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West Africa is a region in fast transition from climate, demography, and land use 
perspectives. In this context, the African Monsoon Multidisciplinary Analysis 
(AMMA)–Couplage de l’Atmosphère Tropicale et du Cycle eco-Hydrologique 
(CATCH) long-term regional observatory was developed to monitor the 
impacts of global change on the critical zone of West Africa and to better 
understand its current and future dynamics. The observatory is organized into 
three thematic axes, which drive the observation and instrumentation strat-
egy: (i) analyze the long-term evolution of eco-hydrosystems from a regional 
perspective; (ii) better understand critical zone processes and their variabil-
ity; and (iii) meet socioeconomic and development needs. To achieve these 
goals, the observatory has gathered data since 1990 from four densely instru-
mented mesoscale sites (?104 km2 each), located at different latitudes (Benin, 
Niger, Mali, and Senegal) so as to sample the sharp eco-climatic gradient that is 
characteristic of the region. Simultaneous monitoring of the vegetation cover 
and of various components of the water balance at these four sites has pro-
vided new insights into the seemingly paradoxical eco-hydrological changes 
observed in the Sahel during the last decades: groundwater recharge and/or 
runoff intensification despite rainfall deficit and subsequent re-greening with 
still increasing runoff. Hydrological processes and the role of certain key land-
scape features are highlighted, as well as the importance of an appropriate 
description of soil and subsoil characteristics. Applications of these scientific 
results for sustainable development issues are proposed. Finally, detecting and 
attributing eco-hydrological changes and identifying possible regime shifts in 
the hydrologic cycle are the next challenges that need to be faced.

Abbreviations: ALMIP, AMMA Land Surface Model Intercomparison Project; AMMA, African Monsoon 
Multidisciplinary Analysis; AMMA-CATCH, AMMA-Couplage de l’Atmosphère Tropicale et du Cycle 
eco-Hydrologique (Coupling the Tropical Atmosphere and the Eco-Hydrological Cycle); Cal/Val, cali-
bration/validation; ERT, electrical resistivity tomography; HAPEX-Sahel, Hydrologic Atmospheric Pilot 
Experiment in the Sahel; IDF, intensity–duration–frequency; MRS, magnetic resonance sounding.
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Core Ideas

•	 AMMA-CATCH is a long-term critical zone observatory in West Africa.
•	 Four sites sample the sharp ecoclimatic gradient characteristic of this region.
•	 Combined measurements of meteorology, water, and vegetation dynamics began in 1990.
•	 Intensification of rainfall and hydrological cycles is observed.
•	 The strong overall re-greening may hide contrasted changes.
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West Africa is a hot spot of global change in all its compo-
nents, with drastic consequences for the equilibrium of the critical 
zone. The critical zone extends between the rocks and the lower 
atmosphere—it is “critical” for life that develops there. On the one 
hand, regional warming has reached 1.5°C (IPCC, 2014), almost 
the double the global average. On the other hand, West Africa 
is home to 5% of the world’s population, reaching 372 million 
inhabitants in 2017 (UN Department of Economic and Social 
Affairs, 2017). Its fivefold increase since 1950, when 73 million 
people lived in the region, makes the West African population the 
fastest growing worldwide. As a direct consequence, the increase 
rate of cultivated areas is also the highest for the whole of Africa, 
from a 22% coverage of the landscape in 1975 to 42% in 2000 (Eva 
et al., 2006), with considerable associated deforestation and land 
degradation. Prospect for the decades to come is a continuation—if 
not a reinforcement—of this sharp transitional phase, with a popu-
lation that may double by 2050 (UN Department of Economic and 
Social Affairs, 2017) and a further temperature increase of 1.5 to 
2°C, both figures corresponding to median scenarios. This would 
mean a total increase of roughly 3°C and a 10-fold multiplication 
of the population during the period 1950 to 2050. In such a con-
text, the critical zone is more under threat here than anywhere 
else on the planet.

However, there is considerable uncertainty regarding the 
exact trajectory of this transition, since both climatic (e.g., Bony 
et al., 2013) and demographic (e.g., Bello-Schünemann, 2017) 
scenarios may deviate from a linear extrapolation of current ten-
dencies in the presence of tipping elements. In their seminal study, 
Lenton et al. (2008) identified West Africa as a region where 
ongoing perturbations could qualitatively alter the future fate of 
the system, especially because the land–atmosphere coupling is 
extremely strong (Koster et al., 2004; Wolters et al., 2010; Taylor 
et al., 2011; Maurer et al., 2015; Mande et al., 2015): land degrada-
tion, as it affects soil moisture and vegetation, may feed back on 
rainfall occurrence and intensity, generating further land changes. 
Furthermore, the atmospheric circulation of the intertropical band 
is at the heart of the redistribution of energy and atmospheric 
water at the global scale; a change in its functioning will probably 
have an impact on the circulation and climate of the extratropi-
cal zones (Hu and Fu, 2007; Seidel et al., 2008; Bony et al., 2013; 
Voigt and Shaw, 2015).

The water cycle plays a major role in this coupling, and the 
Hydrologic Atmospheric Pilot Experiment in the Sahel (HAPEX-
Sahel) experiment (Goutorbe et al., 1997) was conceived at the 
end of the 1980s precisely in order to provide data for a better 
understanding of the mechanisms at work. The AMMA-CATCH 
observing system (Lebel et al., 2009) was then set up after the 
HAPEX-Sahel experiment in order to provide the long-term obser-
vations needed to document rainfall pattern changes, hydrological 
regime modifications, and land use and land cover changes. This 
unique set of observations has allowed the unraveling of some 
major characteristics of the transformations accompanying the 
ongoing transition, such as rainfall intensification (Panthou et al., 

2018), the aquifer rising in a context of rainfall deficit (the so-
called Sahelian paradox; Leduc et al., 2001) or the modification 
of the partitioning between sensible heat fluxes and latent heat 
fluxes (Guichard et al., 2009), not to mention many other results 
presented below.

Over the years, AMMA-CATCH has grown from a rainfall 
observatory to a holistic observing system, documenting most 
of the continental water cycle at high frequency thanks to the 
momentum gained from the setup of the AMMA program in 
2002 (Redelsperger et al., 2006; Lebel et al., 2011). We start here 
by summarizing the motivations for maintaining such a complex 
observing system and by describing the main eco-climatic charac-
teristics of the sites instrumented in AMMA-CATCH. We then 
detail the long-term observation strategy, some specific campaigns 
embedded in the AMMA-CATCH framework, and data man-
agement. Some new findings obtained from the Observatory are 
presented, and we conclude with the perspectives for the future.

 6Motivation and Science Questions
Despite the knowledge gained during the first phase of 

AMMA-CATCH and the growing awareness of the fragility 
of West African societies in the context of global change (see 
the recent World Bank report on climate migrations, Rigaud 
et al., 2018), West Africa is still badly lacking adequate in situ 
measurements at the appropriate scales to document the ongoing 
environmental changes and to grasp possible indications of tip-
ping trajectories. The challenge is all the more difficult because the 
actual trajectories will depend not only on natural factors but also 
on future policy choices, most notably those chosen for agricul-
tural intensification (Lambin et al., 2014; Rockström et al., 2017). 
Moreover, considerable uncertainties in future simulations by cli-
mate models remain, particularly concerning the water cycle and 
precipitation. These uncertainties are higher in the intertropical 
zone, considered as one of the hotspots of climate research (Toreti 
et al., 2013; IPCC, 2014). Maintaining good quality observations 
across this region is thus a responsibility that falls on the shoulders 
of the research community, and this is the central motivation for 
the continued commitment of AMMA-CATCH in providing 
good quality data to the academic world and to the socioeconomic 
actors altogether.

AMMA-CATCH has three main goals: (i) provide appropri-
ate data for studying the impacts of global change on the West 
African critical zone; (ii) unite a large community of researchers 
from different countries and disciplinary backgrounds to analyze 
these data with the aim of better understanding the dynamics of 
the system across a range of scales and to detect significant changes 
in its key components; and (iii) disseminate data and associated 
results outside of the academic community. The observatory is 
consequently organized into three thematic axes that drive the 
observation and instrumentation strategy, namely: (i) analyze the 
long-term evolution of the eco-hydro-systems within a regional 
framework; (ii) better understand the critical zone processes and 
their variability; and (iii) link with decision makers and end users, 
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so that the knowledge gained from the AMMA-CATCH data can 
be used to meet the socioeconomic and development needs based 
on proper mastering of environmental conditions.

This involves a systemic approach that AMMA-CATCH is 
sharing with the critical zone community, and it is thus part of the 
French network of critical zone observatories (Observatoires de la 
Zone Critique Application et Recherche or OZCAR) (Gaillardet 
et al., 2018) and of the international Critical Zone Exploration 
Network (Brantley et al., 2017).

 6Site Characteristics
West Africa is characterized by a latitudinal climatic gradi-

ent that induces a gradient of vegetation. In the southern part, 
the coast of the well-watered Gulf of Guinea is covered with 
dense vegetation; rainfall gradually decreases from south to 
north, until the limit of the Sahara, which is arid and covered 
by scattered vegetation. The AMMA-CATCH observatory 
gathers data from four densely instrumented mesoscale sites 
(with surface areas ranging between 14,000 and 30,000 km2) 

located at different latitudes to sample the regional eco-climatic 
gradient. We use the term mesosite to refer to these mesoscale 
sites. From south to north we find (i) the Sudanian site (Benin) 
where rainfall is ?1200 mm yr−1, (ii) the cultivated Sahelian site 
(Niger) with ?500 mm of annual rainfall, and (iii) the pastoral 
Sahel site distributed in two locations (Mali and Senegal) with 
an average annual rainfall of ?300 to 400 mm. Thus annual 
rainfall is roughly divided by a factor of two when shifting from 
one site to the next along a south to north axis.

