximum annual rainfall is GEV-

distributed and that the scaling relations in time and space

(Sects. 2.2 and 2.3) are verified, then the IDAF model is

I (D,A)
d
= I (Dref,0)× λ

η
×ARF(D,A). (13)

As shown in the Appendix A, the compatibility of the

simple-scaling and GEV frameworks is defined by the fol-

lowing equations:

I (D,A)∼ GEV {µ(D,A),σ (D,A),ξ(D,A)} (14)

µ(D,A)= µref× λ
η
×ARF(D,A) (15)

σ(D,A)= σref× λ
η
×ARF(D,A) (16)

ξ(D,A)= ξref, (17)

where µref, σref , and ξref correspond to the GEV parameters

computed for the arbitrary reference duration Dref at a point,

and λ=D/Dref.

3 Data and implementation

Rainfall observing systems usually do not provide direct

measurements at all the space scales and timescales required

for an IDAF study; thus, it is necessary to derive from the

raw data set an elaborated data set that allows one to verify

the various assumptions found in the theoretical framework

defined in Sect. 2.

Accordingly, this section describes both the rainfall sam-

ples initially available on our Sahelian region of south-

western Niger and the process used to obtain the final data

set from which the IDAF curves were computed. This pro-

cess consists of two major steps:

1. space–time aggregation of the 5 min point rain rates in

order to obtain the average rain rates for various space

(A) and time (D) resolutions

2. extraction of extreme rainfall samples for each of the

above resolutions.

3.1 The rainfall data set: AMMA-CATCH Niger

records

The AMMA-CATCH Niger observing system was set up at

the end of the 1980s as part of the long-term monitoring

component of the HAPEX-Sahel experiment (Lebel et al.,

1992). Since then, it has continuously operated a large ar-

ray of meteorological and hydrological instruments, provid-

ing a unique set of high-resolution hydrometeorological data,

covering a 16 000 km2 area in south-western Niger. For the

purpose of this research, a subset of thirty 5 min rainfall se-

ries was selected (Fig. 1), covering the entire 1990–2012 pe-

riod. At each station, all years with more than 25 % of miss-

ing data have been removed in order to limit any sampling

effect due to missing data in a particular year. After this qual-

ity control, all stations remain with at least 20 years of valid

data, constituting our raw data sample.

To estimate areal rainfall intensities, this study makes use

of the dynamical kriging interpolation method proposed by

Vischel et al. (2011). Rain fields are produced over the do-

main of study at a time resolution of 5 min and a spatial res-

olution of 1 km2. Dynamical kriging takes advantage of the

time structure of 5 min rain fields to complement the purely

spatial information provided by the gauge network. Instead

of using a 3-D variogram (the inference of the space–time

cross-covariance being notoriously non-robust), the method

relies on the construction of Lagrangian rain fields which dis-

play a stable spatial structure represented by a nested expo-

nential variogram. Dynamical kriging is an exact interpolator

in the sense that the measured point values are replicated ex-

actly; this interpolator is then used to produce 5 min rainfall

grids, with a grid mesh of 1 km2.
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3.2 Space–time rainfall aggregation

The starting elements of the space–time aggregation process

are the discretized fields of rain accumulated over a time in-

crement1t = 5 min and averaged over a square pixel of side

length1xy = 1 km. In the following, these rain fields are de-

noted as r∗(x∗,y∗, t∗), where t∗ is the ending time of the

5 min time step, and {x∗,y∗} is the centre of the 1 km2 pixel.

3.2.1 Spatial aggregation of 5 min rain fields

Let A be a surface over which the rainfall intensity is aver-

aged. In this study, A is a square of side Nx×1xy km=

Ny×1xy km (corresponding to Nx×Ny pixels of 1 km2).

From the 5 min rain fields we can compute series of space

averaged 5 min rain field accumulations, r∗A, as

r∗A(x
∗,y∗, t∗)=

1

A

Nx−1∑
m=0

Ny−1∑
n=0

r∗ (18){
x∗+

(
m−

Nx− 1

2

)
1xy,y∗+

(
n−

Ny− 1

2

)
1xy, t∗

}
.

From these spatially averaged rain fields, spatial rainfall

series have been extracted at rain-gauge locations. For each

rain-gauge location (located at {x,y}), the nearest spatial

rainfall series, r∗A (located at {x∗,y∗}), is extracted. Fig-

ure 3a illustrates this approach the black circle of the right

panel represents a rain-gauge located at {x,y}. In total, 12

scales of spatial aggregations have been retained to build the

rainfall series: 1 km2 (the pixel on which the station is lo-

cated is selected) then 4, 9, 16, 25, 49, 100, 225, 400, 900,

1600, and 2500 km2.

