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Abstract

Phylogeographic reconstructions are becoming an established procedure to evaluate the factors that could impact virus
spread. While a discrete phylogeographic approach can be used to test predictors of transition rates among discrete loca-
tions, alternative continuous phylogeographic reconstructions can also be exploited to investigate the impact of underlying
environmental layers on the dispersal velocity of a virus. The two approaches are complementary tools for studying patho-
gens’ spread, but in both cases, care must be taken to avoid misinterpretations. Here, we analyse rice yellow mottle virus
(RYMV) sequence data from West and East Africa to illustrate how both approaches can be used to study the impact of envi-
ronmental factors on the virus’ dispersal frequency and velocity. While it was previously reported that host connectivity
was a major determinant of RYMV spread, we show that this was a false positive result due to the lack of appropriate nega-
tive controls. We also discuss and compare the phylodynamic tools currently available for investigating the impact of
environmental factors on virus spread.
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1. Introduction

In recent years, phylogeographic inference has become a rou-
tine tool for analysing the history of spread in virus epidemics
(Bloomquist, Lemey, and Suchard 2010; Faria et al. 2011; Pybus,
Tatem, and Lemey 2015; Holmes et al. 2016; Baele et al. 2017). In
part, this has been stimulated by computationally efficient
implementations of different diffusion models in the popular

Bayesian phylogenetic software BEAST (Lemey et al. 2009, 2010).
A large number of studies have employed these models to per-
form either discrete (e.g. Su et al. 2015; de Bruycker-Nogueira
et al. 2016; Al-Qahtani et al. 2017; Magee, Suchard, and Scotch
2017) or continuous (e.g. Torres et al. 2014; Groseth et al. 2015;
Streicker et al. 2016) phylogeographic reconstruction of virus
epidemics.
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The discrete diffusion model requires an a priori and often
arbitrary grouping of locations that, although sometimes rele-
vant (e.g. when considering virus movements across larger or
even at global scales), often represents an unrealistic or over-
simplified division of the space in which virus spread is recon-
structed. In addition, sampling bias is a strong limitation of the
discrete phylogeographic approach (De Maio et al. 2015; Baele
et al. 2017): over- and under-sampling will affect estimates of
transition rates between locations, hence impacting ancestral
reconstructions. Finally, the restriction that all ancestors of the
sampled viruses can only have existed at the sampled locations
can further limit the realism of reconstructed phylogeographic
processes. For these reasons, the continuous phylogeographic
approach, in which latitude and longitude changes are mod-
elled as a (relaxed) bivariate Brownian diffusion process, can
provide a more realistic alternative. On the other hand, the con-
tinuous approach remains restricted to dispersal processes that
maintain some relationship with geographic distance. This may
not be the case for human viruses, such as influenza migration
at the global scale, which has been demonstrated to follow air
transportation (Lemey et al. 2014).

Landscape genetics is a general field that ‘aims to inform on
the interactions between landscape features and evolutionary
processes’ (Manel and Holderegger 2013). In practice, classical
landscape genetic approaches often consist in comparing ge-
netic clusters or inter-individual/population distances with en-
vironmental factors to investigate their impact on gene flow. By
comparison, we here define ‘landscape phylogeography’ as a
subfield of landscape genetics, which specifically aims to relate
phylogenetically informed dispersal frequency or velocity to en-
vironmental factors. Yet, landscape phylogeographic analyses
are most often applied to rapidly evolving organisms such as
pathogens, and especially viruses, that allow for time-calibrated
phylogenies to infer the dispersion history (see also Fountain-
Jones et al. 2018 for a more global review of what they term
‘eco-phylogenetic’ methods). In this context, and bearing their
specific limitations in mind, discrete, and continuous phylogeo-
graphic approaches represent complementary tools for study-
ing the impact of environmental factors on virus spread.
Specifically, with the recently introduced generalised linear
model (GLM) parameterisation of the discrete phylogeographic
model available in BEAST (Lemey et al. 2014), it is possible to
jointly estimate the spread history and the relevance and con-
tribution of potential predictors to the ‘transition frequencies’
among discrete locations. For continuous phylogeographic
reconstructions, posterior trees can be mapped in a geographi-
cal context to investigate the impact of underlying environmen-
tal rasters on the virus dispersal velocity (Dellicour, Rose, and
Pybus 2016; Jacquot et al. 2017). However, it is imperative to take
cautionary measures in landscape phylogeographic approaches.
For instance, we here argue that it is important to include ap-
propriate negative controls in landscape phylogeographic test-
ing. The present study specifically focuses on the importance of
such negative controls in order to avoid false positive results.

