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Abstract: In 2008, as part of a feasibility study for radioactive waste disposal in deep geological
formations, the French National Radioactive Waste Management Agency (ANDRA) drilled several
boreholes in the transposition zone in order to define the potential variations in the properties of
the Callovo–Oxfordian claystone formation. This consisted of a rare opportunity to investigate
the deep continental biosphere that is still poorly known. Four rock cores, from 1709, 1804, 1865,
and 1935 m below land surface, were collected from Lower and Middle Triassic formations in the
Paris Basin (France) to investigate their microbial and geochemical composition. Rock leachates
showed high salinities ranging from 100 to 365 g·L−1 NaCl, current temperatures averaging 65 ◦C,
no detectable organic matter, and very fine porosity. Microbial composition was studied using a
dual cultural and molecular approach. While the broad-spectrum cultural media that was used to
activate microbial communities was unsuccessful, the genetic investigation of the dominant 16S
rRNA gene sequences revealed eight bacterial genera considered as truly indigenous to the Triassic
cores. Retrieved taxa were affiliated to aerobic and facultative anaerobic taxon, mostly unknown
to grow in very saline media, except for one taxon related to Halomonas. They included Firmicutes
and α-, β-, and γ-Proteobacteria members that are known from many subsurface environments and
deep terrestrial and marine ecosystems. As suggested by geochemical analyses of rocks and rock
leachates, part of the indigenous bacterial community may originate from a cold paleo-recharge of
the Trias aquifer with water originating from ice melting. Thus, retrieved DNA would be fossil DNA.
As previously put forward to explain the lack of evidence of microbial life in deep sandstone, another
hypothesis is a possible paleo-sterilisation that is based on the poly-extremophilic character of the
confined Triassic sandstones, which present high salinity and temperature.

Keywords: subsurface; Trias sandstone; microbial communities

1. Introduction

Over the past decades, many fundamental discoveries, especially the hyperthermophily concept,
have enabled us to expand life boundaries, with prokaryotic life occurring up to 121 ◦C in
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deep-sea hydrothermal vents [1] and evidence of deep-sea chemolithoautotrophic methanogenic
cell proliferation and activity at 122 ◦C when grown at high hydrostatic pressure [2]. Microorganisms
are also well known to inhabit the deep terrestrial subsurface, at depths where life meets harsh
physico-chemical constraints in terms of temperature and/or salinity, availability of nutrients, and
limited rock porosity [3–5]. The subsurface, including the continental one, represents one of the
most important microbial habitats on Earth and stores an important part of the world’s prokaryotic
community [6,7]. Nevertheless, our knowledge about the composition, distribution, and origin
of the deep biosphere is rather scarce, mainly because of limited abilities to access and acquire
uncontaminated samples from the ultra-deep subsurface.

In deep environments, microorganisms are exposed to extreme physico-chemical conditions.
The combination of hydrostatic pressure, temperature, salinity, and anoxia are major subsurface
parameters that drive life boundaries, but hydrogeological and geochemical aspects should also be
considered. They include rock porosity and permeability [8], water activity [9], electron acceptors,
energy and carbon source availability [3,10], or pH values, which are strongly influenced by dissolved
gas in the deep subsurface [11]. Subsurface microorganisms are present in rocks and consolidated
sediment pores where microbial movements and activities are limited, leading to slow microbial
growth [8]. Moreover, the liquid/solid ratio decreases with depth, thus granting only little space
for life in ultra-deep environments [12]. In this respect, a decrease of the microbial biomass has
been observed with depth in numerous studies [13,14]. Despite extreme conditions, biomass in the
continental subsurface, estimated at 2 to 6 × 1029 cells, account for a significant fraction of the total
prokaryote biomass on Earth [7].

Deep continental samples have mainly been acquired through open windows into the deep
subsurface, such as mining, oil drilling, geothermal, and water wells [4,15–18]. Few microbiological
studies have been conducted on the ultra-deep geosphere and especially on cores below 1500 m depth in
the continental crust where the estimated biomass is low [17,19–21]. In the deep continental subsurface,
studies report on various microbial community sizes. A prokaryotic PFLA (Phospholipid Fatty Acid
Analysis) concentration of 16 pmol·g−1, equivalent to 4 × 105 prokaryotic cells·g−1, was measured in a
shale of a natural gas-bearing formation (Virginia, USA) at 2700 mbsl (meters below surface level) and
a current temperature of 76 ◦C [19]. Around 104 cells·g−1 were found in an ultra-high-pressure rock in
the Chinese Dabie-Sulu metamorphic belt [20]. In comparison, 103 and less than 102 cells·g−1 were
reported in the quartzite and the Carbon Leader, respectively, extracted at 3200 mbsl from a functional
gold mine with a formation temperature of approximately 48 ◦C, in the South African Witwatersrand
basin [17]. Moreover, a decrease of biomass with depth was measured in cores at 860 mbsl (10 pmol
PLFA g−1), 1996 mbsl (about 0.4 pmol PLFA g−1), and 2090 mbsl (no PFLA) from a sedimentary
Cretaceous sandstone in the Piceance Basin of western Colorado (USA) [21].

A rare opportunity to investigate the deep continental biosphere was enabled through the
recognition campaign of the “Transposition Zone” (TZ) of the Meuse/Haute-Marne Underground
Research Laboratory (URL) in the east of the Paris Basin. As a part of the feasibility study of radioactive
waste disposal in deep geological formations, the French National Radioactive Waste Management
Agency (ANDRA) drilled, in 2008, several boreholes in the TZ in order to define the potential variations
in properties of the Callovo–Oxfordian claystone formation, the targeted layer for radioactive waste
disposal. This huge «multi-drilling» campaign enabled a direct access to different geological facies
extracted along a depth range extended from 500 to 2000 mbsl and a multidisciplinary scientific
collaboration was conducted in the TAPSS 2000 project (present and past transfer in an aquifer–aquitard
sedimentary system) [22].

In this context, the main aim of our study was to investigate the indigenous microbial
diversity of four Triassic sandstones from 1709, 1804, 1865, and 1935 mbsl by culture-dependent
and independent complementary approaches. The origin of the detected microorganisms is discussed
based on the geological history, the hydrogeological functioning of the Paris Basin (France), and the
physico-chemical data acquired from the targeted Triassic formations.
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2. Materials and Methods

2.1. Site, Drilling and Sampling

The drilling site (EST433 borehole on the C platform) is located close to Montiers-sur-Saulx
(Meuse, France) within the TZ delimited by ANDRA in the Paris Basin. The Paris Basin is supported by
the Hercynian basement and it contains a succession of sedimentary layers arranged in wide concentric
rings; the latest outcrop is in the middle and the oldest on the periphery as a direct result of the Paris
Basin subsidence in the Secondary and Tertiary era with the uplift of northern, eastern, and southern
margins [23]. The TZ represents an area of approximately 250 km2 in the east of the Paris Basin where
no fault was observed (Figure 1). The EST433 borehole was the only TZ borehole to reach Triassic
layers. It represents one of the few deep continental holes drilled from the surface down to 1700 mbsl
in undisturbed sediments. In situ temperature has been estimated at 60 ◦C at 1880 mbsl [22]. Drilling
procedures, borehole investigations and geological description of the drilling cores were described by
Landrein et al. [22]. Briefly, a destructive drilling with punctual core sampling was used for the deep
Triassic formations between about 1700 and 2000 mbsl. Four 9 m long cores were obtained and named
K2-17 to K2-20. These were then sub-divided into smaller pieces of rock (Figure 2).