To limit border effects, the spatial aggregation is per-

formed only in areas where the spatial distribution of stations

is more or less isotropic. Each of the 30 measurement stations

are considered individually; a circle centred on the station is

plotted and divided in eight cardinal sectors (each sector has

an angle of 45◦). Only rain gauges having at least one other

rain gauge present in at least seven of the eight sectors are

retained for spatial aggregation (see Fig. 3a); the distance of

the other gauges from the centre station is not taken into ac-

count for the selection, only the presence or absence of a rain

gauge in the sector. Only 13 gauges (out of 30) satisfy this

criterion (Fig. 1). They are referred to in the following as a

central rain gauge (CR) because their localisation is used as

a central point, from which the 12 areas of aggregation are

delimited. In total there are thus 156 areal series (12 areas of

aggregation centred on 13 different locations).

3.2.2 Time aggregation of 5 min point series and 5 min

spatial series

A time aggregation procedure is applied to the 30 point 5 min

rainfall series and to the 156 spatial rainfall series.

Let D be a given duration of Nt 5 min time steps (D =

Nt ×1t). The time aggregation is done by using a moving

Figure 3. Space and time aggregation procedures. (a) Illustration

of the procedure leading to select (right case) or to reject (left case)

a gauge for becoming a centre for spatial aggregation; (b) time ag-

gregation at a point: comparing a hyetograph of 5 min rainfall to a

hyetograph of 1 h rainfall.

time window of length D over which the 5 min rainfall in-

tensity is averaged (this moving window procedure is carried

out in order to make sure that we will be able to extract the

maximum for each duration considered). The time aggrega-

tion can be written as

r∗D,0(x,y, t
∗)=

1

D

Nt−1∑
p=0

r∗0 (x,y, t
∗
−p×1t) (19)

in the case of 5 min point series located at {x,y} (A= 0), and

r∗D,A(x
∗,y∗, t∗)=

1

D

Nt−1∑
p=0

r∗A(x
∗,y∗, t∗−p×1t) (20)

for a given surface A in the case of 5 min spatial rainfall se-

ries located at {x∗,y∗}.

Thus, Nt = 12 for D = 1 h, Nt = 24 for D = 2 h and so

forth. This procedure is illustrated in Fig. 3b. The 11 different

time resolutions considered in this study range from 1 to 24 h

(1, 2, 3, 4, 6, 8, 10, 12, 15, 18, and 24 h) and are all obtained

from the original 5 min series.

3.2.3 Extraction of extreme rainfall: annual block

maxima

The use of GEV distribution to model the extreme rainfall

series requires using the block maxima procedure to extract

rainfall extremes. It consists of defining annual blocks of ob-

servations separately for each of the 11 different time resolu-

tions considered and to take the maxima within each block.

www.hydrol-earth-syst-sci.net/18/5093/2014/ Hydrol. Earth Syst. Sci., 18, 5093–5107, 2014
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A sample of 23 (1990–2012) annual maximum rainfall val-

ues {i(D,A)} is thus obtained for each spatial aggregation

and duration.

In summary

– There are 13 reference locations.

– Around each of the 13 reference locations, 12 areas of

increasing size 1, 4, 9, 16, 25, 49, 100, 225, 400, 900,

1600, and 2500 km2 are defined.

– For each of these 156 (13× 12) areas, 11 time series

of 23 (1990–2012) annual maximum values are con-

structed, corresponding to 11 different durations of rain-

fall accumulation 1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 24 h.

4 Inferences of the individual components of the model

The proposed model has seven parameters: the temporal

scale exponent (η), the three ARF parameters (a, b, ω),

and the three GEV parameters (µref, σref, ξref). After hav-

ing tested different optimisation procedures (most notably

a global maximum likelihood estimation and the two-step

method proposed by Koutsoyiannis et al., 1998), a three-step

method was finally retained, since it gave the best results in

the evaluation of the IDAF model (see Sect. 5). These three

steps are explained in the following paragraphs (Sects. 4.1

to 4.3). For each step, an illustration based on the result ob-

tained for the Niamey Aéroport station is given in Fig. 4.