Recently, Trov~ao et al. (2015) presented a comprehensive
study of the history of rice yellow mottle virus (RYMV) spread.
RYMV is a single-stranded RNA virus classified within the
Sobemovirus genus (Truve and Fargette 2011) and responsible of
one of the economically most important plant diseases in Africa
(Abo, Sy, and Alegbejo 1998). RYMV is transmitted by various bi-
otic and abiotic means, but there is no evidence of seed-borne
transmission (Bakker 1974; Traoré et al. 2009). The natural host
range of RYMV is limited to the two cultivated rice species
(Oryza sativa and O. glaberrima), some wild rice species (O. barthii

and O. longistaminata) and a few wild grasses (Konaté, Traoré,
and Coulibaly 1997). RYMV is a fast evolving virus (Fargette et al.
2008) and its diversity has a marked geographical distribution
that is not blurred by repeated long-range movements
(Abubakar et al. 2003). Because of the restricted host range and
the limited mobility of its biotic transmission vectors (Bakker
1974) it has been suspected that the intensification of rice culti-
vation underlies the RYMV emergence, a hypothesis that was
further reinforced by field surveys (Traoré et al. 2009).

Trov~ao et al. (2015) used both the discrete and continuous
phylogeographic models to reconstruct the RYMV dispersal his-
tory in Africa. In addition, they also applied the GLM extension
of the discrete phylogeographic model to study the impact of
several factors on the dispersal frequency between countries.
Using this approach, they found strong support for host connec-
tivity, i.e. geographic distances scaled by the intensity of rice
production (measured as the area harvested per hectare), as an
important predictor of RYMV dispersal frequency. In an attempt
to assess whether the intensity of rice production also left an
imprint on the dispersal velocity of the virus, we were con-
fronted with conflicting results that prompted a more extensive
investigation of how environmental factors impacted RYMV
dispersal frequency and velocity in West and East Africa. Based
on the analysis of both the original and an updated data set of
RYMV sequences, we here aim to (1) perform a comprehensive
investigation of environmental factors impacting RYMV dis-
persal frequency and velocity, (2) compare the related discrete
and continuous approaches, and (3) discuss the importance of
negative controls when analysing the impact of environmental
factors on virus spread.

2. Methodology
2.1 The original and extended RYMV data sets

All analyses detailed below were performed on two data sets:
the data set analysed by Trov~ao et al. (2015) and an extension
thereof including additional sequences. The Trov~ao et al. data
set was composed of 180 sequences from West Africa and 117
sequences from East Africa. Since the study of Trov~ao et al., ad-
ditional time- and geo-referenced RYMV sequences were made
available and these were included to arrive at 210 sequences
from West Africa and 240 sequences from East Africa. Analysing
the Trov~ao data set allowed a direct comparison with the results
reported by Trov~ao et al., while the extended data set served to
investigate the robustness of results to the sampling.

2.2 Discrete and continuous phylogeographic analyses

All phylogeographic inferences were performed using BEAST
1.8.4 (Drummond et al. 2012) and the BEAGLE library (Ayres
et al. 2012) to improve computational performance. Discrete
and continuous phylogeographic inferences were performed us-
ing the same settings previously used in Trov~ao et al. (2015) and
described below. Because of the clear separation between the
East and West African lineages (Trov~ao et al. 2015), the East and
West African data were treated as separate partitions that
evolve according to independent phylogenies. Accordingly, the
discrete and continuous phylogeographic reconstructions were
performed for each clade separately (but within the same
BEAST analysis). The substitution process was modelled accord-
ing to the SRD06 parametrisation (Shapiro, Rambaut, and
Drummond 2006), and the skygrid model was specified as tree
topology prior (Gill et al. 2013). Separate relaxed clock models
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with rates drawn from an underlying lognormal distribution
(Drummond et al. 2006) were fit to both the East and West
African clade, but with a shared lognormal mean to optimally
use the time signal in both clades. Discrete phylogeographic
inferences were performed at the country level using the
continuous-time Markov chain process (Lemey et al. 2009)
implemented in BEAST. This method reconstructs the disper-
sion history between discrete locations and infers a posterior
distribution of trees whose internal nodes are associated with
an estimated ancestral location. Continuous phylogeographic
inferences were performed using the relaxed random walk
(RRW) diffusion model (Lemey et al. 2010) also available in
BEAST. Following Trov~ao et al. (2015), we used a lognormal dis-
tribution to model among-branch heterogeneity in diffusion ve-
locity. This continuous character trait mapping allows to
reconstruct the dispersal history in a continuous space and gen-
erates a posterior distribution of trees whose internal nodes are
associated with geographic coordinates. Markov chain Monte
Carlo analyses were run for 500 million and 1 billion iterations
for the discrete and continuous phylogeographic inference, re-
spectively. The chains were sampled every 100 000 generations,
and the first 10 per cent of the samples in each chain was re-
moved as burn-in. BEAST XML files corresponding to these anal-
yses are available as Supplementary Files S1 and S2. For both
methods, maximum clade credibility (MCC) trees were obtained
with TreeAnnotator 1.8.4 (Drummond et al. 2012) and conver-
gence and mixing properties were inspected using Tracer 1.6
(http://tree.bio.ed.ac.uk/software/tracer).