On site, four samples, named K2-20 (EST31467), K2-19 (EST31602), K2-18 (EST31571), and K2-17
(EST31387), from four distinct Triassic formations and drilling fluids from the same depths were
collected using sterile materials. As it was assumed that no oxygen was present at these depths,
the samples were prepared for storage in an anaerobic glove box under N2 by cleaning the core
surfaces with ethanol and then placing the cores in sterile double plastic bags and closing the bags by
thermal sealing. The sealed plastic bags were then placed successively in two aluminized envelopes,
each sealed under flowing N2 to ensure anaerobiosis. Samples were kept at 4 ◦C until analysis. A piece
of core from each Triassic formation (9 cm long) was re-pressurized (190 bar) in a high-pressure
chamber under N2 to preserve the indigenous piezophilic microbial community.
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into the lithostratigraphic column.

Triassic cores were aseptically sub-sampled in an anaerobic chamber filled with filtered pure N2

according to the Poulain et al. protocol [24]. The peripheral two centimeters were removed by cutting
them off using a sterile saw, to prevent and limit the presence of contamination by allochthonous
microorganisms in the inner part of the core. To obtain a representative sample and to overcome the
spatial heterogeneity of microorganisms sequestered in rocks, about 200 g of each inner Triassic core
were manually crushed with a sterile mortar and hammer, homogenized, and packed into sterile bottles
capped and hermetically sealed under N2. Rock powder for the cultural approaches and geochemical
analysis was stored at 4 ◦C, while sub-samples used for the molecular analyses were frozen at −20 ◦C.

2.2. Geochemical Analyses and Mineralogical Characterisation of the Triassic Cores

pH values, ammonium, alkalinity, cations, and anions were determined on rock leachates. Only
the rock fraction <80 µm was leached with deaerated ultrapure deionized water (liquid/solid ratio
of 10) with stirring (150 rpm) for seven days in a CO2- and O2-free N2 atmosphere. pH values were
measured by electrometry according to the French standard procedure NF T 90-008 [25]. Ammonium
concentration was measured by flow analysis coupled with spectrometry based on the International
standard procedure ISO 11732 [26]. Alkalinity was determined by potentiometric titration according
to the ISO 9963-1 procedure [27]. Concentrations of nitrate, chloride, fluoride, sulfate, bromide, and
phosphate were determined by ionic chromatography according to the ISO 10304-1 procedure [28].
Sodium measurements were performed after tri-acid digestion (HF-HNO3-HClO4) by flame atomic
absorption spectrometry (Spectra AA-200, Varian, Victoria, Australia), according the NF T 01-041 French
procedure [29]. An alkaline fusion (Na2O2) of 2 g of rock was carried out to determine the rock chlorine
concentrations by potentiometric titration (Mettler DL25, Mettler-Toledo, Columbus, OH, USA). The Total
Organic Carbon (TOC, expressed in %) was determined by Rock Eval VI pyrolysis according to the
protocol that was described by Copard et al. [30]. Finally, concentrations of Mg, K, and Ca were measured
by ICP-AES (Ultima 2, Horiba-Jobin Yvon, Kyoto, Japan) according to the NF EN ISO 11885 [31].
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Crystallized phase identification of rock cores was carried out by X-ray diffraction patterns
(D5000 diffractometer, Siemens AG, Karlsruhe, Germany) on rock powder that was deposited
on a slide. Powder X-ray diffractograms were recorded between 4 and 84◦2θ with CoKα cross
(α1 = 1.789 Å). Minerals were identified using the search-match software DIFFRACplus. X-ray
diffraction provided qualitative and semi quantitative data. Well-polished thin sections of each
core were prepared to perform optical microscopic observations in order to determine the textural
relationships of minerals and to observe faultindicating microstructures. These data compiled with the
Thermoddem database [32] were used to model the composition of Triassic formation pore waters in
PHREEQC [33]. Rock porosity was determined using mercury injection porosimetry (Autopore IV
9500 V1.09, Micromeritics, Norcross, GA, US) on dry pieces of inner cores.

2.3. Microbial Enrichments

The cultivation approaches were based on three anaerobic metabolic guilds: methanogenic,
sulfate-reducing, and fermentative prokaryotes. The presence of organotrophic aerobes, nitrate-,
thiosulfate-reducing, and chemolithotrophic microorganisms that were able to reduce various inorganic
electron acceptors was also investigated (Table 1). Each enrichment medium was tested under different
salinities varying from 0 to 200 g·L−1 of NaCl, except for the DSMZ (Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH) 372 culture medium, specific for extreme halophilic
aerobic microorganisms, tested only at 250 g·L−1 of NaCl. pH was adjusted with KOH 10M to obtain
media close to neutral (pH 7 ± 0.5) or slightly alkaline (pH 8).

Regarding anaerobic cultures, anaerobic methods that were introduced by Hungate were used [34].
Oxygen was removed by boiling and then cooling the media to room temperature under a sterile
stream of O2-free N2. Each anaerobic medium was dispensed into Hungate tubes (10 mL) or
serum bottles (20 mL), closed and hermetically sealed under a stream of O2-free N2. Resazurin,
an oxidation-reduction indicator that is colorless when reduced, was used to confirm anaerobic
conditions in the culture media. The vessels were autoclaved at 121 ◦C for 20 min. Prior to inoculation,
substrate, electron acceptors, Na2S·9H2O, NaHCO3, and vitamins, when necessary, were added to
media from sterile anaerobic stock solutions. Media were inoculated in an anaerobic chamber by adding
1 or 2 g rock powder to 10 or 20 mL media. Reconstituted pore waters (obtained by PhreeqC modelling)
and saline waters were inoculated with 8.5 g rock powder for 17 mL of water. Two inocula were used
for each core: crushed rock preserved either at atmospheric pressure or under pressure (190 bars).
Five temperatures, i.e., 30, 37, 50, 55, and 70 ◦C were tested for incubations at atmospheric pressure.
Incubations were also carried out under pressure (150 bars) at 55 ◦C, on media F2, B, and C, as well as
on reconstituted pore waters amended with yeast extract (Table 1). Incubations under pressure were
performed in Hungate tubes that were completely filled with media to avoid bubble formation and
hermetically sealed with rubber stoppers, as described by Kallmeyer et al. [35]. Tubes were placed into
a thermo-regulated high-pressure vessel that was previously heated to the incubation temperature and
then pressurized using a hydrostatic pump. The pressure and the temperature inside the vessel were
checked after equilibration and again before depressurisation. Microbial growth in the enrichments
was assessed by direct microscopic observation, after two to 12 months of incubation.