4.1 Temporal simple scaling: estimation of η

The temporal scaling of the IDAF model is described by the

η parameter. The inference of η is achieved in two steps. The

first one consists of computing k(q) for different moments q

through a linear regression between the logarithm of the sta-

tistical moments of order q (E[I q ]) and the durationsD (see

Fig. 4a, left panel); next, η is obtained by a linear regression

between k(q) and q (see Fig. 4a, right panel). At the Niamey

Aéroport station, the value obtained for η is equal to −0.91.

4.2 GEV parameters: µref, σref, ξref

The GEV parameters µref, σref, ξref are estimated on the

point samples, using the property that all normalised sam-

ples {i(D,0)/Dη} must come from the same distribution if

simple scaling holds. All normalised samples are pooled in

one single sample on which the GEV parameters are esti-

mated (this methodology corresponds to the second step of

the two-step method proposed by Koutsoyiannis et al., 1998).

Figure 4b illustrates this process at the Niamey Aéroport rain

gauge: initial samples are displayed on the left panel nor-

malised samples are plotted on the right panel. The fitted

GEV and the estimated GEV parameters are also given in

this figure.

In comparison with fitting the GEV parameters separately

to each sample constituted for each duration, this method

aims at limiting sampling effects by fitting the GEV pa-

rameters on a single sample gathering all rainfall durations.

The maximum likelihood and the L-moments methods were

tested for estimating the GEV parameters. The estimation

provided by these methods gave similar results, probably

due to the large sample size. The results of the L-moments

method are presented here, while this method is generally

considered better than the Maximum Likelihood Estimation

(MLE) for the estimation of high quantiles when the length

of the series is short (Hosking and Wallis, 1997).

4.3 Spatial scaling

The estimation of a, b, and ω was carried out by minimis-

ing the mean square difference between the empirical ARF

(Eq. 10) and the model ARF (Eq. 12), as originally proposed

by De Michele et al. (2001). Other scores (mean and max. ab-

solute error, bias, etc.) and variables (difference between the

observed and model mean areal rainfall) have been tried but

gave poorer results in validation (Sect. 5). Figure 4c shows

the comparison between the empirical ARF and the model

ARF at the Niamey Aéroport station and the parameters ob-

tained for the theoretical ARF model.

4.4 Regional model

The point parameter inference (µref, σref, ξref and η) has been

performed on each of the 30 point rainfall series, which thus

provide 30 IDF models. The complete IDAF model has been

fitted to each of the 13 rain gauges CR. The obtained IDF and

IDAF parameters display neither any coherent spatial pattern

nor any trend over the domain, as may be seen in Fig. 5.

Sampling effects due to the small area and the short length

of the series may explain this point, since a trend has been

observed on a larger domain at the regional scale for daily

rainfall (Panthou et al., 2012).

Assuming a spatial homogeneity of rainfall distribution

(no spatial pattern), annual maxima series have been pooled

together to obtain regional samples. The regional samples

were used to fit the IDAF model over the domain in order

to limit sampling effects. The point regional sample pools

together the 30 rainfall samples directly provided by the

30 rain gauges i(D,0); the 12 areal regional samples ob-

tained for each of the 12 spatial resolutions {i(D,A);A=

1, . . .,2500km2
} result from pooling together the 13 individ-

ual series (CRs) computed as explained in Sect. 3.

Table 1 presents the parameters obtained for the

global IDAF model. The obtained GEV parame-

ters are µref = 40.6 mm h−1, σref = 10.8 mm h−1,

and ξref = 0.1. When upscaled to the daily dura-

tion µ(24 h)= 2.29 mm h−1 (55.0 mm day−1) and

σ (24 h)= 0.61 mm h−1 (14.6 mm day−1). It is worth

noting that these latter values are coherent with those
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Figure 4. Example of IDAF model inference at the Niamey Aéroport rain gauge: (a) checking of the temporal simple-scaling conditions

(left: linear relationship between the logarithm of the statistical moments of order q and the durations D, right: linear relationship between

k(q) and q) and estimation of the temporal simple-scaling exponent; (b) left: empirical cumulative distribution of annual maxima, right:

global fitting of the GEV parameters; (c) comparison between empirical and modelled ARF.

Table 1. Obtained parameters for the global IDAF model (a) and corresponding GEV parameter values for the different durations D for the

point scale A=0 (b).