2.3 Landscape analyses: GLM and post hoc approaches

Following Trov~ao et al. (2015), the contribution of potential pre-
dictive variables of RYMV spread was first assessed with the
GLM extension of the discrete phylogeographic method imple-
mented in BEAST (Lemey et al. 2014), to which we further refer
as the ‘discrete-GLM’ approach. As summarised in Fig. 1, this
results in estimates of the contribution (the GLM coefficient)
and statistical support (expressed by a Bayes factor (BF) calcu-
lated from inclusion probability estimates) for each predictive
variable included in the model. By identifying the combination
of predictors that best explain the transition rates between dis-
crete locations, the discrete-GLM approach allows to investigate
the impact of environmental factors on the dispersal
‘frequency’.

Secondly, we also used a post hoc univariate approach that
capitalises on the outcome of continuous phylogeographic
reconstructions (Fig. 1; Dellicour, Rose, and Pybus 2016), which
became available only after the study by Trov~ao et al. The first
step in this ‘continuous post hoc’ approach is the extraction of
the spatio-temporal information contained in trees sampled
from the posterior distribution. After this step, each phyloge-
netic branch can be treated as a distinct movement vector asso-
ciated with start/end locations and a dispersal duration (Pybus
et al. 2012). In a second step, an environmental distance is com-
puted for each phylogenetic branch and environmental factor
considered in the study. Environmental distances can be com-
puted with different path-taken models such as the least-cost
path algorithm (Dijkstra 1959) or with circuit theory (McRae
2006, McRae et al. 2008; see below). In a third step, we can then
estimate the correlation between phylogeny branch durations
and associated environmental distances. The final step consists
in a randomisation procedure to assess the support of the corre-
lation statistic. This procedure is based on the randomisation of
tree branch positions while maintaining the tree topology and

the inferred location of the most ancestral node (Dellicour,
Rose, and Pybus 2016). In addition, randomisations are per-
formed within a minimum convex hull defined by all node posi-
tions and while avoiding that nodes fall in non-accessible cells
(e.g. sea areas). These four steps are implemented in R scripts
available within the package ‘seraphim’ (Dellicour et al. 2016).
As the post hoc analysis tests the correlation between dispersal
durations and environmental distances, it explicitly investi-
gates the impact of tested environmental factors on the dis-
persal ‘velocity’. We consider this post hoc approach as
univariate because, contrary to discrete-GLM approach, each
environmental factor is treated individually in the current
implementation.

2.4 Computing environmental distances with
circuit theory

All environmental distances were computed with the pro-
gramme CIRCUITSCAPE 4.0.5 (McRae 2006; McRae et al. 2008)
that implements a method based on circuit theory. This method
treats environmental rasters as grids of electric resistance or
conductance to study the connectivity among locations. In this
framework, pairwise connectivity is approximated by estimat-
ing pairwise electric resistance measures between locations.
When the underlying environmental raster is treated as a resis-
tance grid, raster cells associated with higher values are less
permeable to movement. On the opposite, if the raster acts as a
conductance grid, the same cells will be more permeable to
movement. For the continuous post hoc approach, pairwise ef-
fective resistances were thus computed between point locations
defined by the start and end node coordinates of each phyloge-
netic branch. In order to estimate the resistance between two
nodes, one of the two node locations is arbitrarily connected to
a 1-A current source and the other one is connected to ground.
For the discrete-GLM approach, pairwise resistances were com-
puted between discrete locations, which are defined, in the con-
text of this study, as the different countries in the West and
East African study areas. Because multiple samples may have
been obtained at different locations within a specific country, a
single resistance distance between two countries was computed
as the average distance between all possible pairs of locations
from the different countries, thus treating all sampling loca-
tions from one country as current sources and all sampling
locations from the other country as ‘ground’ (Supplementary
Fig. S2). Note that for the GLM analyses, the environmental dis-
tances were all log-transformed and standardised prior to their
inclusion in the model (Lemey et al. 2014).