The lack of toxicity of each crushed rock on bacterial growth was tested with a selection
of deep subsurface isolates, including Thermosipho japonicus (DSM 13481) isolated from a
deep-sea hydrothermal vent, Petrotoga mexicana (DSM 14811) isolated from an oil-producing well,
and Desulfovibrio profundus (DSM 11384) isolated from deep marine sediments. They were grown
on recommended DSMZ media (respectively, 283, 718, and 383) amended with 1 g crushed rock
in 10 mL media. Growth was determined by microscopic observations. Negative controls for each
condition were performed to identify media modifications resulting from culture conditions that could
be misinterpreted and lead to false-positive growth. These consisted of uninoculated media and media
that were inoculated with rocks sterilised three times at 121 ◦C with 24 h interval.
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Table 1. Composition of enrichment culture media. The resazurin color indicator was added into anaerobic media (1 mg·L−1).

Metabolic Guilds Minimum Media Yeast Extract
(g·L−1)

Peptone
(g·L−1)

HEPES
(mM)

Energy Sources
(mM)

Electron Acceptors
(mM)

L-Cysteine
HCl·H2O (mM)

Na2S·9H2O
(mM) NaHCO3(mM)

Aerobic

Chemoorganotrophs
AEM1 1 0.4 2 50 Glucose (10) O2 12

AE 2 5 5 Glucose (20) O2
AAEM1 3 5 5 O2 48

Anaerobic

Fermentative

ANM1 1 0.4 2 50 Glucose (10) 12
F1 2 5 5 Glucose (20) 2 20
F2 2+ 1 1 Fructose (10) 20

AANM1 3 5 5 48

Nitrate reducers IRD1 4 1 Glucose (20) NaNO3 (20) 24

Thiosulfate
reducers

IRD2 4 Lactate (20) Na2S2O3·5H2O (20) 2.85 2 24
IRD3 4 0.2 5 H2 (2 bar) Na2S2O3·5H2O (20) 2.85 2 24

Sulfate reducers

ANM5 1 0.2 Lactate (10) Na2SO4 (14) 2.85 2 12
L 2 0.5 0.5 Lactate (20) Na2SO4 (20) 2.85 2 1.7

B 2+ 0.5 Lactate (10) and
pyruvate (10) Na2SO4 (35) 1.5 20

HL 2 0.5 0.5 H2 (2 bar) Na2SO4 (20) 2.85 2 20

Methanogens

M 2 0.5 0.5 Methanol (40) CO2 2.85 2 20
C 2+ 0.5 Methanol (40) CO2 2.85 1.5 20

IRD4 4 TMA a-HCl (50) CO2 2.85 2 24
IRD5 4 H2 (2 bar) CO2 2.85 2 24

ANM4 1 0.2 CO2, carbonate CO2 2.85 2 12
HM 2 0.5 0.5 H2 (2 bar) CO2 2.85 2 20

Other lithotrophs ANM3 1 0.1 CO2 AQDS b (20) 12

Others, on
reconstituted pore

waters

EP-18 5 1 0.95
EP-17 6 1 1.55

SS Sea salt (Sigma) 1 2

1 Contained, in grams per liter of distilled water: KH2PO4, 0.33; CaCl2·2H2O, 0.33; NH4Cl, 0.33; KCl, 0.33; MgCl2·6H2O, 0.33 and 10 mL of DSMZ trace elements solution SL-10;
2 Contained, in grams per liter of distilled water: KH2PO4, 0.3; K2HPO4, 0.3; CaCl2·2H2O, 0.33; NH4Cl, 1; KCl, 0.33; MgCl2·6H2O, 0.33 and 1 mL of Widdel and Pfenning trace elements
solution; 2+ Contained, in grams per liter of distilled water: KH2PO4, 0.3; K2HPO4, 0.3; NH4Cl, 1; CaCl2·2H2O, 0.1; KCl, 0.1; MgCl2·6H2O, 0.1 and 1 mL of Widdel and Pfenning trace
elements solution. For enrichment culture with K2-18 samples, the quantities of CaCl2·2H2O, KCl and MgCl2·6H2O reached to 0.5; 3 Contained, in grams per liter of distilled water:
K2HPO4, 0.5; NH4Cl, 0.1; MgSO4·7H2O, 0.1; NaCl, 40; Na2CO3 13 and 20 mL of DSMZ trace element solution SL-6; 4 Contained, in grams per liter of distilled water: KH2PO4, 0.3;
K2HPO4, 0.3; NH4Cl, 1; CaCl2·2H2O, 0.1; KCl, 0.1; MgSO4·7H2O, 0.2 and 10 mL Balch trace element solution; 5 Contained, in grams per liter of anaerobic distilled water: Na2SO4, 4.13;
CaCl2, 2.61; MgCl2·6H2O, 1.24 and NaCl, 200 (PhreeqC modeling); 6 Contained, in grams per liter of anaerobic distilled water: Na2SO4, 6.18; CaCl2, 3.70; MgCl2·6H2O, 2.24 and NaCl,
85 (PhreeqC modeling); a TMA, trimethylanime; b AQDS, anthraquinone-6,10-disulfonate.
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Efforts to identify a potential contaminant microflora carried by drilling fluids were performed by
plating fluids on media to detect aerobic (media AEM1, AAEM1) and anaerobic (media ANM1,
AANM1) organotrophic, neutrophilic, and alkaliphilic microorganisms (Table 1). Alkaliphilic
microorganisms were targeted since the pH values of drilling fluid ranged between 11 and 12.
Contaminant microorganisms that are present in the anaerobic chamber were also targeted by exposing
AEM1 and ANM1 media agar plates to the chamber atmosphere during the core conditioning.
Incubations that were performed at 30 ◦C lasted seven days for aerobic plates and four weeks for
anaerobic ones.

2.4. DNA Extraction and Optimisation

Genomic DNA was extracted from drilling fluids, microbial isolates, and inner cores. For drilling
fluids and isolates, DNA extractions were performed on pellets with the FastDNA Spin Kit for Soil, as
recommended by the manufacturer (MP Biomedicals, Illkirch, France). Before extraction, pellets from
the drilling fluids were treated three times with phosphate buffer (pH 8) in order to decrease their
initial pH from 11/12 to 8. For Triassic rock, five grams of crushed rocks were used and three different
extraction protocols were applied in order to optimise DNA extraction.

Protocol 1 used the DNA extraction protocol of Lerner et al. [36] with slight modifications: before
incubation at 37 ◦C, slurries were subjected to two sonications and one vigorous agitation. SDS at a
concentration of 10% was added at the same time as Proteinase K (Sigma-Aldrich, Sigma-Aldrich, St.
Louis, MO, US). The second incubation was carried out at 65 ◦C for 2 h. Subsequently, samples were
cooled on ice before addition of Tris-HCl (pH 8)-saturated phenol.

Protocol 2 was based on the FastDNA Spin Kit for Soil (MP Biomedicals). Extractions were
performed on five distinct subsamples (ca. 1 g) of crushed rock and replicate DNA fractions were
pooled so that the DNA was recovered from 5 g of sample. A lysis at speed 5 in the FastPrep instrument
(MP Biomedicals) for 30 s and an extended spin of 30 min were applied at step 1 of the manufacturer’s
protocol. Optimisation tests that were performed on Protocol 1 (no initial wash, cell desorption
in a sodium pyrophosphate buffer, or addition of poly dIdC, a synthetic oligonucleotide acting as
DNA competitors for binding sites instead of washing) and Protocol 2 (with and without addition
of polydIdC and silicate beads at Step 1) did not improve DNA extraction yield, PCR efficiency,
or diversity patterns.