(a) µref σref ξ η a b z ω

40.60 10.81 0.10 −0.90 0.165 0.156 1.06 0.026

(b) GEV parameter 1 h 2 h 3 h 4 h 6 h 8 h 10 h 12 h 15 h 18 h 24 h

µ (mm h−1) 40.60 21.68 15.02 11.58 8.02 6.19 5.05 4.29 3.50 2.97 2.29

σ (mm h−1) 10.81 5.77 4.00 3.08 2.14 1.65 1.35 1.14 0.93 0.79 0.61

ξ (–) 0.10

obtained for a much larger area in this region by Panthou

et al. (2012, 2013), working on the data of 126 daily rain

gauges covering the period 1950–1990. Note also that the

temporal scale exponent (η) is large (0.9), which means that

the intensity strongly decreases as the duration increases.

This is not surprising given the strong convective nature of

rainfall in this region. Similar values of the temporal scaling

exponents are obtained in regions where strong convective

systems occur (Mohymont et al., 2004; Van-de Vyver and

Demarée, 2010; Ceresetti et al., 2011), while lower values

are obtained in regions where extreme rainfall is generated

by different kinds of meteorological systems (for example
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Figure 5. Map of the obtained IDF parameters (η, µref, σref, and ξref fitted on the 30 rain gauge samples) and IDAF parameters (η, µref, σref,

ξref, a, b, and ω fitted on the 13 CR samples). The grey box shows box plots of the parameter values obtained at the different rain gauges.

in many mid-latitude regions; see e.g. Menabde et al., 1999;

Borga et al., 2005; Nhat et al., 2007). The dynamic-scaling

exponent is roughly equal to 1 which means that increasing

the surface by a given factor leads to a similar ARF change

than increasing the duration by the same factor (keeping in

mind that this rule applies only to the range of time–space

resolutions explored here).

5 IDAF model evaluation

The evaluation of the IDAF model is carried out in two suc-

cessive stages. First each component used to build the final

model (temporal simple scaling, ARF model, and GEV dis-

tribution) is checked individually; next, the global goodness

of fit (GOF) is tested using the Anderson–Darling (AD) and

the Kolmogorov–Smirnov (KS) tests.

In Fig. 6 two series of graphs are plotted in order to verify

whether the simple-scaling hypothesis holds for the time di-

mension. On the left are the plots of ln(E[I q ]) vs. ln(D) de-

signed to check the log–log linearity between these two vari-

ables (Eq. 7); on the right are the plots of q vs. k(q) aimed at

checking the linearity between these two variables (Eq. 8). At

all three spatial scales, there is a clear linearity of the plots,

meaning that the two conditions for accepting the temporal

simple-scaling hypothesis are fulfilled. Note that the graphs

shown are those obtained on the regional samples for three

different spatial scales only (point scale, 100 and 2500 km2),

but the quality of the fitting is similar for all the other spatial

scales.

Simple scaling in space and dynamical scaling (e.g. the

relationship between time and spatial scaling) are checked

in Fig. 7. This figure compares the empirical ARFs (Eq. 10)

computed on the regional samples and the ARFs obtained

with the model (Eq. 12) for all the space scales and

timescales pooled together. With a determination coefficient

(r2) of 0.98, and a very small root mean square error, it ap-

pears that the model restitutes very well the empirical ARF at

all space scales and timescales, except at the hourly time step

and for the three largest surfaces (900, 1600, and 2500 km2),

for which the model significantly underestimates the ob-

served reduction factor. At such space scales and timescales

the finite size of the convective systems generating the rain

fields creates a significant external intermittency (see Ali

et al., 2003, on the distinction between internal and external

intermittency). It thus seems that the simple-scaling frame-

work holds only as long as the influence of the external in-

termittency is negligible or weak. Consequently, it is likely

that the overestimation of the ARF by the simple scaling-
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Figure 6. Checking of the temporal simple-scaling conditions for the regional samples defined by the 30 available rain gauges for point

resolution (top), and the 13 CRs (see Sect. 3.2.1) for resolutions at 100 km2 (middle) and 2500 km2 (bottom).

Figure 7. Comparison between empirical ARF (obtained with the

regional samples: 30 rain gauges for point resolution and 13 CRs

for other spatial resolutions) and the modelled ARF IDAF model.

based model would be observed for larger space scales and

timescales than the ones the AMMA-CATCH data set allows

one to explore.

Figure 8 illustrates that the global model is also able to re-

produce very correctly the mean areal rainfall intensity over

the whole time–space domain explored here, except again for

the hourly time step and the largest surfaces.