The Sudanian Site (Benin)
The southernmost site of the observatory lies in the center of 

Benin (1.5–2.5° E, 9–10° N, Fig. 1) and coincides with the upper 
watershed of the Ouémé River (14,000 km2), which flows south-
ward to the Atlantic Ocean. It is located in the Sudanian climate 
regime, with an average rainfall of about 1200 mm yr−1 falling in 
a single rainy season extending from April to October and with a 
mean annual temperature of ?25°C. Mean potential evapotrans-
piration is ?1500 mm yr−1.

Fig. 1. AMMA-CATCH Observatory sites in the pastoral Sahel (Mali, Senegal), cultivated Sahel (Niger), and Sudanian climate (Benin). Photos by E. 
Mougin (Mali), G. Favreau (Niger), and S. Galle (Benin).
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The geology of the area is metamorphic and crystalline 
rocks of various types, with predominantly schist and gneiss in 
the western and central parts of the site and granitic rocks in 
the east (Office Béninois des Mines, 1984). The weathered hard 
rock substratum constitutes a heterogeneous groundwater reser-
voir, conceptually described as a two-layer system, in which the 
unconsolidated, 15- to 20-m-thick saprolite top layer overlies the 
fissured bottom layer, with a smooth transition between the two 
(Vouillamoz et al., 2015). The tropical, ferruginous soils are mainly 
classified as Ferric Acrisols with frequent hard-pan outcropping 
(Faure and Volkoff, 1998).

The topography of the area is gently undulating, with eleva-
tions ranging from 630 to 225 m asl, and a general slope to the 
southeast. The landscape is a mixture of forest clumps, wood-
lands (as described by White, 1983), and rainfed crops including 
maize (Zea mays L.), sorghum [Sorghum bicolor (L.) Moench.], 
yam (Dioscorea alata L.), and cassava (Manihot esculenta Crantz). 
Except for the town of Djougou (northwest of the basin, with 
268,000 inhabitants in 2013), the socioeconomic activity is pri-
marily rural, based on rainfed crops and herding. The population 
density is 48 inhabitants km−2 (Institut National de la Statistique 
et de l’Analyse Economique du Bénin, 2013).

River flow starts 1 to 2 mo after the first rain events, near the end 
of June, and stops between October and January depending on the 
watershed area. During the flowing period, river discharge is made 
of a slow component (base flow) and rapid components following 
rainfall events. Contrary to the two other sites, surface runoff is rarely 
observed and river base flow mainly originates from the discharge of 
seasonal, perched, shallow water tables. The permanent water table, 
lying 5 to 15 m below the ground surface in the saprolite, exhibits an 
annual recharge–discharge cycle. It is recharged by infiltration during 
the rainy season, and transpiration by deep-rooted trees is currently 
considered the main driver of groundwater discharge (Séguis et al., 
2011; Richard et al., 2013; Getirana et al., 2017). In the absence of 
large-scale irrigation, water extraction for human domestic needs is 
negligible in groundwater dynamics (Vouillamoz et al., 2015).

The observational setup was built in 1996 on an existing 
network of six stream gauges, managed by the national water 
authority, and surveying the Upper Ouémé River since 1952 (Le 
Barbé et al., 1993). The long-term observation network has now 
been reinforced and completed for a comprehensive water cycle 
documentation (see below). Since 2015, most of the stream gauge 
stations are equipped with tele-transmission in order to contrib-
ute to the early flood warning system. Tele-transmission has been 
extended to soil moisture and meteorological data for real-time 
monitoring and optimization of operation costs.

The Sahelian Site (Niger)
The ?20,000-km2 central Sahelian mesosite (roughly 1.6–3° E, 

13–14° N) is located in the southwest of the Republic of Niger. It 
includes the capital city of Niamey (?1.3 million inhabitants in 
2017), close to the Niger River (Fig. 1). The area has a typical semi-
arid tropical climate, with a long dry season (October–May) and a 

single wet season, from June to September and peaking in August. 
The mean annual temperature over 1950 to 2010 at Niamey Airport 
was 29.2°C, with an increase of approximately 1°C during the 
six-decade period (Leauthaud et al., 2017). Daily maximum tempera-
tures are between 40 to 45°C from mid-March to mid-June. Mean 
potential evapotranspiration is ?2500 mm yr−1. The mean post-
drought annual rainfall (1990–2007) is 520 mm in Niamey, still 
below the long-term (1905–2003) average of 560 mm yr−1. Annual 
rainfall is typically produced by 15 to 20 “squall lines” (Mathon et 
al., 2002), and many smaller mesoscale convective systems, with very 
large space–time event variability.

The landscape consists of scattered, flat lateritic plateaus sepa-
rated by large sandy valleys, with a relief of <100 m (elevations in 
the range of 177 to 274 m asl) and gentle slopes of a few percent at 
most. The largest fraction of the mesosite, to the north and east 
of the Niger River, belongs to the large Iullemmeden sedimen-
tary basin. It is characterized by endorheic hydrology, with small 
catchments feeding depressions or ponds scattered along ancient 
river beds. The top sedimentary layer is the continental terminal 
aquifer, partly covered with aeolian deposits in the northern part 
of the area in particular. The water table depth varies spatially from 
>70 m below the plateaus to <5 m very locally, with increasing 
outcropping in some valleys, resulting in localized soil salinization 
processes. In contrast, the right bank of the Niger River at the 
southwest of the mesosite belongs to the plutonic Liptako Gourma 
massif and is exorheic, draining to the Niger River.

Soils are essentially sandy and weakly structured, ferruginous, 
and poor in organic matter (0.5–3%), with little fertility. They are 
highly prone to rain-induced surface crusting and to water and wind 
erosion. The woody savannah landscape of the mid-20th century has 
now turned into a patchwork of rainfed millet [Pennisetum glaucum 
(L.) R. Br.] and fallow fields of shrubby savannah, alternating in 
an agropastoral rotation system. More or less degraded tiger bush, 
a banded contracted vegetation typical of the arid zones (Valentin 
and d’Herbès, 1999; Galle et al., 2001), subsists on plateau areas. 
Population density, which reached ?30 inhabitants km−2 at the 
turn of the century, is increasing at rates close to 3% yr−1.

The first field observations at the Niger site date back to 
1988, with the SEBEX (Sahelian Energy Balance Experiment) and 
EPSAT (Estimation of Precipitation by Satellite) experiments. The 
landmark HAPEX-Sahel experiment was conducted at this site in 
1992 (Goutorbe et al., 1997), and basic long-term agro-ecological 
and hydrological observations were subsequently made perennial. 
Intensive instrumentation of small pilot catchments was deployed 
as of 2004, during the AMMA international program (Lebel et 
al., 2011). The observing system deployed at different nested scales 
across the Niger site is presented below and is further detailed, 
together with the site characteristics, in Cappelaere et al. (2009).

The Pastoral Sahelian Sites (Mali and Senegal)
The Mali Site

The northernmost AMMA-CATCH site is located in 
northeast Mali, in the Gourma pastoral region, which stretches 



VZJ | Advancing Critical Zone Science p. 5 of 24

from the loop of the Niger River southward down to the 
border region with Burkina Faso (30,000 km2, Fig. 1). It is a 
scarcely populated area, with a population density of fewer than 
7 inhabitants km−2 (Direction Nationale de la Statistique et de 
l’Informatique, 2009).

The climate is warm, tropical, semiarid, with a unimodal 
precipitation regime. The rainy season extends from mid-June to 
mid-September and is followed by a long dry season. The long-term 
annual mean rainfall is 370 mm at Hombori, and the mean annual 
temperature is 30.2°C. The main vegetation types are tree savan-
nah on deep sandy soils, open forest on clayed soils in depressions, 
and scattered trees on erosion surfaces, covering respectively 56, 
12, and 30% of the area. Crops, mainly millet, installed on sandy 
soils represent only 2.4% of the Gourma supersite (Nguyen, 2015).

The landscape consists of an alternation of fixed sand dunes 
(endorheic system) and shallow soils (erosion surfaces) associated 
with rock and iron pan outcrops, and lowland fine-textured soils. 
On the sandy soils, the endorheic system operates at short distances 
(some tens of meters), with limited sheet runoff from dune slopes 
to inter-dune depressions. On the shallow soils associated with 
rock and iron pan outcrops and on lowland fine-textured soils, 
the endorheic system operates over much larger distances (some 
kilometers), with concentrated runoff feeding a structured web of 
rills ending in one or several interconnected ponds (Gardelle et al., 
2010; Gal et al., 2016).

Prior to the AMMA-CATCH monitoring, 37 vegeta-
tion sites were studied for 10 yr between 1984 and 1993 by the 
International Livestock Centre for Africa (ILCA) and the Institut 
d’Economie Rurale (IER). Starting in 2000, the monitoring was 
progressively intensified under the AMMA project (Hiernaux et 
al., 2009b; Mougin et al., 2009). During the AMMA experiment 
(2005–2010), the Gourma site extended also in the Haoussa region, 
to the north of the Niger River (Mougin et al., 2009).

Since 2011, due to persistent security problems, the monitored 
sites have been restricted within the 50- by 50-km AMMA-
CATCH supersite at the vicinity of Hombori (15.3° N, 1.5° W). 
Besides this, some equipment has been reinstalled in Senegal, a 
pastoral area with similar eco-climatic conditions.