Protocol 3 used the UltraClean Mega Soil DNA kit, as recommended by the manufacturer (MoBio
Laboratories, Carlsbad, CA, USA). All crude DNA extracts were divided into two aliquots, one being
further purified by dialysis (Slide A Lyser Mini Dialysis Unit, 3.5 k MWCO) against sterile TE buffer
(10 mM Tris-HCl, 1 mM EDTA [pH 8.0]) at 4 ◦C for 24 h. The dialysed DNA extracts were concentrated
by precipitation with isopropanol, washed in 70% ethanol, and air dried. The final DNA products
were resuspended in 20 to 50 µL of DNA-free water or sterile TE buffer.

Negative controls were routinely performed in parallel without any sample in order to exclude a
contamination by traces of DNA carried by tubes and chemicals. DNA extraction efficiency and quality
of DNA extracts were evaluated by PCR amplification and diversity profiles of 16S rRNA genes.

2.5. PCR Amplification of 16S rRNA Gene Sequences

For DNA extracts of isolates and drilling fluids, 16S rRNA genes were amplified with primers 8F
and 1492R [37]. For crude and dialysed DNA extracted from Triassic rocks, the V3 region of bacterial
16S rRNA genes was amplified by nested PCR for denaturing gradient gel electrophoresis (DGGE)
analysis. The first PCR was performed on 1 µL of purified DNA with the primer set 8F/1492R, with 32
amplification cycles and primer binding at 55 ◦C. The nested PCR was performed on 1 µL of 10-fold
diluted PCR product with the primer set 341F-GC/907R [38], 15 amplification cycles and primer
binding at 55 ◦C. Amplification of archaeal 16S rRNA genes was performed using the three forward
primers A2Fa, A344F, and A109F combined with the same reverse primer A934R [39], 40 amplification
cycles, and primer binding at 65 ◦C. A nested PCR was also tried with Arch344F/w34FAM primers [40].
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PCR mixes contained 1X GoTaq® Flexi buffer (Promega, Charbonnières-les-Bains, France), 2.5 mM
of MgCl2, 25 µM of each dNTP, 500 nM of each primer, 1 to 2 µL of DNA extract, and 1 U of GoTaq
polymerase (Promega), in a final volume of 20 µL in nuclease- and DNA-free water (Sigma).

Negative controls without DNA were included in all PCR reaction sets. Absence of nested PCR
contamination was systematically checked by re-amplification of the negative control from the first
PCR. Several precautions were taken to exclude contamination by external DNA during PCR setup:
DNA-free plastics, U.V. irradiation of non-biologic products (water, buffer, tubes, tips . . . ), and setup
in a Biocap hood (Captair®bio, Erlab).

2.6. DGGE Analysis of Bacterial Diversity

DGGE analyses of the bacterial 16S rRNA gene V3 region were performed on 200 to 400 ng
of nested PCR products, in a 6% w/v polyacrylamide gel with a denaturant (formamide and urea)
gradient varying from 35 to 65%. Electrophoreses were performed in a D-Code system (BioRad,
Marnes-la-Coquette, France) at 80 V and 60 ◦C during 17 h in 1X TAE buffer. Gels were stained in SYBR
Gold (0.5X, Invitrogen, Cergy-Pontoise, France) for 20 min and then visualised on a Dark Reader (Clare
Chemical Research). Bands of interest were punched and eluted in 20 µL of nuclease- and DNA-free
water, and 1 µL was used for re-amplification by PCR with primer pair 341F-GC/907R. The purity of
bands was checked by DGGE. Re-amplified products were sequenced by the GATC Company while
using the Sanger method with primer 341F.

2.7. Phylogenetic Analysis

Presence of chimeric sequences was checked using BELLEROPHON [41]. Partial 16S rRNA gene
sequences were compared to the Genbank reference sequences by Blastn (http://www.ncbi.nlm.nih.
gov/blast/Blast.cgi). Sequence manipulation and alignment were performed in the BioEdit software
version 7.0.4.1 [42] All positions containing gaps and ambiguous data were eliminated. Distances were
calculated on 390 unambiguous nucleotides using the [43] method. Taxa were defined as clusters of
16S rRNA gene sequences showing more than 97% similarity. Nucleotide sequences were deposited
in Genbank database under accession numbers KC861992 to KC862021 for isolates and KC862022 to
KC862057 for environmental clones. Phylogenetic trees, including closest Blast related sequences, were
constructed using the neighbor-joining tree construction and bootstrap (1000 replicates) analysis [44,45],
with all phylogenetic programs being implemented in the MEGA X package [46].

3. Results

3.1. Characterisation of Deep Triassic Samples

Deep Triassic formations are located between the Permian basement and the Keuper saline
formation (Figure 1). The deeper samples K2-20 and K2-19 are two Lower Triassic sandstones.
The granulometry of the K2-20 core is heterogeneous (>200 µm up to mm). Detrital fraction consisted
of rounded grains of dominant monocrystalline quartz with minor polycrystalline quartz, K-feldspar,
and lithic clasts. Detrital grains were cemented essentially by authigeneous quartz. Tourmaline was an
accessory detrital phase (Figure 3A). The sample from the K2-19 showed a homogeneous granulometry
(average ~100–200 µm). Detrital fraction consisted of rounded grains of dominant monocrystalline
quartz with minor polycrystalline quartz and K-feldspar. Flakes of muscovite (white mica) were
frequent. Detrital grains were cemented by scarce detrital illite, and authigeneous quartz (Qtza)
and anhydrite (Figure 3B). These findings were corroborated by XRD patterns. The other samples
were two fine-grained sandstones belonging to the Middle Triassic formations. The sample from
the K2-18 core was heterogeneous sandstone alternated with a few thin clay-rich layers underlying
the bedding, and with carbonate-rich levels. The detrital fraction consisted of dominant quartz with
minor K-feldspar, plagioclase, chlorite, muscovite, tourmaline, and clay minerals locally cementing the
detrital grains (Figure 3C). Diagenetic cement consisted of anhydrite and in some levels of fine-grained

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
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carbonates (Figure 3D). The K2-19 core sample was carbonate sandstone. The detrital fraction consisted
of dominant quartz with minor K-feldspar, plagioclase, and white mica; illite was identified by X-ray
diffraction. Detrital grains were cemented by abundant fine-grained dolomite with minor anhydrite
(Figure 3E). The sandstone was crosscut by a coarse-grained vein of poecilitic quartz and fibrolitic
anhydrite (Figure 3F).
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Figure 3. Optical micrograph showing various mineral in the Triasic samples. Photo (A,B) were
taken from the K2-17 (EST31387) core, (C,D) from the K2-18 core (EST31571) and (E,F) from K2-19
(EST31602) and K2-20 (EST31467) cores, respectively. Dol, dolomite; Mus, muscovite; Anh, anhydrite;
Anhf, fibrolitic anhydrite; Chl, chlorite; Tur, tourmaline; Carb, carbonate; Kfs, K-felspars; Qtza, Quartz
authigeneous; Qtzm, Quartz monocrystalline; Qtzp, Quartz polycrystalline.