2.5 Including a ‘null’ raster in both approaches

In order to study the impact of a particular environmental vari-
able on the dispersal frequency and velocity, we consider two
different types of rasters: the environmental rasters and their
corresponding ‘null’ rasters that serve as negative controls. The
null raster is a copy of the environmental rasters but with a
value of ‘1’ assigned to all cells (Supplementary Fig. S2). To allow
a comparison with the null raster, all the cell values of the envi-
ronmental rasters were preliminary increased by ‘1’. This also
ensures that the absence of the environmental feature in a
given cell is coded by the minimum value of ‘1’ in both environ-
mental and null rasters. When computing pairwise environ-
mental distances on the null raster, there is no environmental
heterogeneity impacting the connectivity among locations
(Supplementary Fig. S2). Therefore, on this homogeneous raster,
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only the spatial distance between sampling locations impacts
the pairwise resistance values, which are thus correlated with
geographic distances. The interest here is to obtain pairwise
geographic distance measures as estimated with circuit theory,
i.e. environmental distances computed in the absence of envi-
ronmental heterogeneity. Indeed, pairwise distances computed
on a null raster can be more realistic measures of spatial con-
nectivity than simple great-circle geographic distances for two
reasons: (1) movements are not allowed across inaccessible
areas (coded with no-data value in the null raster), and (2) by ac-
commodating uncertainty in the route taken, the path model
based on circuit theory integrates the contribution of several
possible pathways.

In the discrete-GLM approach, we include pairwise distances
computed on the null raster as an additional predictor. This
allows to directly compare the relevance and effect of the envi-
ronmental rasters with their corresponding null raster, and also
avoids interpretation difficulties. If the null raster distances are
not included, it is difficult to unambiguously attribute a poten-
tially significant impact of an environmental factor to the model
used to compute distances on environmental rasters or to the
environmental raster’s heterogeneity.

For the continuous post hoc approach, environmental dis-
tances computed on the null raster were used to estimate the
correlation statistic Q ¼ R2

env � R2
null, where R2

env is the coeffi-
cient of determination obtained when branch durations are
regressed against environmental distances computed on the
environmental raster, and R2

null is the coefficient of determina-
tion obtained when branch durations are regressed against en-
vironmental distances computed on the null raster. An
environmental factor can only be considered as potentially ex-
planatory if both its distribution of regression coefficients and
associated distribution of Q values are positive (Jacquot et al.
2017). Indeed, negative regression coefficients indicate that
branch durations are negatively correlated with environmental

distances, and negative Q values indicate that considering en-
vironmental distances computed on the environmental raster
rather than on the null raster does not improve the linear re-
gression fit. The statistical support for the Q distribution was
therefore only tested (with the randomisation procedure de-
scribed above) when at least 90 per cent of the estimated Q val-
ues were positive. In that case, each of the trees sampled from
the posterior distribution was randomised once to generate
null distributions of Q values that can be compared directly
with the posterior distributions of estimated Q values. As de-
scribed in Dellicour et al. (2017), each estimated Q value
(Qestimated) was then compared with its corresponding rando-
mised value (Qrandomised) to compute a BF support. Such a sup-
port for a particular environmental factor was approximated by
the posterior odds that Qestimated > Qrandomised (see Dellicour
et al. 2017 for further details). As described in the scale of inter-
pretation of BF’s defined by Kass and Raftery (1995), BF values
higher than three and twenty can be, respectively, considered
as ‘positive’ and ‘strong’ evidences of the statistical signifi-
cance of Qestimated.