The Senegal Site
The Ferlo region in Senegal extends to the north up to the 

Senegal River. The climate is typical of the Sahelian area, with 
a mean temperature at the Dahra site of 29°C, peaking in May, 
and a mean annual precipitation of ?420 mm. The rainy season 
is mainly concentrated within three months (July–September), 
during which herbaceous vegetation growth occurs. Vegetation, 
like in the Gourma region, is dominated by annual grasses with 
a tree cover of about 3%. Most water bodies in the Ferlo are 
temporary, except for a few permanent ponds (Soti et al., 2010; 
Guilloteau et al., 2014).

Soil moisture, precipitation, and dry herbaceous mass are 
monitored at two sites in the Ferlo region (Kergoat et al., 2015), 
extending the instrumentation set up since 2002 by the University 

of Copenhagen, the Karlsruhe Technical Institute, and Lund 
University, in collaboration with the University Cheikh Anta Diop 
and the Institut Sénégalais de Recherche Agronomique (Dakar) at 
the Dahra local site (Fensholt et al., 2004; Tagesson et al., 2016a).

 6Long-Term Observations and Strategy
Long-term measurements began in 1990 with a different his-

tory for the three sites. In 2004, during the AMMA international 
experiment (Redelsperger et al., 2006), the long-term network was 
homogenized on three sites (Mali, Niger, and Benin) and rein-
forced (Lebel et al., 2011). It served as the ground component of 
the AMMA international experiment.

On all four sites, the observation strategy is based on a multi-
scale approach, associating (i) a mesoscale site (typically 104 km2) 
to document the long-term water and energy cycles (Fig. 1, red 
outline); (ii) a so-called “supersite” (typically 10–100 km2) dedi-
cated to process studies at intraseasonal to interannual time scales 
on an integrating hydrological domain (Fig. 1, blue outline); and 
(iii) local sites (typically 1 km2) dedicated to the fine documenta-
tion of the components of the water and energy cycles and the 
vegetation dynamics. The mesoscale sites make the link with the 
regional scale. Nested sensor networks, with decreasing resolution 
with domain size, allow linking processes across scales.

This nested approach is illustrated for the Benin Sudanian site 
(Fig. 2). The mesoscale Benin site (Fig. 2a) gathers 16 stream gauge 
stations, 35 rain gauges, and 12 wells or boreholes monitoring the 
dynamics of the water table. The Donga supersite, an ?600-km2 
sub-basin of the Upper Ouémé (Fig. 2b), includes denser rain gauge, 
piezometer, and stream gauge sub-networks. Within the Donga 
basin, three local sites have been instrumented. They are represen-
tative of the three main land use and land cover types encountered 
in the area, which are marked by an increase in the woody layer: 
(i) cultivated areas, which include fallow and crops with isolated 
trees (Fig. 2c); (ii) wooded savannah; and (iii) woodland. Each of 
these three local sites includes the monitoring of: meteorological 
variables with a radiative budget; turbulent fluxes at eddy covari-
ance flux towers; vegetation dynamics (leaf area index and height); 
0- to 1-m soil moisture, temperature, and suction profiles located at 
the top, middle, and bottom of a hillslope transect (700–1000 m 
long); and permanent and perched water table depths along the 
hillslope, using piezometers at different depths. A similar nested 
approach is being deployed at the Niger and Mali sites (Cappelaere 
et al., 2009; Mougin et al., 2009, respectively).

Besides the common setup illustrated above, supplemental 
instruments or networks have been installed at each mesosite 
depending on its eco-hydrological context. In Benin, an elemen-
tary watershed (0.15 km2) has been monitored to understand 
the origin of river flow (Fig. 2c). A supra-conducting gravimeter 
monitors local variations in the total water column and makes the 
link with the larger scales (Hinderer et al., 2012). In Niger, the 
?2-km2 Wankama endorheic catchment gathers surface flux sta-
tions, soil moisture profiles, vegetation plots, stream gauges, pond 
limnimetry, and an associated piezometry transect to capture the 
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water cycle from point to catchment scales. In Mali, the Agoufou 
pond (250-km2 watershed) water level, turbidity, and suspended 
sediments are monitored to study the dynamics of surface water.

Seven categories of variables are monitored with coordinated 
protocols and identical sensors on the four sites: meteorology, 
surface water, groundwater, soil, surface–atmosphere f luxes, 
vegetation, and water quality. The measured variables in each 
of the seven categories as well as the measurement periods are 
shown in Table 1. In 2018, a total of 290 stations (including 850 
sensors) are in operation in the four countries (Table 1). The 
stations are grouped into 42 “instruments.” An instrument aims 
to answer a scientific question and focuses on a specific spatial 
and temporal scale. It may be either a group of identical sensors 
organized in a network (e.g., a rain gauge–stream gauge network) 
or a set of complementary sensors located in the same place (e.g., 
a surface flux station composed of a flux tower with radiative 
budget and soil heat flux). Each instrument is under the scientific 
responsibility of one or two principal investigators. An instru-
ment corresponds to a dataset in the observatory database and 
is identified by a doi. Currently 26 instruments are in operation, 
12 are stopped because they correspond to objectives that have 
been achieved (characterization or process studies), and four are 
suspended for security reasons in Mali. At least one instrument 
in each category of measurement is present in each eco-climatic 
subregion (Table 1). This observation system has continuously 
generated a coherent dataset for the last 25 yr.

 6Dedicated Campaigns 
and Experiments

Besides the long-term observation system, specific field 
campaigns are organized to (i) document the critical zone 
architecture, such as the geometry but also the hydrodynamic 
properties of the groundwater reservoirs and soil layers, (ii) study 
fine processes, such as the paths of water transfers between sur-
face and groundwater, and (iii) calibration/validation (Cal/Val) 
of satellite missions, remote sensing being a key additional data 
source for our large mesosites and for upscaling to the data-poor 
region. These campaigns allow, in particular, better characteriza-
tion of processes and inputs to modeling approaches across the 
AMMA-CATCH sites.

Documenting the Critical Zone Architecture
Superficial soil properties have been characterized using ten-

sion infiltrometers at the Niger and Benin sites (Vandervaere et al., 
1997; Richard et al., 2013; Malam Abdou et al., 2015). Particularly, 
the time evolution of surface conductivity in cultivated or fallow 
areas has been shown to play a key role in Sahelian runoff genera-
tion processes (Malam Abdou et al., 2015; see below).

Aquifer geometries, specific yield, and permeabilities are 
not readily known in sedimentary and hard-rock regions of 
West Africa but are nevertheless key parameters for the mod-
eling and use of groundwater resources (Vouillamoz et al., 
2015). Geophysical techniques provide useful tools to spatialize 

Fig. 2. Illustration of the multiscale experimental setup of the Sudanian site 
(Benin): (a) the Upper Ouémé mesoscale site; (b) a close-up of the Donga 
watershed supersite; and (c) the crop–fallow local site. Note that the Upper 
Ouémé mesoscale site contains two other local sites on two other types of 
land use characteristic of the region (woodland and wooded savannah).
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geophysical parameters linked with aquifer properties. Electrical 
resistivity tomography (ERT), magnetic resonance sounding 
(MRS), and time-lapse gravity monitoring were implemented in 
the Niger and Benin sites of AMMA-CATCH in order to test 
their efficiency and characterize aquifer parameters.

The ERT technique provides two-dimensional electrical resis-
tivity cross-sections. This is suitable to characterize the aquifer 
and unsaturated zone two-dimensional geometry, especially in 
the case of highly heterogeneous sedimentary layers (Massuel et 
al., 2006) or hard rock areas (Alle et al., 2018). In hard rock, from 
place to place, the aquifer system can deepen within preexisting 
discontinuities such as geological faults or tectonic fractures called 

“subvertical fractures” (Fig. 3a, after Alle et al., 2018). Landscapes 
showing such high spatial variability of the substrate are difficult 
to characterize by traditional methods.

The MRS results (i.e., the MRS water content and MRS 
pore-size parameters) have been found to be well correlated with 
both specific yield and permeability or transmissivity calculated 
from long-duration pumping tests (e.g., Fig. 3b; Vouillamoz et al., 
2014). Magnetic resonance sounding allowed estimation of the 
specific yield and the transmissivity in hard rock aquifers in Benin 
(Vouillamoz et al., 2014; Legchenko et al., 2016) and in the uncon-
fined sandstone aquifers of the Niger site (Vouillamoz et al., 2008; 
Boucher et al., 2009). Specific yield (Sy) and transmissivities (T) 
are higher in Niger (Sy: 5-23%; T: 2 ´ 10−4–2 ´ 10−2 m2 s−1) 
than in Benin (Sy: 1–8%; T: 2 ´ 10−5–4 ´ 10−4 m2 s−1). Time-
lapse gravimetry surveys were also used for evaluating the specific 
yield (Hinderer et al., 2009; Pfeffer et al., 2011; Hector et al. 
2013). These results are in accordance with MRS water content 
and pumping-test-derived specific yield.

Exploring Critical Zone Processes
To detect specific hydrological processes such as water 

transfers between surface and groundwater, the origin of the 
river discharge, or land–atmosphere exchanges, hydrogeophysi-
cal and/or geochemical campaigns have been set up on each site, 
addressing their specific scientific questions.

In hard-rock aquifers in Benin, the groundwater recharge has 
been investigated. For 3 yr, the major as well as trace elements and 
stable isotopes of water were sampled in the surface and under-
ground waters of the Donga basin (600 km2). Their analysis shows 
that groundwater recharge occurs by direct infiltration of rainfall 
and accounts for 5 to 24% of the annual rainfall (Kamagaté et al., 
2007). An ERT time-lapse survey during the hydrological season 
confirmed a direct recharge process but also a complicated behav-
ior of groundwater dilution as well as the role of hardpans for fast 
infiltration (Wubda et al., 2017).