Rock porosities were estimated by mercury injection to be about 18, 15, 8, and 5%, for K2-20,
K2-19, K2-18, and K2-17 cores, respectively. Triassic rock samples were classified into two groups:
rocks with permeability lower than 0.1 µdarcy mainly formed by a pore system with diameters of less
than 0.1 µm (K2-18 and K2-17 cores) and rocks with permeability higher than 50 mdarcy with pore
diameters that are greater than 10 µm (K2-20 and K2-19 cores) (Figure 4).
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Figure 4. Pore throat distribution of Triassic sandstones samples determined by Hg analyses.
The permeability values were calculated from mercury porosimetry data according to the Katz and
Thompson method [47].

No nitrate or nitrite was detected in Triassic rock leachates. As found in groundwater from
Triassic formation EST03257 [48], sodium and chloride were amongst the main ionic compounds
found in the four Triassic rock leachates with concentrations ranging from 104 to 191 mM and from
18 to 69 mM, respectively, together with sulfate (about 23–25 mM) and calcium K2-17 (respectively,
63 and 71 mM) and K2-18 rock leachates (Table 2). Groundwater from Triassic formation was more
saline than leachates but higher amounts of sulfate were found in K2-18 and K2-17 rock leachates,
about 23 and 25 mM, respectively, than in groundwater (12 mM). The groundwater salt content
does not seem to be controlled by its host geological formation, except for the sulfate concentration
exhibiting values of the same order of magnitude (9 for leachate and 12 for groundwater from Triassic
formation). Sulfate concentrations could result from anhydrite dissolution, while other salts could be
formed from the dissolution of various accumulations, such as over- and under-lying saline formations,
for example. PHREEQC models estimated the pore water salinities of K2-18 and K2-17 samples to
be, respectively, 365 and 100 g·L−1. The salinity of the groundwater from Triassic formation was
180 g·L−1 [20]. The amount of organic carbon (TOC) was below the quantification limit of the RE6
pyrolysis method (0.5%).

Table 2. Geochemical analyses of pore water from Triassic sandstones and Triassic water (concentration
in mM). Data of groundwater from Triassic formation were obtained from Rebeix et al. [48].

Sample Depth (mbsl) Cl Br SO4 F NH4 Na Ca K Mg

Cores
K2-17 EST31387 1727 17.80 0.08 24.91 0.05 0.00831 165.22 63 0.5 1.9
K2-18 EST31571 1823 39.27 0.18 22.60 0.16 0.014 191.30 71 1.2 1.2
K2-19 EST31602 1885 61.10 0.29 8.69 0.11 0.04 121.74 8.75 1.6 1.2
K2-20 EST31467 1956 68.76 0.34 0.12 0.11 0.00942 104.35 0.8 1.2 1.3

Groundwater
EST03257 1900 2579.13 15.46 12.18 nd nd 1976.97 167.2 55.12 147.77

nd: not determined.

3.2. Exclusion of Potential Contamination Sources

The main source of potential contamination is the drilling fluids. Firstly, an estimation of the
drilling fluid intrusion was performed for each core sample using nuclear magnetic resonance (NMR)
and electrical resistivity patterns, which were acquired during the drilling procedure [22]. The low
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porosity and water mass content observed in NMR patterns indicated a very low drilling fluid intrusion
in the K2-17 and K2-18 sample cores, estimated at about 1 cm maximum for the most porous K2-17
dolomitic parts. The mud-logging data (data not shown) of deeper geological formations K2-19
and K2-20 showed resistivity curves that were somewhat grouped, suggesting a minor drilling fluid
intrusion of the order of one cm. In order to avoid potential microbial contamination from drilling
fluid (limited to the first peripheral centimetre), the microbial diversity study was performed on inner
cores only.

Secondly, one of the problems that was encountered in molecular analyses of low biomass
environments is the misinterpretation of microbial community data by the detection of contaminant
sequences [49,50]. To identify such sequences, a contaminants library was created by assembling the
partial 16S rRNA gene sequences detected from drilling fluid, atmosphere of the anaerobic chamber,
and all PCR negative controls (Table 3). It is of interest to stress that no amplification of the bacterial
16S rRNA gene was obtained directly from PCR negative controls; only weak amplifications were
sometimes produced from nested PCR.

The contaminants library included 23 taxa that were affiliated to aerobic or facultative anaerobic
bacterial species. Among them, 14 were often associated to Human beings, showing their allochthonous
character. In contrast, the exogenous nature of some detected 16S rRNA gene sequences was more
difficult to determine because of the metabolic properties of the associated bacteria. Indeed, some
taxa were closely related to phylotypes adapted to oligotrophic environments; members of the genera
Methylobacterium and Sphingomonas were able to survive in a nutrient limited clean room that was
subjected to drastic cleaning procedures [51]. Some taxa were affiliated to members of the genus
Bacillus, which have been retrieved from rocks or saline environments. This was particularly the case
for taxa affiliated to B. halodurans and B. polygonii that were isolated from drilling fluids, previously
isolated from soda lakes, hot springs, or sandstone ([52,53], GenBank EU676882). During the drilling
procedure, drilling fluid were in direct contact with sedimentary formations in the borehole, thus they
could remove microorganisms contained in host rocks or in pore water rocks. Thus, drilling fluid
could reflect a mixture of indigenous and allochthonous microbial communities. In the present study,
the drilling fluid 16S rRNA gene sequences were considered as contaminants. Although this library
helped to discriminate between the indigenous or potentially indigenous bacterial communities of
deep Triassic formations and allochthonous populations introduced during the drilling, handling,
and analytical phases, it still remains difficult to validate the indigenous origin of the identified bacteria.

Thirdly, the absence from the inner Triassic cores of any viable and cultivable bacteria, including
bacterial strains that could be recovered from drilling fluid, tends to show that the inner cores were
uncontaminated by drilling fluid (see Section 3.3). Furthermore, low amounts of environmental DNA
and limited biodiversity specifically adapted to extreme environments also suggest an absence of
contamination within inner cores.

Table 3. Distribution of contaminant phylotypes that were identified within control samples.

Phylogenetic
Group

Isolates and Denaturing
Gradient Gel Electrophoresis

(DGGE) Bands

Closest Identified Relative
(Sequence Identity) Isolation Sources

Actinobacteria

C5a Williamsia (99%) Soils, Human

C2 Micrococcus (99%) Cold environment, Human,
deep marine sediments

C5b Salinibacterium (99%) Human, marine environment

C10e Agrococcus jenensis (99%) Alkaline environment,
Human, limestone

C4 Cellulomonas (99%) Sediments, permafrost, soils

C9, C10d Microbacterium oxydans (100%) Black shales, cold
environment, Human
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Table 3. Distribution of contaminant phylotypes that were identified within control samples.