2.6 The tested environmental factors

Following Trov~ao et al. (2015), we tested as environmental factor
the spatially disaggregated rice production (area harvested in
hectares) obtained using the spatial production allocation
model (HarvestedChoice 2011). We evaluated both the rice har-
vested area as estimated in 2000 and in 2005 and a log-
transformed version of this raster. In addition to the rice har-
vested area (Fig. 2), we also tested the impact of additional envi-
ronmental factors: elevation, annual mean temperature, annual
precipitation, and the main rivers on the two study areas
(Supplementary Fig. S1; see Supplementary Table S1 for the
source of original raster files). Rice harvested area rasters as
well as rasterised main rivers were here tested as potential
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OUTPUT: posterior distribu�on of phylogene�c trees whose internal nodes are
                associated with a (set of) probable ancestral loca�on(s) (country)
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can be coupled with a Bayesian generalised linear model (GLM) to evaluate the
impact of several environmental factors on the dispersal frequency
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... ... ... ...
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spa�o-temporal informa�on contained in trees can be exploited in a 
post hoc analysis of the impact of several environmental factors on the
dispersal velocity (e.g. with the R package “seraphim”) - in four steps:
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      (e.g. with CIRCUITSCAPE)
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(4) randomisa�on procedure to assess the stat-
      is�cal support of the correla�on metric(e.g. CIRCUITSCAPE environmental distance)

Figure 1. Schematic overview of the discrete and continuous phylogeographic approaches that can be used to study the impact of environmental factors on a viral epi-

demic. Dispersion histories reported in both cases were informed by a consensus tree inferred from the discrete and continuous phylogeographic analyses based on

the initial data set of Trov~ao et al. (2015) for West Africa (180 sampled RYMV sequences; see Section 2 for further details).
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conductance factors, meaning that raster cells associated with
relatively higher rice harvested area values are more permeable
to movement. For the main rivers raster, a value equal to (1þk)
was assigned to each cell crossed by a main river. We tested
three different values for the parameter k: 10, 100, and 1,000. As
the raster cells that are not crossed by a main river were
assigned a uniform value of 1, k thus defines the additional con-
ductance associated with raster cell crossed by a main river (see
Laenen et al. 2016 for a similar approach). The other environ-
mental factors (elevation, temperature and precipitation) were
tested once as potential resistance and once as potential con-
ductance factors, which is a cautious approach when no obvi-
ous prior assumption can be made about the impact of an
environmental factor on the dispersal velocity. The null raster
was treated as a resistance factor but, because of its uniformity,
the same results would be obtained if treated as a conductance
factor.

To explicitly investigate the impact of including a nega-
tive control, the following combinations of environmental
factors were tested with the discrete-GLM approach: (1) the

great-circle geographic distances and the environmental dis-
tances computed on the rice harvested area in 2000, (2) envi-
ronmental distances computed on the null raster and the
raster based on rice harvested area in 2000, (3) the great-
circle geographic distances and the environmental distances
computed on the null and rice harvested area in 2000 rasters,
(4) the great-circle geographic distances and the environ-
mental distances computed on the null and log-transformed
rice harvested area in 2000 rasters, and (5) the great-circle
geographic distances and the environmental distances com-
puted on the null and rice harvested area in 2005 rasters.
We note that in this case, pairwise great-circle distances
were not computed between country centroid points, but by
averaging pairwise great-circle distances between all possi-
ble pairs of sampling locations in the two different countries.
Finally, we also performed a global GLM analysis involving
all the different environmental factors listed above. For the
latter analysis, we also included as predictors environmental
values either measured at the location of origin or at the des-
tination of each dispersal event.

Figure 2. Consensus trees estimated from the continuous phylogeographic reconstructions of the RYMV dispersal in West and East Africa, and which were based on

the updated data set made of 210 and 240 RYMV sequences, respectively. The MCC consensus trees are superimposed on a raster of rice harvested areas and tree nodes

are coloured according to their time of occurrence.
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3. Results and discussion