The origin of the flows of the Donga basin (600 km2, Benin) 
was investigated using geochemical campaigns and gravimetry. 
Geochemical campaigns have shown that the seasonal perched 
groundwaters are the major contributors to seasonal stream 
flow while the permanent groundwater in the saprolite almost 
never drains to rivers (Séguis et al., 2011). Episodic contribution 
of permanent water was revealed using gravity measurements: 
locally, deep-seated (>2 m deep) clayey areas exhibit lower sea-
sonal water storage changes than elsewhere, suggesting favored 
lateral transfers above the clay units. This observation contrib-
uted to evidence of the higher contribution of such clayey areas to 
the total streamflow (Hector et al., 2015). For the larger Ouémé 
basin (12,000 km2), the electrical conductivity of the base ñow 
was <70 mS cm−1 until the river dried up. Because this electri-
cal conductivity is far below that of the permanent groundwater 
(150–400 mS cm−1), a contribution of more mineralized perma-
nent groundwater has to be ruled out.

On the Sahelian sites, rainfall, surface water, and groundwater 
isotopic sampling (18O, 2H, and/or 3H, 14C, and 13C) was per-
formed to characterize the relationship between surface water and 
groundwater recharge on about 3500 km2 of the Niger site (Taupin 
et al., 2002; Favreau et al., 2002) and in wells around the Mali 
Hombori supersite (Lambs et al., 2017). On the Niger site, it has 
been found that land clearing increased groundwater recharge by 
about one order of magnitude (Favreau et al., 2002, 2009). Using 
MRS, localized recharge beneath expanding valley ponds was evi-
denced as a key process. Through a combination of vadose zone 

Table 1. Measurement categories, measured variables, and number of stations monitored at each of the four AMMA-CATCH observation sites. 

Category Measured variables

No. of monitored stations and operating period

Benin site Niger site Mali site Senegal site

Meteorology rainfall 43 (1999– )† 55 (1990– ) 2–36 (2003– ) 2 (2013– )

wind, atmospheric pressure, humidity, radiative budget 2 (2002– ) 2 (2005– ) 3 (2005–2011) 1 (2018– )

Surface water runoff, pond level 15 (1996– ) 7 (2003– ) 1 (2011– ) –

Groundwater water level in piezometers + domestic wells 20 + 28 (1999– ) 20 + 57 (2003– ) – –

Soil soil moisture, soil suction, soil temperature 9 (2005– ) 10 (2004– ) 12 (2004–2011) 2 (2013– )

Surface fluxes latent and sensible heat, soil heat flux 3 (2005– ) 2 (2005– ) 3 (2005–2011) 1 (2018– )

Vegetation biomass, leaf area index, plant area index, sap flow 3 (2010– ) 2 (2005– ) 3 (2005– ) –

Water quality turbidity, physico-chemical parameters, major and trace ions 20 (2002–2006) – 1 (2014– ) –

† The operating period available in the database is indicated in parentheses (ending date is blank if ongoing).
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geophysical and geochemical surveys and of surface and subsur-
face hydrological monitoring, substantial deep infiltration was 
also shown to occur below sandy alluvial fans and channels on the 
hillslope, contributing to the recent groundwater recharge increase 
(Massuel et al., 2006; Descroix et al., 2012b; Pfeffer et al., 2013).

In the Senegal Ferlo, campaigns on soil biogeochemical anal-
ysis and surface atmosphere exchanges of nitrogen compounds 
showed that changes in water availability in semiarid regions have 
important nonlinear impacts on the biogeochemical nitrogen cycle 
(Delon et al., 2017).

Upscaling of turbulent f luxes from single ecosystem plots 
to mosaics of ecosystems at the landscape scale was unraveled by 
complementing the permanent eddy covariance stations with large-
aperture scintillometry campaigns in both the Sahelian (Ezzahar et 
al., 2009) and Sudanian (Guyot et al., 2009, 2012) settings.

Providing In Situ Datasets for 
Calibration/Validation of Satellite Missions

Satellite missions require in situ measurements to calibrate and 
validate their products for various climates and continents. The 
AMMA-CATCH observatory provides a unique opportunity for 
the so-called Cal/Val activities in Sahelian and Sudanian climates. 
Indeed, the AMMA-CATCH sites are often the only Cal/Val sites 
in West Africa. To match the requirement of Cal/Val activities, the 
setup of some in situ sensors has been specially designed or rein-
forced (Kergoat et al., 2011).

Several studies have used the AMMA-CATCH rain gauge 
networks to evaluate satellite rainfall products. The network den-
sity across these sites (especially the Niger and Benin sites with 
about 40 gauges within a 1 by 1° area) is unique in Africa and even 
in the tropics. It provides an unprecedented opportunity to ana-
lyze the ability of satellites to detect and quantify rainfall within 

tropical convective systems. Within the Megha-Tropiques mis-
sion ground validation program (Roca et al., 2015), Kirstetter et 
al. (2013) evaluated instant rainfall retrievals based on the BRAIN 
algorithm (Viltard et al., 2006), evidencing failure to detect the 
lightest rains. Guilloteau et al. (2016) demonstrated the ability 
of several high-resolution satellite rainfall products to reproduce 
the diurnal cycle of precipitation. Gosset et al. (2018) confirm 
the good performance of the Global Precipitation Measurement 
(GPM) era products in West Africa and the key role of the addi-
tional sampling provided by the Megha-Tropiques satellite.

The Soil Moisture and Ocean Salinity (SMOS) mission soil 
moisture Level 3 product (SMOS-L3SM) was evaluated through 
comparison with ground-based soil moisture measurements acquired 
in Mali, Niger, and Benin from 2010 to 2012 (Louvet et al., 2015). 
It was found that, across the three sites, the SMOS-L3SM product 
provided good coefficients of correlation (0.70–0.77), with a RMSE 
<0.033 m3 m−3 in Niger and Mali. However, the RMSE score for 
the Benin site was larger (0.076 m3 m−3), mainly due to the pres-
ence of a denser vegetation cover (Louvet et al., 2015). More recent 
sensors such as Soil Moisture Active Passive (SMAP, launched in 
2015) products were controlled close to their expected performance 
thanks to a network of 34 sites, including the AMMA-CATCH 
sites (Colliander et al., 2017). The effort to compare SMAP soil 
moisture products will continue beyond the intensive Cal/Val phase.

The AMMA-CATCH sites have also contributed to the vali-
dation of vegetation products like the leaf area index provided by 
the VEGETATION instrument and by the Moderate Resolution 
Imaging Spectroradiometer (MODIS) sensor in the pastoral Sahel 
(Morisette et al., 2006; Camacho et al., 2013; Mougin et al., 2014), 
as well as MODIS gross primary production (Sjöström et al., 2013).

In the near future, AMMA-CATCH will contribute to the 
Cal/Val of other missions, such as the Ecosystem Spaceborne 

Fig. 3. (a) Hydrogeological model of weathered hard rock (after Alle et al., 2018), with higher hydraulic conductivities found in the stratiform fractured 
layer and in the subvertical fractured zones (area between the red dashes); (b) comparison of the transmissivity (T) estimated from magnetic resonance 
sounding (MRS) and calculated from a pumping test in hard rock in Benin (after Vouillamoz et al., 2014).
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Thermal Radiometer Experiment on Space Station (ECOSTRESS) 
mission (plant response to water stress), to be launched by NASA 
in 2018 (Cawse-Nicholson et al., 2017), and the Surface Water 
Ocean Topography (SWOT) mission (Biancamaria et al., 2016), 
aimed at estimating water volumes and discharge over terrestrial 
water bodies and rivers.

Beyond participation in Cal/Val phases of specific satellite 
missions and products, AMMA-CATCH in situ measurements 
are intensively used for the development and evaluation of new 
satellite-based methods for the estimation of surface fluxes and 
evapotranspiration (Ridler et al., 2012; Marshall et al., 2013; 
García et al., 2013), soil moisture by passive and active micro-
wave sensors or space altimeter (Pellarin et al., 2009; Gruhier 
et al., 2010; Baup et al., 2011; Fatras et al., 2012), soil heat flux 
(Verhoef et al., 2012; Tanguy et al., 2012), gross primary produc-
tion (Sjöström et al., 2011; Tagesson et al., 2017; Abdi et al., 2017), 
leaf area index and aboveground biomass (Mangiarotti et al., 2008), 
dry-season vegetation mass (Kergoat et al., 2015), suspended sedi-
ments in ponds and lakes (Robert et al., 2017), and soil moisture 
assimilation to improve rainfall estimates (Pellarin et al., 2008, 
2013; Román-Cascón et al., 2017).

 6Data Management and Policy
AMMA-CATCH is the result of long-term and joint work 

among researchers from universities, research institutes, and 
national operational networks in Benin, Niger, Mali, Senegal, 
and France. They work together to produce quality-controlled 
datasets. The data acquisition instruments are generally isolated 
and need electric autonomy. Their data are regularly collected 
by the technical teams and transmitted to the scientific princi-
pal investigator of the dataset. The principal investigators are 
responsible for calibration, quality check, and annual transmission 
of the datasets to the database manager, who makes them avail-
able online at http://bd.amma-catch.org/. This portal includes 
a geographical interface that allows navigation across locations 
and datasets and retrieval of the metadata. It fosters data discov-
ery by describing the dataset with standardized metadata (ISO, 
2014; DataCite [https://www.datacite.org/]), and interoper-
ability with other information systems by implementing the 
Open Geospatial Consortium (OGC, http://www.opengeospa-
tial.org/) standard exchange protocols (Catalog Service for the 
Web [CSW, http://www.opengeospatial.org/standards/cat] and 
Sensor Observation Service [SOS, http://www.opengeospatial.
org/standards/sos]). Soil moisture data are also available from the 
International Soil Moisture Network portal (Dorigo et al., 2011), 
and some of the surface flux data are part of the FLUXNET global 
network of micrometeorological tower sites (Falge et al., 2016). 
This deliberate open data policy is a contribution to the dissemi-
nation of climatic and environmental datasets, which is specially 
challenging in Africa (Dike et al, 2018). In 2017, 44% of the 
requests concerned soil moisture, 24% rainfall, 9% surface fluxes 
and surface waters, 8% meteorology, and 6% other data. The users 

come from all continents: 7% Africa, 47% Europe (10% France), 
33% North America, and 13% Asia.