Phylogenetic
Group

Isolates and Denaturing
Gradient Gel Electrophoresis

(DGGE) Bands

Closest Identified Relative
(Sequence Identity) Isolation Sources

Firmicutes

C3 Sporosarcina (99%) Sediment, permafrost, soil

C6, C10b, C10c Staphylococcus epidermidis
(100%)

Soil, sea water, sediments,
Human

C8 Brevibacterium (99%) Marine sediments, soil, rocks

C12, C15 Bacillus (99%) Soils, sediments

DFO-AE7-1/2 Bacillus halodurans (99%) Soil, hot spring, oceanic crust

DFO-AE11-1/2 Bacillus polygoni (99%) Leguminous shrub,
sandstones

DFW-AE7-6a, DFO-AE7-6c Aerococcus viridans (99%) Human, sea water

Alphaproteobacteria

DFW-AE7-1/2a Sphingobium yanoikuyae (99%) Drinking water, Human

DFW-AE7-7a Methylobacterium extorquens
(99%)

Contaminated environments,
clean room

CTRL1 Ochrobactrum anthropi (99%) Soils, sediments, Human

DFW-AE7-6b Sphingomonas (100%) soil, Human

DFW-AE7-4, DFO-AE7-6a,
DFO-AE7-6b Sphingomonas (99%) Industrial plants, clean room,

Human

Betaproteobacteria

DFW-AE7-7b, DFW-AE7-7c Massilia (99%) Soil and contaminated soils,
Human, geothermal spring

CTRL2, CTRL6 Delftia acidovorans (100%)
Sewage treatment and

activated sludge, soils, marine
sediments, rocks

Gammaproteaobacteria

C7a Pseudomonas (99%) Glaciers, Human, soils

C10a Acinetobacter lwoffii (99%) Compost, water, Human

C7b, C16, CTRL3, CTRL4 Stenotrophomonas maltophilia
(99%)

Plants, Human, lake, young
oceanic crust

Origin of isolated strains: C: atmosphere of the anaerobic chamber; DFO: water-based drilling fluid; DFW: oil-based
drilling fluid. CTRL: sequences retrieved by DGGE from nested PCR control and DNA extraction control.

3.3. Microbial Enrichments from Triassic Sandstones

Despite more than 400 enrichments and several months of observation, no cultivable
microorganisms either under aerobic or anaerobic conditions grew from any of the four inner
Triassic core samples. Nevertheless, bacterial growth was observed in positive controls with known
strains, native to deep environments, including Thermosipho japonicus (DSM 13481), Petrotoga mexicana
(DSM 14811) and Desulfovibrio profundus (DSM 11384), and Triassic rocks, showing that inner cores
were not toxic nor did they harbour substances that could inhibit microbial development.

The absence from the inner Triassic cores of any viable and cultivable bacteria support the
hypothesis that there was no contamination from drilling fluids.

3.4. Molecular Biodiversity of Deep Triassic Formations

In deep consolidated environments, the low biomass and intrinsic adsorption properties of
minerals forming geological formations limit the access to genetic material [49]. Among tests that were
conducted to improve DNA quality, only a final dialysis step led to a better efficiency of 16S rRNA
gene amplification, demonstrating a need for an additional purification step to obtain indigenous DNA
suitable for further PCR-dependent studies on deep Triassic sandstone.
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The molecular procedure was thus performed on dialysed DNA extracted from the inner cores,
using the three DNA extraction protocols for samples that were stored at atmospheric pressure and
only protocol 2 for samples stored under pressure because of the small amount of available sample.
The diversity of the bacterial communities, as assessed by DGGE patterns of nested PCR products, was
low. The most complex pattern showed 14 bands (Figure 5A). DNA extracted from samples preserved
under pressure showed a least efficient 16S rRNA gene-nested-PCR amplification and the lowest
bacterial diversity, suggesting that the repressurisation of samples may have decreased bacterial diversity
(Figure 5B). Such a low degree of biodiversity was consistent with retrieved indigenous microbial
communities from extreme environments, such as thermal springs [54], subsurface paleosols [55],
or hypersaline environments and evaporites rocks [9]. Bacterial diversity also varied with samples
and with DNA extraction protocols. Some bands were specific to a geological formation (DGGE band
K18.11-2, Figure 5A) or to a DNA extraction procedure (DGGE band K20.7-3, Figure 5A). For the same
Triassic rock sample, the parallel use of DNA extracted with three distinct protocols resulted in a better
representation of the bacterial community. Several authors have previously shown a direct impact of
DNA extraction methods on the estimation of microbial diversity targeted with 16S rRNA genes [56,57].
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Figure 5. DGGE profiles of bacterial 16S rRNA gene fragments from deep Triassic sandstones.
(A) Bacterial diversity as assessed by three DNA extraction methods (1 to 3) from rocks stored under
atmospheric pressure. (B) DGGE profiles of bacterial community from Triassic sandstones stored
under high pressure. For samples stored under high pressure, environmental DNA was extracted
with the method 2 only. Excised DGGE bands were identified with an arrow. M: ladder, a: K2-20 core
(EST31467), b: K2-19 core (EST31602), c: K2-18 core (EST31571), d: K2-17 core (EST31387), P: stored
under high pressure (190 bars).
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To identify the affiliations of the deep bacterial community, the most intense DGGE bands (n = 31)
were considered and the derived 16S rRNA gene sequences were grouped into 22 distinct taxa (Table 4;
Figures 6 and 7). According to the classification of Gérard et al. [50], 16S rRNA gene sequences were
considered either as potentially indigenous, if not found in the contaminant library of this study,
but found once in previously published contaminant libraries, or as truly indigenous. Seven taxa
(n = 9) fell into the potentially indigenous category. This was the case of the 16S rRNA gene sequence
affiliated to Bradyrhizobium sp. S23321, an oligotrophic bacterium with an “ancestral-type genome” [58].
Sequences that are related to Bradyrhizobium were also retrieved in deep marine sediments [59]. Among
the β–Proteobacteria, four taxa, related to Ralstonia, Aquabacterium, Curvibacter, and Methylophilus genera,
were considered as potentially indigenous. Although, some members of Ralstonia, Aquabacterium,
and Curvibacter were associated with laboratory contaminants in the literature [50], their distribution
is widespread in many environments. Some Ralstonia spp. have specific metabolic and physiologic
capabilities, such as hydrogenotrophy or heavy metal resistance, enabling them to live in harsh
environmental conditions [60,61]. The Ralstonia-related sequence from K2-17 Trias core is highly
related to clones retrieved from a hypersaline Tunisian Lake (Genbank MG880724) and from the
deep-sea environment (Genbank JX227459). The ability of a Ralstonia to enter a dormant state may
explain its survival and sustainability over geological times [62]. Members of Aquabacterium were
often detected in low nutrient environments, including drinking, fresh water and glacier ice [63–65].
A Curvibacter sp. was recorded in the deep subsurface, at the interface between basaltic oceanic crust
and deep seawater [66]. The taxon belonging to Methylophilus was closely related to sequences found
in crude oil [67] and accretion ice samples from the subglacial Vostok Lake [68]. The two last taxa
related to the potentially indigenous category were affiliated to Rhodococcus and Anoxybacillus. Marine
strains of Rhodococcus have been isolated from deep-sea sediments [69] and they are well-known
hydrocarbon-degrading bacteria, suggesting their capacity to survive on fossil fuel. Anoxybacillus
spp. are aerobic spore-forming bacteria, often thermophilic, which have been isolated from thermal
springs [70].