As the IDAF model is primarily designed to estimate high

quantiles, its ability to represent the mean is not a sufficient

skill. It is thus of primary importance to evaluate its ability to

also represent correctly high return levels and extreme quan-

tiles. This was realised by visually inspecting return level

plots and by using GOF statistical tests computed in a cross-

validation mode (all the stations are used to calibrate the

model except one which is used to validate the model predic-

tion). These tests are used to quantitatively assess how well

the theoretical GEV distribution based on the IDAF model

fits the empirical Cumulative Distribution Functions (CDF)

of the observed annual maxima for each spatio-temporal res-

olution. Each test provides a statistic and its corresponding

www.hydrol-earth-syst-sci.net/18/5093/2014/ Hydrol. Earth Syst. Sci., 18, 5093–5107, 2014



5102 G. Panthou et al.: Characterising the space–time structure of rainfall in the Sahel

Figure 8. Comparison between empirical mean areal rainfall inten-

sity (obtained with the regional samples: 30 rain gauges for point

resolution and 13 CRs for other spatial resolutions) and global IDAF

model for different spatio-temporal aggregations.

p value. The p value is used as an acceptation/rejection cri-

terion by fixing a threshold of non-exceedance (here 1, 5, and

10 %).

The return level plots displayed in Fig. 9 for two reference

locations and three time steps allow a visual inspection of the

capacity of the global IDAF to fit the empirical samples. The

p values of the two GOF tests are given in the inset caption.

As could be expected, there is a significant dispersion of the

results obtained on individual samples. The difficulty of re-

producing correctly the empirical distribution when combin-

ing the smallest time steps with the largest areas is confirmed.

While similar graphs were plotted for the other 11 reference

locations, it is obviously difficult to obtain a relevant global

evaluation from the visual examination of such plots.

Figure 10 aims at tackling this limitation by representing

this information in a more synthetic way. In this figure the

percentage of individual series for which the IDAF model is

rejected by the AD GOF test is mapped for each duration

and spatial aggregation for two levels of significance (1 and

10 %). Here it is worth remembering that we have 30 individ-

ual series for the point scale, and 13 different individual se-

ries for each of the 12 spatial scales, meaning that, for a given

time step, the percentage of rejections/acceptations are com-

puted from a total of 186 (30+ 12× 13) test values. Here

again, the limits of the model for small time steps and large

areas are clearly visible; one can also notice a larger number

of rejections for small areas and the highest durations (dura-

tion higher than 12 h and area smaller than 25 km2). Apart

from that, the number of rejections of the null hypothesis

remains low. The KS test (not shown) displays similar re-

sults with fewer rejections of the null hypothesis. It thus ap-

pears fair to conclude that, over the range of space scales and

timescales covered by the AMMA-CATCH network, a sim-

ple scaling approach allows for computing realistic ARFs,

the limit of validity being reached for areas roughly larger

than 1000 km2 at the hourly time step.

6 Discussion and conclusions

Up to now the rarity of rainfall measurements at high space–

time resolution in tropical Africa has not allowed compre-

hensive studies on the scaling properties of rain fields in that

region to be carry out. From 1990 the recording rain-gauge

network of the AMMA-CATCH observing system has sam-

pled rainfall in a typical Sahelian region of West Africa at

a time resolution of 5 min and a space resolution of 20 km,

over an area slightly larger than 1◦× 1◦. This data set was

used here for characterising the space–time structure of ex-

treme rainfall distribution, the first time such an attempt has

been made in this region where rainfall is notoriously highly

variable.

Simple scaling was shown to hold for both the time and the

space dimensions over a space–time domain ranging from

1 to 24 h and from the point scale to 2500 km2; it was further

shown that dynamical scaling relates the timescales to the

space scales, leading to propose a global IDAF model valid

over this space–time domain, under the assumption that ex-

treme rainfall values are GEV distributed.

Different optimisation procedures were explored in order

to infer the seven parameters of this global IDAF model.

A three-step procedure was finally retained, the global IDAF

model being fitted to a global sample built from all the differ-

ent samples available for a given space scales and timescale.

This model has been evaluated through different graphi-

cal methods and scores. These scores show that the ARFs

yielded by the IDAF model fit significantly well (in a statis-

tical sense) with the observed ARFs over our space–time do-

main, except for the part of the domain combining the small-

est timescales with the largest space scales. This limitation is

likely related to the larger influence of the external intermit-

tency of the rain fields at such space scales and timescales.