All the AMMA-CATCH datasets are published under the 
Creative Common Attribution 4.0 International License (CC-BY 
4.0). For any publication using AMMA-CATCH data, depending 
on the contribution of the data to the scientific results obtained, 
data users should either propose co-authorship with the dataset 
principal investigators or at least acknowledge their contribution.

 6New Insights and 
Novel Scientific Findings

A major set of scientific advances from the AMMA-CATCH 
observatory was presented in 2009 in a special issue of the Journal 
of Hydrology (vol. 375; see Lebel et al., 2009). This section summa-
rizes the main recent insights gained from the AMMA-CATCH 
observatory, making a synthesis for each of the three research 
axes: long-term dynamics, process studies, and meeting the needs 
of society.

Regional Long-Term Dynamics
Rainfall Intensification

At the beginning of the 1990s, scientists mainly focused on 
the causes (atmospheric and oceanic) and the impacts (hydrologi-
cal, agricultural, and food security) of the 1970s to 1980s drought. 
At that time, regional studies (Le Barbé and Lebel, 1997; Le Barbé 
et al., 2002) showed that the Sahel region could be considered as 
a unique entity that records a unique signature in terms of rain-
fall regime changes between the wet (1950–1969) and the dry 
(1970–1990) periods (Fig. 4): the mean annual rainfall decreased 
by roughly 200 mm (corresponding to 20–50% of the annual rain-
fall), mainly due to a decrease in the number of wet days and to a 
lesser extent to a decrease in wet-day intensity.

Since the beginning of the 1990s, the annual rainfall has 
increased slowly, marking the end of the Sahelian great drought. 
Behind this general statement, new aspects in the rainfall regime 
are hidden. In fact, as first observed by Lebel and Ali (2009), some 
contrast appeared between the western and the eastern Sahel 
(annual rainfall increased earlier in the east than in the west). 
This result was confirmed by Panthou et al. (2018), who analyzed 
more deeply the east–west contrast in terms of wet days (number 
and intensity), hydroclimatic intensity (Trenberth, 2011; Giorgi 
et al., 2011), and extreme events. The main result found is that 
the western Sahel experiences slight increases in both number and 
intensity of wet days (and thus annual rainfall). In contrast, the 
eastern Sahel is experiencing a slight increase in the number of 
wet days but a strong increase in wet-day intensity, particularly 
the most extremes. This strong intensification in the central and 
eastern Sahel was observed early in Mali by Frappart et al. (2009) 
and confirmed at the Sahelian scale (Panthou et al., 2014a; Sanogo 
et al., 2015). The standardized precipitation index for annual totals 
and annual maxima has followed a similar pattern since 1950 
(Fig. 4). The main difference between the two variables is that 
during the recent period (since 1990), the annual maxima index 

http://bd.amma-catch.org
https://www.datacite.org
http://www.opengeospatial.org
http://www.opengeospatial.org
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/sos
http://www.opengeospatial.org/standards/sos
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has increased faster than annual totals. This is one of the expres-
sions of the recent intensification of the rainfall regime recorded 
in the region.

The recent study of Taylor et al. (2017) provided some insight 
into the atmospheric mechanisms that could explain this strong 
increase in extreme rainfalls. They found that the frequency of 
rainy systems (mesoscale convective systems) responsible for 
extreme rainfalls in the Sahel has dramatically increased. Different 
mechanisms (such as wind shear and Saharan dry air intrusion 
in the Sahelian mid-level atmospheric column), linked to the 
increase of Saharan temperature and the meridional temperature 
gradient (between the Guinean coast and the Sahara) seem to 
explain the increasing frequency of extreme mesoscale convective 
systems. Since the increasing meridional temperature gradient is 
a robust projection of global circulation models, they argue that 
the ongoing intensification in the Sahel is expected to continue in 
the coming decades.

These results provide a new vision of the evolution of the 
rainfall regime at the regional (Sahelian) scale. However, none of 
these studies have documented the evolution of fine-scale rainfall 
intensities, mainly due to method and data limitations. This issue 
is pressing in such a semiarid context where rainfall intensities at 
short timescales (sub-hourly) drive many surface processes (i.e., 
runoff, soil crusting, and erosion). Very novel results come from 
the AMMA-CATCH Niger network on that aspect. Despite its 
limited spatial extent and monitoring period, Panthou et al. (2018) 
showed that this network was able to record the subregional inten-
sification and found that the increase of sub-hourly intensities were 
similar (between 2 and 4% per decade) to the increase of daily 
intensities. This result is appreciable since detecting changes in 
sub-hourly intensities faces methodological issues (low signal/noise 
ratio), and long-term tipping bucket rain gauge data are very rare. 
These difficulties have been tackled thanks to the presence of a 
long-term and dense tipping bucket network, which provides qual-
ity-controlled series in a region that records a very strong signal of 

change. Note that such a detection of fine-scale rainfall change is 
quite unique in the literature.

Re-greening Sahel
The Sahelian vegetation has been shown to follow the precipi-

tation recovery after the major droughts of the 1970s and 1980s. A 
general “re-greening” has been observed during the 1981 to 2010 
period by satellite data (Fig. 5a, from Dardel et al., 2014b). The 
normalized difference vegetation index (NDVI) local trend is con-
firmed by in situ measurements of the herbaceous vegetation mass 
in Mali and Niger (Fig. 5b and 5c). Over the Gourma and more 
generally over the Sahel, tree cover tends to be stable or slightly 
increasing during 2000 to 2010 (Hiernaux et al., 2009a; Brandt 
et al., 2016a). However, the Sahelian re-greening is not uniform in 
space: in the Mali Gourma region, an increasing trend is observed 
(Fig. 5b), while the Fakara region in the Niger mesoscale site has 
witnessed a decrease in vegetation production (Fig. 5c). Moreover, 
even in some “re-greening” areas, vegetation degradation can 
occur at a small spatial scale, which is difficult to observe using 
coarse-resolution satellite data (Dardel et al., 2014a). A detailed 
study carried out on the Agoufou watershed in the Gourma region 
highlighted important changes in vegetation and soil properties 
between 1956 and 2011 (Gal et al., 2017). The most relevant 
changes concerned (i) the degradation of vegetation growing on 
shallow soils and tiger bush formations, and (ii) a marked evolu-
tion of soil properties, with shallow sandy sheets being eroded and 
giving place to impervious soils. Trichon et al. (2018) highlighted 
the persistent decline of tiger bush in the Gourma following the 
major droughts of the 1970s and 1980s. These land cover changes 
occurring at the local scale have important consequences on the 
hydrological system operating at a larger scale and are responsible 
for the spectacular increase in surface water and runoff in this 
region (see below). Regional spatial variability of Sahelian eco-
system production was derived from carbon fluxes at six eddy 
covariance stations across the Sahelian belt, including the four 

Fig. 4. Standardized precipitation indices (SPI) 
throughout 1950 to 2018 for the total annual 
(blue) and the annual maxima (red) over the 
Sahelian box (−2 E–5 W, 11–16 N) following 
the methodology developed by Panthou et al. 
(2014a).
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AMMA-CATCH stations in Niger and Mali. All sites were net 
sinks of atmospheric CO2, but gross primary productivity varia-
tions strongly affected the sink strength (Tagesson et al., 2016b).

Paradoxes and Contrasts of the Hydrological Cycle
Despite the long Sahelian drought period, a general increase 

in surface water was observed in different areas. This phenom-
enon is often referred to as the “Sahelian paradox.” An increase 
in the runoff coefficient on tributaries of major rivers in the Sahel 
has been reported since 1987 and synthesized by Descroix et al. 
(2012a) and Mahe et al. (2013). The annual runoff volume has 
shown a threefold or even a fourfold increase since the 1950s (e.g., 
the Dargol River, Fig. 6b), but at the same time the flow duration 
has been shortened (Descroix et al., 2012a).

A steady rise in the water table in Niger has also been observed 
since the 1950s (Leduc et al., 2001; Favreau et al., 2009; Nazoumou 
et al., 2016) (Fig. 6b) as a consequence of increased recharge by sur-
face waters concentrated in ponds and gullies (Massuel et al., 2011). 
The network of gullies and ponds has considerably developed during 
the past decades (Leblanc et al., 2008). An important increase in 
pond areas and surface runoff has also been observed in the Gourma 
region in Mali (Gardelle et al., 2010; Gal et al., 2016, 2017) (Fig. 6a). 
Moreover Robert et al. (2017) reported an increase in suspended sed-
iments in the Agoufou Lake during the 2000 to 2016 period, which 
is probably linked to increased erosion within the lake watershed.