Seven taxa (n = 8), affiliated to Firmicutes, α-, β, and γ-Proteobacteria, were detected exclusively in
the inner Triassic cores and were thus regarded as truly indigenous in the deep bacterial community.
These taxa were more or less distantly related to sequences retrieved from soils and deserts, but also
from deep terrestrial environments, subsurface marine sediments, and hydrothermal fluids. The closest
Firmicutes sequences were environmental clones found in oil reservoirs [71], subsurface terrestrial
sediments [72], and subseafloor sediments (Genbank KM278935). The bacterial strain BPC-C1/31-1,
isolated from a deep clay formation, was the closest known microorganism related to Firmicutes and
it showed only 92% sequence similarity [24]. The α-Proteobacteria taxon affiliated to Mesorhizobium
has been detected in seawater at 6000 m depth [73]. In a similar way, the Mesorhizobium-related taxon
was mainly detected in saline aquifers from Triassic formations (K2-19 and K2-20 cores). Among
β-Proteobacteria, organisms represented by the taxon that are related to Burkholderia seemed to be
particularly well suited to live in subsurface sediments. Burkholderia spp. has been detected in Miocene
terrestrial sediments [74]. Some species were able to use polycyclic aromatic hydrocarbons, such as
naphthalene or phenanthrene, as a carbon source [75], suggesting, as for Rhodococcus-related taxon, their
ability to survive using fossil fuel. Among the γ-Proteobacteria, two taxa were identified as indigenous to
the drill cores. One of them was closely related to Shewanella indica, isolated from marine sediments [76]
and a strain retrieved from a 2040 m deep marine sediment (GenBank HQ876210). One taxon that
was retrieved from the K2-20 core is related to the halophilic Halomonas genus. Interestingly, several
Halomonas strains have been isolated from deep-sea hydrothermal vents [77] and are able to grow in
oligotrophic conditions and above seawater salinity, characteristics that are compatible with life in the
studied core. Among the bacterial genera related to taxa from the Triassic sandstone, Halomonas is the
only halophilic one that is known to grow at salt concentrations higher than seawater.
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Table 4. Phylogenetic analysis of bacterial 16S rRNA genes detected in Triassic sandstones by DGGE.

Phylogenetic
Group

DGGE Bands
Samples (Depth [mbsl]) Closest Related Genus or

Environmental Clone
(% Blast Similarity)

Deep Bacterial Community [*]
K2-20 (1935) K2-19 (1865) K2-18 (1804) K2-17 (1727)

α-Proteobacteria

K20.13-2
K19.12-2

× ×
×

× Mesorhizobium (99%) Endogenous [73]

K17P.29-2 × Bradyrhizobium (100%) Potentially endogenous [58,59]

K17.3-3 × Uncultured Rebullimicrobium clone (99%) Endogenous

β-Proteobacteria

K17.9-2 × × × Ralstonia (99%) Potentially endogenous [60–62]

K20.21-1 × Burkholderia (99%) Endogenous [74]

K19.6-3 × × × Aquabacterium (98%) Potentially endogenous [63–65]

K17.15-1
K20.25-1 × × ×

Curvibacter gracilis (99%)
Uncultured ocean crust clone

EPR4055-N3-Bc85 (98%)
Potentially endogenous [66]

K17.1-3 × × × ×
Delftia (99%) AllochtonousK17.14-1 × × ×

K20.28-3

K20.22-1
K20.23-1 × Massilia (99%) Allochtonous

K20.24-1 × Uncultured β-proteobacterium clone
XE2F08 (99%) Endogenous

K20.20-1 × Methylophilus (99%) Potentially endogenous [67,68]

γ-Proteobacteria

K19.17-1 × × × × Shewanella (99%) Endogenous [76]

K17.2-3 × Stenotrophomonas (99%) Allochtonous
K18P.30-2 × ×
K20P.31-2 × Halomonas (98%) Endogenous [77]

Bacteroidetes

K20.19-1 × Elizabethkingia (99%) Allochtonous

K18P.26-2 × Cloacibacterium (99%) Allochtonous

K19.16-1 × Mucilaginibacter (99%) Allochtonous

K17.8-2 × Porphyromonas (99%) Allochtonous
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Table 4. Cont.

Phylogenetic
Group

DGGE Bands
Samples (Depth [mbsl]) Closest Related Genus or

Environmental Clone
(% Blast Similarity)

Deep Bacterial Community [*]K2-20 (1935) K2-19 (1865) K2-18 (1804) K2-17 (1727)

Firmicutes

K18P.27-2 × Anoxybacillus (99%) Potentially endogenous [70]

K20.17-3 × Uncultured subsurface clone
HDB_SIST458 (100%) Endogenous [71,72]

Actinobacteria

K19.18-1 × ×
Propionibacterium (99%) AllochtonousK18.5-3 × × × ×

K17.10-2 ×
K17.4-3 × Rhodococcus (99%) Potentially endogenous [69]

K18.11-2 ×
[*] Source-references are given when the closest identified relative has previously been found in deep environments.
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The eight remaining taxa (n = 14) were similar to taxa found in the contaminant library (this study)
or had 16S rRNA gene sequences affiliated with bacteria found associated with human beings, and were
considered as allochthonous in the deep geological formations.

Attempts to investigate the archaeal diversity were also made using both culture approaches
and molecular ones, but no cultivable cells were detected and none or very weak 16S rRNA gene
amplification were obtained (data not shown) and diversity studies were fruitless. Although we cannot
totally exclude a technical reason, it appears that deep Triassic sandstones formations were mainly
composed of Bacteria members, with Archaea constituting only a minority part in the deep Triassic
microbial community.

Molecular fingerprinting by DGGE allowed for the comparison of the bacterial community
structure of the four Trias cores, together with taxa identification, from band DNA recovery
and sequencing, in five bacterial groups: α-, β-, and γ-Proteobacteria, Actinobacteria, Firmicutes,
and Bacteroidetes. If this fingerprinting approach has been widely used in diverse environments
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and until recently in the deep subsurface [78,79], it is, however, acknowledged that DGGE gives
only a partial view of environmental diversity. Bomberg et al. (2014) [80] have compared molecular
approaches to characterize deep terrestrial groundwater biosphere and highlighted the bias of DGGE,
such as the detection of only dominant taxa and preferential recovery of certain taxa, such as α- and
β-Proteobacteria. Extensive development of high-throughput gene sequencing during the past 10 years
has led nowadays to its wide utilization in environmental microbial ecology. The low DNA recovery
from the Trias cores was unfortunately not compatible with high-throughput sequencing, but efforts
have now to be directed towards the application of such a sensitive and highly resolutive technique,
to allow for deeper insights into the determination of native microbial diversity of the Trias cores,
and more generally from the deep terrestrial subsurface.