Despite the growing accuracy of rainfall remote-sensing

devices, this study demonstrates that dense rain-gauge net-

works operating in a consistent way over long periods of

time are still keys to the statistical modelling of extreme rain-

fall. In the numerous regions where rainfall is undersam-

pled by operational networks and where satellite monitor-

ing is not accurate enough to provide meaningful values of

high rainfall at small space scales and timescales, dense net-

works covering a limited area may provide the information

necessary for complementing the operational networks and

satellite monitoring. In West Africa, south of the Niger site,

AMMA-CATCH has been operating another site of similar

size in a Sudanian climate since 1997 (Ouémé Catchment,

Benin), providing ground for a similar study in a more hu-

mid tropical climate.

As mentioned in the discussion of Sect. 5, there is how-

ever a limitation of these two research networks, linked to

their spatial coverage. Extending the area sampled by these

networks to something of the order of 2◦× 2◦ would indeed

allow for studying more finely the effect of the limited size

of the convective systems onto the statistical properties of
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Figure 9. Empirical return level plot obtained at two rain gauges in comparison with the global IDAF model for different durations (1 h, 6 h,

and 24 h from top to bottom) and different spatial aggregations (from point to 2500 km2).

Figure 10. Anderson–Darling GOF test (cross-validation): percentage of rejected series for 1 % (a) and 10 % (b) significance level for the

global IDAF model. Note that there are 30 series for the point scale (0 km2) and 13 for the other spatial aggregation (CR).
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the associated rain fields. However, this means enlarging the

area by a factor of 4, making it much more costly and dif-

ficult from a logistical point of view to survey properly. For

the years to come, AMMA-CATCH remains committed to

operating both the Niger and the Benin sites for document-

ing possible evolutions of the rainfall regimes at fine space

scales and timescales in the context of global change as well

as for verifying whether the scaling relationships proposed

here still hold for quantiles at higher time periods. As a mat-

ter of fact, one strong hypothesis of the model proposed here

is that the ARF is independent of the return period. This hy-

pothesis seems verified for return periods smaller than the

length of our time series, but it is not possible to infer whether

this really holds for higher return periods. Therefore, devel-

oping an IDAF model able to account for a possible evolution

of the ARF with the return period level is a path that has to be

explored, copulas being a candidate for such a development

(e.g. Singh and Zhang, 2007; Ariff et al., 2012).

It is also envisioned to test other IDAF model formulations

based on alternative approaches for modelling the scale rela-

tionships, among which the method proposed by Overeem

et al. (2010) seems of particular interest.
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Appendix A

A brief explanation of the transition between the simple-

scaling framework used to described the space–time scaling

of maximum annual rainfall (Eq. 13) and the GEV model

used to model the statistical distribution of these maxima

(Eqs. 15 to 17) is given here.

The random variables I (Dref,0) and I (D,A) are modelled

by a GEV model:

Prob{I (Dref,0)≤ i(Dref,0)} = (A1)

exp

{
−

[
1+ ξ(Dref,0)

(
i(Dref,0)−µ(Dref,0)

σ (Dref,0)

)]− 1
ξ(Dref,0)

}

and

Prob{(I (D,A)≤ i(D,A)} (A2)

= exp

{
−

[
1+ ξ(D,A)

(
i(D,A)−µ(D,A)

σ(D,A)

)]− 1
ξ(D,A)

}
.

Letting c = λη×ARF(D,A), then Eq. (13) becomes

I (D,A)
d
= I (Dref,0)× c (A3)

and if Eq. (13) holds, then

Prob{I (D,A)≤ i(D,A)} (A4)

= Prob{I (Dref,0)× c ≤ i(Dref,0)× c}

= Prob{I (Dref,0)≤ i(Dref,0)}

and

Prob {I (D,A)≤ i(D,A)} (A5)

= exp

−
[

1+ ξ(Dref,0)

(
i(Dref,0)−µ(Dref,0)

σ (Dref,0)

)]− 1
ξ(Dref,0)

 .
By replacing I (Dref,0) by I (D,A)/c we obtain

Prob{I (D,A)≤ i(D,A)} (A6)

= exp

−
[

1+ ξ(Dref,0)

(
I (D,A)
c −µ(Dref,0)

σ (Dref,0)

)]− 1
ξ(Dref,0)


or

Prob {I (D,A)≤ i(D,A)} (A7)

= exp

−
[

1+ ξ(Dref,0)

(
I (D,A)−µ(Dref,0)× c

σ (Dref,0)× c

)]− 1
ξ(Dref,0)

 .
The equality between Eq. (A2) and Eq. (A7) gives

µ(D,A)= µref× c (A8)

σ(D,A)= σref× c (A9)

ξ(D,A)= ξref. (A10)

Equations (A8)–(A10) correspond to Eqs. (15)–(17) in the

main text.
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