The causes for the Sahelian paradox are still debated. For the 
Niger area, modifications of surface characteristics (soil crusting 
and erosion) due to the increase in cropping activities and/or land 
clearing and increased runoff over plateaus have been put forward 
as an explanation (Séguis et al., 2004; Leblanc et al., 2008; Amogu 
et al., 2015), while at the Malian pastoral site, where crops are very 
limited, the drought-induced vegetation degradation over shallow 
soils plays a crucial role on surface runoff modifications (Gal et al., 
2017; Trichon et al., 2018). At the same time, the Sahel is experi-
encing an intensification of extreme events, recently detected and 
quantified (Panthou et al., 2014a). More generally, the intensifi-
cation of precipitation favors groundwater replenishment in the 
tropics (Jasechko and Taylor, 2015). Nevertheless, the processes 
that transmit intense rainfall to groundwater systems and enhance 
the resilience of tropical groundwater storage in a warming world 
remain unclear. A water table rise subsequent to land clearing has 
been reported elsewhere in the world (Brown et al., 2005; Scanlon 
et al., 2006; Taylor et al., 2013). However, a more diverse com-
bination of processes, producing both diffuse and concentrated 
recharge, appears to be at play in the Sahel. The attribution of the 
increase in surface runoff and water table level to rain and/or to the 
modification of the land cover and their relative contributions is a 
question under discussion (Aich et al., 2015), being a major part of 
predicting the future evolution of the eco-hydrosystem (Roudier 
et al., 2014).

Fig. 5. (a) Global Inventory Monitoring and Modeling System (GIMMS) third generation normalized difference vegetation index (3g NDVI) trends 
from 1981 to 2011 over the Sahel region; temporal profiles of field observations of herbaceous mass over (b) the Mali Gourma region (blue rectangle) 
and (c) the Niger Fakara region (brown rectangle) (after Dardel et al., 2014b).
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In the Sudanian zone, runoff more classically decreases with 
rainfall. However, the relationship is not linear, and a 20% decrease 
in annual rainfall resulted in a much greater (>60%) decline in 
flows (Le Lay et al., 2007; Descroix et al., 2009; Peugeot et al., 
2011) (Fig. 6c), which can have significant consequences for human 
populations. Conversely, an increase in rainfall is amplified in the 
flows. Observations over the AMMA-CATCH eco-climatic gra-
dient highlighted the break between “Sahelian” behaviors, where 
an increase in flows despite the drought is observed, and “Sudano-
Guinean” behavior, where the decrease in flows is greater than that 
of rain (Descroix et al., 2009; Amogu et al., 2010).

The increase in Sahelian stream flows, observed since the 
beginning of the drought in West Africa, seems to be exacerbated 
by the modest rise in annual totals of rainfall since the mid-1990s 
and/or by the intensification of the precipitation regime. Since 
the middle of the decade 2001 to 2010, there has been an accel-
eration in the increase in volume of annual floods and an upsurge 
of f loods in West Africa (Descroix et al., 2012a; Sighomnou et 
al., 2013; Yira et al., 2016). These floods are causing increasing 
damage in West Africa. Human losses have increased by an order 
of magnitude since 1950 (Di Baldassarre et al., 2010). This is partly 
explained by demographic growth, particularly urban growth, 

Fig. 6. The hydrological response to global change since 1950 shows (a) an increase in the area of pools at the Malian pastoral site; (b) an increase in river 
runoff and a water table level rise at the Niger cultivated site; and (c) a co-fluctuation of rainfall and flow indices in the Upper Ouémé basin located in 
the Benin Sudanian area (modified from Le Lay et al., 2007; Gardelle et al., 2010; Descroix et al., 2012a; Nazoumou et al., 2016).
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which in turn induces a sharp increase in the vulnerability of 
societies. Therefore, flood forecasting is becoming an increasing 
priority for West African governments.

Process Studies
The Limits of Models with Global Parameterization

The expertise acquired on land processes in this region and 
the availability of in situ data motivated a specific model inter-
comparison exercise. The instrumentation deployed over the 
AMMA-CATCH mesosites in Mali, Niger and Benin provided 
specific data for (i) forcing the models and (ii) evaluating their 
capability to reproduce surface processes in this region. About 20 
state-of-the-art land-surface models participated to the AMMA 
Land-surface Model Intercomparison Project Phase 2 (ALMIP2), 
(Boone et al., 2009). Large differences regarding the partitioning 
of the water budget components as well as the energy variables 
were found among models over the Benin site (Fig. 7). Concerning 
water fluxes, runoff was found to be generally overestimated in 
the Ouémé watershed (Fig. 7) (Getirana et al., 2017), but also 
in endorheic areas of the Mali site (Grippa et al., 2017), where 
Hortonian runoff is the predominant mechanism. The soil 
description and parameterization have been pointed out as a major 
issue to address in order to better simulate water f luxes in this 
area. Concerning evapotranspiration, the multi-model average 
compared relatively well with observations over the three meso-
scale sites, although the spread among models remained important 
(Grippa et al., 2017). Over the Benin site, the actual evapotranspi-
ration was underestimated during the dry season, which is likely 
due to the underestimation of root extraction (see section below).

At a finer timescale, analysis of surface response - traced by 
the evaporative fraction - to rain events at the three sites, showed 
that the ALMIP models generally produce poorer results for the 
two drier sites (Mali and Niger). The recovery for vegetated condi-
tions is realistic, yet the response from bare soil is slower and more 
variable than observed (Lohou et al., 2014).

More generally, differences in the water and energy partition 
among different models were roughly the same over the three meso-
scale sites, indicating that the signature of model parameterizations 

and physics is predominant over the effect of the local atmospheric 
forcing as well as soil and surface properties in the simulations.

Evapotranspiration of the Main Vegetation Types
Evapotranspiration is the major term for water balance on the 

continents (65% on average) yet it is still very poorly documented, 
especially in Africa. In West Africa, by far the main sources of 
spatial variability in surface fluxes from a climatological perspec-
tive are the regional eco-climatic gradient and the local ecosystem 
type. Hence, the flux station network in the AMMA-CATCH 
observatory was designed to sample, with a manageable number of 
stations (eight), these two main variability sources. The climatol-
ogy of surface fluxes captured by this dataset allowed to analyze 
their basic drivers, including for instance the role of plant func-
tional types on evapotranspiration dynamics (Lohou et al., 2014, 
see section 7.2.1), as well as to validate or develop remote sensing 
techniques and large-scale models (Tagesson et al., 2017; Gal et al., 
2017; Diallo et al., 2017, see section 7.2.1). These two approaches 
provide ways to upscale observations regionally.

In Southern Sahel, during most of the year, evapotranspira-
tion appears to be water-limited, with the latent heat flux being 
tightly connected to variations in soil water and rainfall. Direct 
soil evaporation dominates vapor flux except during the core of the 
rainy season (Velluet et al., 2014). Depending on water availabil-
ity and vegetation needs, evapotranspiration preempts the energy 
available from surface forcing radiation, leading to very large 
seasonal and inter-annual variability in soil moisture and in deep 
percolation (Ramier et al., 2009). In Niger, vegetation development 
in fallow was found to depend more on rainfall distribution along 
the season than on its starting date. A quite opposite behavior was 
observed for crop cover (millet): the date of first rain appears as 
a principal factor of millet growth (Boulain et al., 2009a). On a 
seven-year period, mean annual evapotranspiration is found to 
represent ?82–85% of rainfall for the two systems, but with differ-
ent transpiration/total evapotranspiration ratio (?32% for fallow 
and ?40% for the millet field), and different seasonal distribution 
(Fig. 8). The remainder consists entirely of runoff for the fallow 
(15–17% of rainfall), whereas drainage and runoff represents 40 

Fig. 7. Annual water cycle main components, 
including storage, evapotranspiration (ET), 
measured runoff, and total runoff ) simulated 
by 12 land surface models (ALMIP2 experi-
ment) for the Upper Ouémé basin (Benin) 
Simulated total runoff can be compared with 
observed runoff (Qobs).
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to 60% of rainfall for the millet field (Velluet et al., 2014). For 
the dominant shrub species in Sahelian agrosystems (Guiera sen-
egalensis J.F. Gmel), sensitivity to drought was found significantly 
higher in mature shrubs than in resprouts from widespread yearly 
cuts, and suggested that this species is likely to be vulnerable to 
projected drought amplification (Issoufou et al., 2013).

In Northern Sahel, the magnitude of the seasonal cycle of the 
sensible heat, latent heat, and net radiation fluxes measured above 
the Agoufou grassland in Mali can be compared to the data from 
Niger (Tagesson et al., 2016b). The difference in latitude results 
in a shorter rainy season in Mali and the presence of shrubs in the 
fallow sites around Niamey, which have a longer leaf-out period 
than the annual grasses of the Agoufou grassland, where woody 
cover is 2% only (Timouk et al., 2009). The maximum daily evapo-
transpiration rate is observed for a flooded forest, which maintains 
losses in the order of 6 mm d−1 during the flood. In this lowly 
extended cover (?5% of the landscape), the annual evapotrans-
piration is more than twice the precipitation amount, indicating 
substantial water supply from the hillslope.

In the Beninese Sudanian site, the period when water is 
limited is reduced. During the rainy season, vegetation tran-
spiration is limited by available radiation (Mamadou et al., 
2014). Evapotranspiration is weakly but consistently higher in 
Bellefoungou woodlands than in cultivated areas (Mamadou et 
al., 2016). The main difference between the two vegetation types 
occurs in the dry season (Fig. 9) when crops are harvested but 
woodlands are still active (Seghieri et al., 2012). During the dry 
season, when soil water is exhausted in the first upper meter of 
soil, the deeper roots of the trees allow them to transpire (Awessou 
et al., 2017), producing an annual difference in evapotranspira-
tion of about 20% (Mamadou et al., 2016). On the same sites, the 
observed carbon flux of the woodland is twice that of the crop 
(Ago et al., 2016). However, the impact of deforestation on the 
water cycle is a complex issue to be assessed because transpiration 
of a specific tree varies according to its environment in a woodland 
or in a fallow (Awessou et al., 2017).