Continuous and discrete phylogeographic reconstructions
based on the extended data set are reported in Fig. 2 and in
Supplementary Files S3 and S4, respectively (see Trov~ao et al.
2015 for corresponding results based on the initial data set).
Results for the five discrete-GLM analyses focusing on the role
of geographic distance and rice harvested area on the spread of
RYMV are reported in Table 1. Environmental distances com-
puted on a rice harvested area raster are only identified as a rea-
sonably well supported predictor (BF >15) for West Africa when
environmental distances computed on the null raster are not
included as a predictor (see the first GLM analysis in Table 1).
The BF support for the importance of environmental distances
computed on the rice harvested area raster, however, drops be-
low 10 when including more data, and the support becomes
negligible in both datasets when the negative control under the
form of environmental distances computed on the null raster is
included. Instead, pairwise distances computed on the null ras-
ter are the only consistently supported predictor. Combined,
these results reveal that environmental distances computed on
the rice harvested area raster does not represent a better predic-
tor of the transition rates among discrete locations than the cor-
responding distances computed on the homogeneous null
raster. As for the continuous post hoc analyses, the low propor-
tion of positive Q values associated with this environmental
raster also indicates that the related environmental heterogene-
ity is not a better predictor of the dispersal velocity than a ho-
mogeneous null raster.

In the case of the discrete-GLM analyses, it is not straightfor-
ward to understand why considering environmental distances
computed on the null raster, instead of great-circle geographic
distances, has such a large impact on the result. A first impor-
tant difference between the two measures is that pairwise dis-
tances computed with path models such as the least-cost or
CIRCUITSCAPE algorithms take inaccessible areas into account.
However, there are no pronounced inaccessible areas on the
null raster. The second important difference is that
CIRCUITSCAPE integrates the contribution of multiple path-
ways. Therefore, when applied on a null raster, this algorithm
does not only account for geographic proximity as computed by
Euclidean or great-circle geographic distances. Taking this
source of uncertainty into account appears to influence the cor-
relation between the two geographic distance measures
(Supplementary Fig. S4): while the correlation remains high,
they do not maintain a linear relationship, in particular for
short distances.

It is important to underline that these results only indicate
that the currently available data does not hold any signal for an
impact of rice density on the dispersal frequency and velocity of
RYMV spread. As rice crops constitute the primary host of the
virus, we still expect their distribution to be a key factor for
the presence of the virus. Furthermore, as acknowledged by the
authors of this map, the rice harvested area raster is a ‘plausible
crop distribution map’ (You, Wood, and Wood-Sichra 2009) that
approximates the situation in the field by integrating informa-
tion from various sources such as production statistics, land
use, satellite imagery, or prior knowledge about the spatial dis-
tribution. As such, there is little guarantee that it provides a
good estimate of the actual rice harvested map in Africa. It
would therefore be interesting to use more accurate maps to
test the relationship between host density and RYMV dispersal
frequency/velocity.

In addition to the five discrete-GLM analyses and the contin-
uous post hoc results reported in Table 1, we also report, in
Supplementary Table S2, the results of the analyses involving a
larger number of predictors. In a first attempt, this global GLM
analysis included three predictors per environmental raster: the
pairwise environmental distances computed on the raster, as
well as the environmental values measured at the location of
origin and at the destination. Yet, due to the important correla-
tion among pairwise environmental distances computed on dif-
ferent rasters, we had to discard most of these predictors to
avoid collinearity problems in the GLM analysis. Eventually, and
for consistency with the above environmental analysis, among
the predictors based on environmental distances, only those de-
rived from the null raster and the rice harvested area rasters
were kept (see Supplementary Table S2 for the final list of se-
lected predictors). This extended discrete-GLM analysis further
corroborates the importance of incorporating an appropriate
null raster as a predictor: for both clades and both data sets,
only the negative control had a BF support >20 (or even 10).
Consistently, none of the predictors tested with the continuous
post hoc approach is associated with a BF support >20
(Supplementary Table S2). We can only note that environmental
distances computed on the annual mean temperature raster
treated as a resistance factor have an associated BF support of
8.1, which corresponds to a ‘positive’ evidence according to the
scale of interpretation of Kass and Raftery (1995). Yet, with a 95
per cent highest posterior density (HPD) interval of [0.00–0.01],
the associated Q distribution remains very small, implying that
this environmental raster hardly increases the correlation be-
tween dispersal duration and environmental distances.