Advances from Field Data–Process Model Integration
Observational shortcomings (including time gaps, measure-

ment representativeness, accuracy issues or even the inability to 
simply observe a given variable of interest) limit the field data 
potential for assessing energy and water budgets over time and space. 
Conversely, field data are crucial to elaborate or evaluate process 
models, the only tool allowing to assess unobserved components (soil 
evaporation, plant transpiration, drainage). Hence, various develop-
ments or applications of ecohydrological and hydrogeological process 
modeling were intricately constructed with AMMA-CATCH field 
data, of which only a few can be presented here.

To better characterize the complex rainfall input signal, a sto-
chastic, high spatial resolution rainfield generator, conditioned to 
gauge observations, was developed for the Sahelian context from 
the Niger site data (Vischel et al., 2009). Pertinence of this tool 
for the highly sensitive runoff modeling was evidenced. Peugeot 
et al. (2003) showed how an uncalibrated physically-based rain-
fall-runoff model can help to qualify and screen uncertain runoff 
measurements. Velluet et al. (2014) proposed a data-model integra-
tion approach based on a seven-year multivariable field dataset and 
the physically based soil-plant atmosphere SiSPAT model (Simple 
Soil-Plant-Atmosphere Transfer model, Braud et al., 1995). They 
estimate the long-term average annual energy and water budgets 
of dominant ecosystems (i.e. millet crop and fallow) in Central 
Sahel, with their seasonal cycles (Fig. 8). Results underlined 
the key role played in the hydrological cycle by the clearing of 
savannah that was observed these last decades at the scale of the 
agropastoral Sahel, especially for water storage in the root zone, 
deep infiltration and potentially differed groundwater recharge, 
as previously suggested by Ibrahim et al. (2014). This ecohydro-
logical modeling approach was also applied both to reconstruct 
past evolutions of the coupled energy and water cycles during the 
last 60 years (Boulain et al., 2009b; Leauthaud et al., 2017) and 
to explore their possible future changes (Leauthaud et al., 2015). 
In addition to these studies, constraining groundwater modeling 
with complementary geophysical inputs, in particular from MRS, 

Fig. 8. Estimated mean seasonal courses of water 
cycle components for fallow (solid lines) and mil-
let (dashed lines) plots: fluxes and rate of storage 
change in the 0- to 4-m soil column. Means are 
computed across years and for a 30-d running 
window. Light-colored intervals show a variation 
of ±1 standard estimation error (after Velluet et 
al., 2014).
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reevaluated mesoscale recharge from 6 mm yr−1 in the initial 
model to 23 mm yr−1 (Boucher et al., 2012).

On the other AMMA-CATCH mesosites, modeling stud-
ies supported by in situ measurements revealed that some specific 
areas, even of limited extent, can play an important role in the water 
cycle. In Mali, Gal et al. (2017) highlighted the role of bare soil areas 
on increasing runoff, even if they remain very localized. In Benin, 
Richard et al. (2013) simulated a hillslope water balance: water extrac-
tion by the riparian forest transpiration captured all the water drained 
by the slopes for its benefit. Thus the hillslope does not feed river 
flow, which is currently mainly supplied from waterlogged headwater 
wetlands or “bas-fonds” (Hector et al., 2018). Such waterlogged head-
water zones are very common in the region and are considered to 
play a major role in the hydrological regimes of Africa (Wood, 2006; 
Séguis et al., 2011). Although localized, it is of prime importance 
to take into account riparian forest and waterlogged head-water 
zones in the models. Moreover, Sudanian inland valleys carry an 
important agronomic potential for irrigation, largely underexploited 
(Rodenburg et al., 2014; Alfari et al., 2016). Facing the strong demo-
graphic rates, they are highly subject to undergo major land use–land 
cover changes that may thus drastically impact the hydrological cycle.

Society Applications
In the context of research on subjects such as “hydrosphere”, 

“critical zone” and “water cycle” in the Anthropocene, eminently 
societal questions arise, as water is a resource for human 
communities. This section attempts to make the transition 
from water as a physical object, to water as a resource, i.e. how it 
is actually used by people (as blue or green water). To do so it is 
necessary to integrate the idea that water resources are not only 
natural, but a nature/culture co-production. We present below 
the work carried out by the AMMA-CATCH observatory to 
contribute to these societal issues.

Characterization of the Rainfall Hazard
Flood hazard in West Africa is increasing (Descroix et al., 

2012a; Wilcox et al., 2018), as a result of various factors previously 
noted (demographic pressure, hydrological intensification). In 

addition, urbanization and demographic growth have made West 
Africa more vulnerable to hydrological hazards (Tschakert, 2007; 
Di Baldassarre et al., 2010; Tschakert et al., 2010). Characterizing 
extreme hydrological hazards is becoming an urgent request in 
order to design water related infrastructures (flood protection, 
dam, bridge, etc.).

Intensity–duration–frequency (IDF) curves and the areal 
reduction factor (ARF) aim at describing how extreme rainfall 
distribution changes across space and time scales. Both tools are 
regularly used for various applications (structure design, impact 
studies). As climate is changing, the hydrological standard in West 
Africa must be revised (Amani and Paturel, 2017).

The dense networks of tipping bucket rain gauges of the 
AMMA-CATCH sites, and the required methodological devel-
opments (Panthou et al., 2014b) allowed to implement tools such 
as IDF in different countries (see Panthou et al., 2014b for Niger; 
Agbazo et al., 2016 for Benin; Sane et al., 2017 for Senegal). The 
new IDF curves obtained for Niamey airport (Fig. 10a) have 
already been requested by different organisms and end-users. 
These curves have been obtained using the methods developed 
in Panthou et al.2014b and Sane et al. 2017. Nonetheless, IDF 
and other indexes are implemented using a stationary hypothesis, 
which is undermined by the recent results on the intensification 
of the rainfall regime. The 20-years return level for daily rainfall, 
estimated using the method developed by Panthou et al. (2012), 
which was 90 mm in 1970 is now rising to 105 mm (+17%, see 
Fig. 10b). Two consequences arise from this: (i) end-users must be 
aware of such changes and (ii) scientists must develop tools taking 
into account climate non-stationarity.

Groundwater Availability
Sustainable Development Goals such as SDG 6 for “clean and 

accessible water” suggest that the mere presence of water in the 
subsoil is a necessary but not sufficient condition to achieve this 
goal (Mertz et al., 2011).

Reducing the rate of unsuccessfully drilled boreholes 
into hard rock aquifers in Benin: In the past several decades, 
thousands of boreholes have been drilled in hard rocks of Benin 

Fig. 9. Midday evaporative fraction (EF) at Nalohou cultivated area (gray dots) and Bellefoungou woodland (black dots) in Benin during 2008 to 2010 
(modified from Mamadou et al., 2016).
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to supply human communities with drinking water. However, the 
access to drinking water is still poor and it not improved signifi-
cantly in the last years (e.g. 63% in 2012 and 67% in 2015) despite 
a great effort put into drilling new boreholes by the community 
in charge of water development.

The groundwater storage in the upper Ouémé is 440 mm ± 
70 mm equivalent water thickness (Vouillamoz et al., 2015). As 
human abstraction (0.34 mm yr−1 ± 0.07 mm) is far less than the 
natural discharge (108 mm yr−1 ± 58 mm), they conclude that 
increased abstraction due to population growth will probably 
have a limited impact on storage as far as water is used only for 
drinking and domestic uses. However, people have limited access 
to groundwater because a significant number of drilled holes do 
not deliver enough water to be equipped with a pump and hence 
are abandoned (i.e. 40% on average in Benin). This high rate of 
drilling failure is mainly due to the difficulty of determining 
the appropriate location to sit the drilling, because of the high 
geological heterogeneity of the hard rock. Recent studies (Alle et 
al., 2018) showed that the approach currently used in Benin to 

sit boreholes is not appropriate and can partly explain the high 
number of drilling failures. The target to sit a borehole should 
be updated (i.e. from tectonic fractures to weathered units) and 
the methods used to investigate the targets should be changed 
(i.e., one-dimensional resistivity techniques should be replaced by 
two-dimensional ERT). Moreover, this new approach could save 
money by reducing the number of unsuccessful drillings, even if 
it improves the success rate by only 5%. This promising approach 
is already taught in universities and hopefully will soon be applied 
by companies that drill wells.

Taking advantage of the water table rise in Niger: In 
Sahelian countries, the development of irrigated agriculture is 
one of the solutions to avoid repetitive food crises. Nazoumou 
et al. (2016) demonstrated that increasing low-cost groundwater 
irrigation represents a long-term solution, using shallow, uncon-
fined perennial groundwater, widely distributed in this region. 
The long-term rise of the water table observed in southwestern 
Niger since the 1950s (see above) is such that it outcrops in certain 
places and is close to the surface in large areas (Torou et al., 2013). 
Data analysis of AMMA-CATCH observatory and operational 
services (Nazoumou et al., 2016) demonstrates that ?50,000 to 
160,000 ha (3–9% of present-day cultivated areas) could be turned 
into small irrigated fields using accessible shallow groundwater 
(water table depth £20 m). A map of the potential irrigable lands 
as a function of the table depth has been established (Fig. 11) to 
help stakeholders make decisions. The estimated regional capacity 
for small-scale irrigation, usually estimated with surface water, is 
doubled if groundwater resources are also considered.