The collinearity problems in the discrete-GLM approach are
due to the high correlation among environmental and spatial
distances. Collinearity in multiple regressions is a well-known
issue in spatial/landscape genetics (e.g. Balkenhol, Waits, and
Dezzani 2009; Blair et al. 2013). As reviewed in Prunier et al.
(2015), several approaches have been proposed to tackle this
problem. The simplest approach, which was used in this study,
is to exclude variables based on a threshold value (here 0.7) for
Pearson’s correlation coefficient (Dormann et al. 2013). An obvi-
ous disadvantage of this approach can be the arbitrariness in
deciding which of the highly correlated variables to exclude.
Alternatively, computation of orthogonal predictors can be used
to obtain derived independent predictors, but their interpreta-
tion may be challenging. Finally, commonality analysis, a de-
tailed variance-partitioning procedure (Newton and Spurrell
1967), could represent a promising solution. By decomposing
the unique and common contribution of each predictor to the
overall model fit, commonality analysis can provide insights for
interpreting GLMs in the context of multicollinearity (Prunier
et al. 2015). The implementation of commonality analyses or
similar approaches represents an interesting perspective to also
improve the interpretation of GLM results (Jacquot et al. 2017).

The continuous phylogeographic method employs an RRW
model that allows the diffusion velocity to vary among
branches, and that is flexible enough to allow an imprint of en-
vironmental heterogeneity through diffusion rate heterogene-
ity. Yet, in the continuous post hoc approach, the
phylogeographic reconstruction and environmental factor test-
ing remain separate steps. Consequently, and in order to take
into account the uncertainty associated with Bayesian phylo-
geographic inference, the environmental factors analysis has to
be performed on several trees sampled from the posterior distri-
bution. The development of an alternative approach that inte-
grates the landscape analysis within the phylogeographic
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reconstruction could avoid the computational burden of the
post hoc approach. Furthermore, the history of spread and the
impact of environmental factors should, ideally, be co-
estimated to coherently accommodate estimation uncertainty,
allowing for cross-talk between the model components
(Vrancken et al. 2015; Gräf et al. 2015) and avoiding the risk of
error propagation (e.g. Vrancken et al. 2015; Cuypers et al. 2017).
Whereas the discrete-GLM approach can already incorporate
time-variable predictors using an epoch extension (Bielejec
et al. 2014), another conceptual drawback of the continuous-
post hoc approach is that environmental/external factors are
assumed to be constant in time, and the incorporation of time-
variable predictors (e.g. temperature measures averaged by
month) is currently not supported. In the context of the present
study, considering the rice harvested area as constant in time
was indeed a limiting assumption, which could explain why no
significant impact was detected for this environmental factor.
Finally, it is important to emphasise that the discrete-GLM and

continuous post hoc approaches use different criteria, respec-
tively, the dispersal frequency and velocity, to assess the impact
of external factors. The choice of one approach over the other
thus depends on the initial research question or, alternatively,
both approaches can be used in parallel and in a complemen-
tary way. Indeed, it is possible that in some situations a particu-
lar environmental factor has an impact on the dispersal
frequency but not on the velocity, or vice versa.

In this work, we highlight the importance of including a neg-
ative control when investigating the impact of external factors
on pathogen spread with the discrete-GLM and continuous post
hoc approaches. This negative control is an additional potential
predictor that measures pairwise connectivity in the absence of
environmental heterogeneity. Its relevance stems from the fact
that the connectivity between locations can be more realisti-
cally captured by simultaneously considering all possible path-
ways across a landscape as compared to proportioning the
connectivity between locations to the involved pairwise spatial

Table 1. Analysis of the impact of rice harvested areas on RYMV dispersal frequency (based on discrete diffusion inference) and velocity (based
on continuous diffusion inference).

Discrete
phylogeographic
reconstructionþGLM
analyses

Data set of Trov~ao et al. (180þ117 sequences) Extended data set (210þ240 sequences)

West Africa East Africa West Africa East Africa

GLM coefficient BF GLM coefficient BF GLM coefficient BF GLM coefficient BF

1� GLM analysis:
Geographic distance �0.76 [�1.78, 1.61] 16 0.05 [�3.66, 4.01] 0.3 �0.85 [�1.53, 0.66] 32 �0.15 [�3.82, 3.76] 0.8
Rice harvested area

2000 (C)
�0.47 [�1.62, 1.55] 16.5 �0.18 [�3.56, 3.54] 0.9 �0.39 [�2.55, 2.35] 7.2 �0.49 [�2.74, 2.88] 5.6

2� GLM analysis:
Null raster (R) �1.09 [�1.4, �0.75] >99 �0.33 [�3.66, 3.66] 1.2 �1.15 [�1.5, �0.82] >99 �0.83 [�1.98, 2.34] 13.7
Rice harvested area