Sustainable Land Use
Evaluation of different soil and water conservation 

practices: An increase in runoff causes problematic erosion of 
cultivated slopes in Niger (Bouzou Moussa et al., 2011). In the 
framework of the AMMA-CATCH observatory, two soil and 
water conservation techniques, widespread in Niger (benches 
and subsoiling), have been set up and instrumented to quantify 
and analyze their impact on water flows (runoff and infiltration). 
The comparison of the runoff coefficients observed before (Malam 
Abdou et al., 2015) and after these layouts (Fig. 12) shows that the 
benches and subsoiling favor infiltration (the soil water content 
increased by a factor 3), and decreases the runoff coefficient (a 
drop from 45 to 10%), which results in a recovery of the vegetation 
cover in the areas with conservation works (Boubacar Na’Allah 
et al., 2017; Bouzou Moussa et al., 2017). However, the effect of 
subsoiling on the runoff coefficient is temporary, as observed for 
cultivated areas (Peugeot et al., 1997; Ndiaye et al., 2005; Malam 
Abdou et al., 2015), and must be restored regularly, while the 
effects of the benches are more durable.

To go further, a new type of soil and water conservation work 
was tested on the plateaus, starting in 2016. The principle is to 
copy the natural water harvesting of the tiger bush (Galle et al., 
1999), defended by many researchers (Ambouta, 1984; Torrekens 
et al., 1997; Seghieri and Galle, 1999). These experiments are still 

Fig. 10. Characterizing extreme hydrological hazards at Niamey (Ny) 
airport: (a) intensity–duration–area–frequency (IDF) curves for res-
olutions between 1 and 24 h, and (b) estimation of the daily rainfall 
return level for different 20-yr periods from 1950 to 2014; x is the 
shape parameter of the generalized extreme value (GEV) and h is the 
temporal scaling of the IDF curves.
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ongoing and the impact of these soil management practices will 
be assessed for the long term.

Joint evolution of forage and livestock production in the 
Sahel: Livestock production systems in the Sahel are mostly pas-
toral, i.e., animals are getting the bulk or all of their feed from 
grazing (Hiernaux et al., 2014). Sahel livestock graze on communal 
lands—rangelands, but also fallows, cropland with weeds, stub-
bles, and crop residues after harvest. The herbaceous and woody 
biomass monitored by the observatory was analyzed in terms of 
forage available for livestock. The short-term impact of heavy graz-
ing during the growing season can only reduce production very 
locally, at worst by half (Hiernaux et al., 2009b). In the longer 
term, grazing has little impact because the herbaceous species are 
annuals and seeds that will grow the following year are already dis-
persed (Hiernaux et al., 2016). Furthermore, livestock transform 
about half of their forage intake into manure, which stimulates 
vegetation production (Hanan et al., 1991; Rockström et al., 1999), 
tends to favor the density of germination (Miehe et al., 2010), and 
mitigates wind erosion (Pierre et al., 2018). Woody plants tend also 
to be denser at the edge of these concentration spots (Brandt et al., 
2016b). These processes explain how the vegetation of the pastoral 
areas has recovered from droughts, leading to the re-greening of 
the Sahel (see above).

The spatial heterogeneity in forage availability and annual 
production (Hiernaux et al., 2009b) justify the mobility of the 
herds as a major adaptation strategy of the pastoralists to opti-
mize livestock feed selection (Turner et al., 2014). Yet the rapid 
expansion of the cropped areas, the densification of roads and 

other infrastructures (dams), and the rapid urbaniza-
tion since the mid-20th century has strongly reduced 
the area of rangeland and multiplied the obstacles to 
livestock mobility both locally and regionally (Turner 
et al., 2014). It weakens livestock productivity, close 
to the limit of technical viability, especially in the less 
mobile agro-pastoralist herds (Lesnoff et al., 2012). 
The main way to enhance livestock production at the 
height of the rapidly growing demand is thus to secure 
herd mobility and access to common resources (Bonnet, 
2013).

 6Future Perspectives
West Africa as a whole is a region in transition, as 

highlighted by the reported changes—in the rainfall 
regime, the hydrological intensification, and in some 
ecosystem components. Climate change, indirect 
impacts of population growth (land use–land cover 
changes, urbanization, etc.), or a combination of both 
have been put forward to explain the observed eco-
hydrological changes in the last 60 yr. However, a clear, 
quantitative attribution of these changes to climate vs. 
the diverse human impacts largely remains to be uncov-
ered. Moreover, the eco-hydrological changes observed 
in the Sahel in the last decades (runoff intensification 
despite rainfall deficit, subsequent re-greening with still 

increasing runoff) suggest that some areas may pass tipping points 
and shift to new, ill-defined regimes. The West African monsoon 
system has been identified as a possible tipping element of the Earth 
system (Lenton et al., 2008). In this context, several key science ques-
tions will have to be addressed in the future, as described below.

Detection of Change in Eco-hydrological Systems
The term change as used here refers to any alteration of the 

forcing factors (e.g., rainfall or incident radiation) and of the 
system response (e.g., groundwater recharge) that is not due to 
natural variability. Since the signal/noise ratio in eco-hydro-mete-
orological series is generally low due to the internal variability of 
the climate (Hawkins and Sutton, 2009; Hawkins, 2011; Deser 
et al., 2012), change detection requires long-term observations at 
space–time scales consistent with the process to detect. Despite 
the relatively low spatial coverage compared with the regional West 
African system, AMMA-CATCH observations have proven their 
usefulness to detect such changes (e.g., for vegetation [Dardel et 
al., 2014b], for fine-scale rainfall intensities [Panthou et al., 2018], 
and for runoff [Amogu et al., 2015; Gal et al., 2016]). Indeed, 
these high-resolution observations from a few seconds to hours 
on dense networks fill a gap in measurements at fine space–time 
scales. Thus, AMMA-CATCH datasets contribute to the docu-
mentation of regional trends when combined with datasets from 
other observing systems, such as national measurement networks, 
which measure the same variables with similar sensors or by using 
other sources of data, such as remote sensing.

Fig. 11. Potential irrigable lands in the Niamey region (Niger) as function of the water 
table depth (after Nazoumou et al., 2016).
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Change Attribution
The attribution of a detected hydrological change to one 

or several factors requires causal models, which must take into 
account the most relevant processes influencing the system (Merz 
et al., 2012). These processes include the links between the differ-
ent components of the system (water tables, land cover, land use, 
etc.), as well as the main feedback loops driving vegetation–hydrol-
ogy processes. Irrespective of their nature, these models have to 
give “good results for good reasons” and be robust (i.e., remain 
valid across a range of different conditions). This implies that 
they must realistically represent the key processes based on either 
physical principles, process parameterizations, or a mixture of the 
two; moreover they must operate at the relevant spatiotemporal 
scales. These models must be able to simulate system trajectories 
in response to gradual changes in forcing, and disentangle the 
roles of forcing, initial conditions, and internal variability in the 
observed behavior. The development of modeling tools dedicated 
to the attribution question in eco-hydrology is clearly a challenge 
for the critical zone community in West Africa.

Improvement of Physical Process 
Representations in Land Surface Models

Some components of the energy and water budgets remain 
insufficiently understood across the area, such as the estimations 
of evapotranspiration, especially at scales larger than the flux sta-
tion footprint, the changes in groundwater processes (and hence 
of water resource renewal) linked to land use land cover changes, 
three-dimensional spatial variability of soil properties, and the 
mechanisms underlying rainfall intensification. Despite progress 
made in the last decade in Earth system models, some specific fea-
tures of the critical zone in these tropical hydro-systems are still 
poorly represented, leading to biases in simulations (e.g., ALMIP2 
results): surface–groundwater interactions and evapotranspi-
ration and its links with vegetation through the representation 
of the root zone. This is all the more true in view of the current 
developments of hyper-resolution modeling of the critical zone 
(Maxwell and Condon, 2016), which allows simulation on fine, 

three-dimensional grids but for which the identification of realistic 
parameter values remains an issue (Prentice et al., 2015).

A New Generation of Satellite Products
Recent and future satellite missions will provide new oppor-

tunities with improved spatial and temporal resolution (Sentinel, 
GPM, ECOSTRESS, SWOT, Planet/RapidEye) and/or address-
ing new variables of the eco-hydrosystems (vegetation fluorescence: 
FLEX; global mass of trees: BIOMASS). In situ observations such 
as those by AMMA-CATCH provide the basis for Cal/Val activi-
ties for these new satellite products but also a ground reference to 
evaluate the coherence of classical remote sensing products over 
a long time span (Hector et al., 2013; Dardel et al., 2014a). The 
AMMA-CATCH observations and community also contribute 
to the development of new satellite products, and the innovative 
potential of the soil-moisture-based rain product is now being 
tested on a global scale with European Space Agency funding 
(Román-Cascón et al., 2017).

In this context, the strategy of the AMMA-CATCH com-
munity is to maintain consistent and complete observations 
of the energy and water budget components and document the 
ecosystems’ evolution in the long term, with four main objectives: 
(i) improve and update the existing data series to provide to the 
community long-term (ideally >30 yr) high-resolution (ranging 
from minutes to days according to the needs) quality-controlled 
datasets; (ii) detect trends, transitions, and regime shifts; (iii) 
better understand and model the major processes at play in this 
region, and (iv) address societal issues concerning the green and 
blue water resource, its accessibility, and its sustainable manage-
ment in a region where the populations are highly vulnerable and 
rapidly growing.

An associated, crucial issue is to secure, in the long term, 
the funding of observation systems.  The location and geometry 
of AMMA-CATCH are unique but imply specific operation 
costs. The West African countries pledged to support climate 
and environmental monitoring in the Nationally Determined 
Contributions (NDCs) taken at COP21 in Paris, but the Green 

Fig. 12. The subsoiling installation drastically 
limits runoff in Tondi Kiboro, Niger (photo by 
A. Ingatan Warzatan and A. Boubacar Na’Allah).
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Climate Fund is not yet in place, while the climatic and anthro-
pogenic changes are underway.
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