2000 (C)
�0.01 [�3.61, 3.84] 0.3 �0.16 [�3.66, 3.52] 0.9 0.03 [�3.59, 3.85] 0.3 �0.07 [�3.66, 3.59] 0.9

3� GLM analysis:
Geographic distance �0.02 [�3.58, 3.96] 0.6 �0.06 [�3.98, 3.96] 0.3 0.01 [�3.61, 3.90] 0.5 �0.19 [�3.78, 3.77] 0.9
Null raster (R) �1.06 [�1.4, �0.68] >99 �0.17 [�3.62, 3.84] 0.9 �1.12 [�1.5, �0.75] >99 �0.82 [�2.11, 2.01] 16.7
Rice harvested area

2000 (C)
0.01 [�3.89, 3.78] 0.2 0.00 [�3.62, 3.94] 0.6 0.01 [�3.87, 3.75] 0.2 �0.04 [�3.63, 3.75] 0.8

4� GLM analysis:
Geographic distance �0.09 [�3.91, 3.92] 0.6 �0.02 [�3.85, 3.9] 0.3 �0.03 [�3.67, 3.71] 0.5 �0.10 [�3.64, 3.75] 0.9
Null raster (R) �0.97 [�2.02, 1.18] 34.8 �0.21 [�3.87, 3.73] 0.8 �1.08 [�1.95, 0.75] 62 �0.77 [�3.26, 2.47] 7.8
Rice harvested area

2000 (log, C)
�0.22 [�3.68, 3.35] 0.9 �0.11 [�3.88, 3.91] 0.6 �0.04 [�3.68, 3.77] 0.7 �0.35 [�3.73, 3.37] 2.1

5� GLM analysis:
Geographic distance 0.00 [�3.62, 3.87] 0.6 �0.04 [�3.74, 3.77] 0.3 �0.02 [�3.8, 3.73] 0.5 �0.13 [�3.85, 3.77] 0.9
Null raster (R) �1.04 [�1.4, �0.59] >99 �0.17 [�3.80, 3.78] 0.9 �1.11 [�1.5, �0.74] >99 �0.73 [�2.67, 2.74] 10.4
Rice harvested area

2005 (C)
0.09 [�3.71, 3.91] 0.3 �0.22 [�3.68, 3.76] 1.1 0.02 [�3.72, 3.76] 0.2 �0.18 [�3.63, 3.63] 1.3

Continuous
phylogeographic
reconstructionþ
post hoc analyses

Data set of Trov~ao et al. (180þ117 sequences) Updated data set (210þ 240 sequences)

West Africa East Africa West Africa East Africa

Q statistic Q> 0
(per cent)

Q statistic Q>0
(per cent)

Q statistic Q>0
(per cent)

Q statistic Q>0
(per cent)

Rice harvested area
2000 (C)

�0.07 [�0.15, 0.05] 11 �0.03 [�0.07, 0.00] 3 �0.11 [�0.2, �0.03] 0 �0.07 [�0.11, 0.02] 6

Rice harvested area
2000 (log, C)

0.02 [�0.04, 0.10] 7 �0.02 [�0.04, 0.01] 17 �0.02 [�0.1, 0.03] 27 �0.01 [�0.06, 0.04] 33

Rice harvested area
2005 (C)

�0.09 [�0.15, 0.00] 3 �0.01 [�0.06, 0.05] 36 �0.13 [�0.2, �0.05] 1 �0.01 [�0.08, 0.05] 45

For GLM coefficients and Q statistics, we report both the median value and 95 per cent HPD interval. ‘BF’ refers to ‘Bayes factor’ and, according to the scale of interpreta-

tion defined by Kass and Raftery (1995), BF >3 and >20 can, respectively, be considered as ‘positive’ and ‘strong’ (in bold) evidences of the GLM coefficient or Q statistic

significance. ‘C’ and ‘R’ indicate if the considered environmental raster was, respectively, treated as a conductance or resistance factor (see the text for further details).
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(great-circle) distances. As a consequence, an external factor
that does not have an impact on the spread, but for which envi-
ronmental distances have been computed using an advanced
movement model (e.g. the one implemented in CIRCUITSCAPE),
can yield a false positive result in the absence of an appropriate
negative control. We believe this is the most likely explanation
for the support of distances computed on the rice harvested
area raster as a predictor for the migration frequency that was
reported in Trov~ao et al. (2015).

Supplementary data

Supplementary data are available at Virus Evolution online.
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