4. Discussion

4.1. Life in Deep Geological Formations

From a microbiological point of view, deep Triassic formations could be seen as hot environments,
highly salted, nutrient depleted, and subjected to important geostatic pressure. Deeper sandstones
(KT-20 and KT-19 cores) present characteristics that are compatible to microbial colonisation. Pore size
above 10 µm diameter, permeability above 50 mdarcy, and water contents of, respectively, 9.2% and
6.8% were considered to be sufficient to allow a flow of microorganisms [8,81] and an installation of
microbial communities. On the contrary, clayey and carbonate sandstones (K2-18 and K2-17 cores)
showed unfavourable properties for microbial growth. In addition to low water contents of close to
4% and less than 1%, respectively, as reported by Landrein et al. (2013) [22], the pore diameter of their
network is so small that it prohibits the movement of microorganisms with diameters greater than
100 nm.

While the presence of microbial life in the depths of the Earth has been pointed out by many
authors [5,10,76], a broad cultivation approach failed with deep Triassic sandstones in the present
study. This lack of cultivable microorganisms could be explained by several hypotheses. First,
the enrichment media used may have been inappropriate for obtaining growth and observing the
activity of the resident microorganisms [50]. This possibility seemed very unlikely in view of the
more than 400 enrichment media that were tested and their wide variety of possible metabolisms to
be performed under anaerobic (various electron donors and electron acceptors tested) and aerobic
conditions (various electron donors tested) as well. Second, the resident microbial communities
may have grown slowly with low growth yields, making their detection impossible with current
tools and methods [82]. Last, only very few or no viable prokaryotes were present in the deep
Triassic sandstones. This absence of viability could be due to the combination of several stressful
conditions [83], including in-situ temperature, salinity, and nutrient depletion, which may not be
compatible for life. This is the case in oil reservoirs, considered to be a closed anaerobic system in
which temperatures over 80 ◦C and salinities of 15–20% does not sustain life [11,84]. In this respect,
our inability to recover native microorganisms from deep Triassic sandstones by enrichment cultures at
high temperature and salinity is consistent with earlier failed attempts of recovery [84]. It is noteworthy
that the maximal burial temperature of the Lower Triassic sandstones was estimated at 90 ◦C (±10 ◦C),
while using a set of several independent paleothermometers [85], from about 65 million years ago.
When considering such maximal paleo-temperatures, the deep Triassic formations may have been
subjected to a paleo-sterilisation [86]. As indicated above, the paleo-sterilisation and the current
extreme environmental conditions (salinity and temperature) could have finally prohibited microbial
colonisation. This last hypothesis was previously put forward to explain the lack of prokaryotic
biomarkers and cultivable microorganisms in 2091 mbsl sandstone [21].
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4.2. Origins of the Indigenous Bacterial Community

In this study, most of the bacterial sequences showed more than 99% similarity to contemporary
species, possibly because of their direct interaction with current ecosystems, as suggested by
Gérard et al. in 2009 [50]. The “indigenous” and “potentially indigenous” 16S rRNA gene sequences
belonged to Firmicutes and α-, β-, and γ-Proteobacteria. These phylogenetic groups are ubiquitous in
surface environments but sequences that are related to Shewanella, Mezorhizobium, and Curvibacter have
also been found in deep marine sediments [66,73,76] and those related to Methylophilus and Rhodococcus
were found in oil fields and mines [67,69]. One of the Firmicute-related sequences, (K20.17-3), comes
from bacteria that are cultivated from petroleum crude oil and subsurface sediments at the Hanford
Site 300 Area [72,87] and seems to be restricted to the subsurface confined biosphere, arguing in favor
of its indigenous origin. Some 16S rRNA sequences were also close to species with metabolic abilities
that are necessary for sustaining life in deep confined compartments over geological times. This is the
case for the sequences that are related to Ralstonia and Burkolderia [62,75].

Several hypotheses may explain the results that were obtained in this study. One is that the
extracted DNA could have originated from viable and metabolically active but not cultivable bacteria,
or dormant bacteria with low or no metabolic activity. A second hypothesis was put forward by Fish
et al. in 2002 [88], when they found 16S rRNA sequences from ancient halite to be phylogenetically
close to species that were detected in current environments. They explained these low divergences
by a slow genetic evolution of some phylogenetic lineages and a preservation of biological material,
such as microorganisms and DNA in saline rocks over geological times. Finally, it has also been
reported that fossil DNA sequestered in intact cells or free in the environment could be a source
of environmental DNA [88]. Indeed, several authors have suggested that at high salinities, such as
deep Triassic sandstones, hypersaline oil reservoir core where aerobic hyperhalophilic Archaea were
detected [89], or under desiccation conditions, DNA could be preserved for more than 10 million
years [88,90].

However, there is also a controversial hypothesis with the theoretical prediction for which
environmental DNA cannot persist for more than one million years [71]. Indeed, a potential
contamination of Triassic formations by modern microorganisms could have occurred during
geological events or during water flow through aquifer formations. Thus, the age of the environmental
DNA may be more recent than that of the surrounding rocks and may have derived from dead bacteria
that lived or circulated more recently through deep geological formations.

In this study, the clayed sandstone formations (cores K2-17, 1727 mbsl, and K2-18, 1804 mbsl) had
very small pore sizes (<100 nm) (Figure 4). These two geological formations could be considered as
natural microbial filters and exclude microbial community exchanges by passive diffusion phenomena
between Triassic aquifers and upper geological formations. Despite their low porosity, the existence
of micro-niches in clayey Triassic sandstone where microorganisms and various bio signatures could
be sequestered and conserved is also possible. The 16S rRNA gene sequence related to the ancestral
type genome of Bradyrhizobium sp. S23321, which is only found in the K2-17 core (1727 mbsl),
could be evidence of this sequestration. These two clayey Triassic sandstones belong to the low
permeability Triassic cap rocks that isolate Triassic aquifers from water leakage from the surface or
from a more superficial productive aquifer, like the Dogger aquifer [63]. In the aquitard compartment,
Marty et al. [91] supposed diffusive transfers to be negligible over a time scale greater than several
million years. This hypothesis has been validated by Rebeix et al. [48] who have not detected any local
connections between the different aquifers under the EST433 drilling. Furthermore, the groundwater
recharge of Triassic aquifers of the Paris Basin may have occurred exclusively in faults and outcrop
areas from Vosges and Morvan that are located in the eastern part of the basin (Lorraine region,
France) [91,92]. According to Fontes and Matray [93], groundwater from Triassic formation could
have been the outcome of highly evolved seawater diluted with a secondary brine derived from salt
dissolution of upper saline geological formations or Permian basements by more recent continental
or meteoritic water. Rebeix et al. [48] also suggested this possibility based on the high chloride and
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bromide content and the δ18O and δ2H values of the groundwater from Triassic formation collected
from the EST433 borehole. Its Cl/Br molar ratio value was 167 and it corresponds to primary brine [93].
By contrast, values of δ18O and δ2H suggested a meteoritic water supply.

In the same way, the detection of non-halophilic and halophilic species from the same inner
core samples suggested a fluid mixture with different salt contents (from fresh water to brine).
The prokaryotic community from Triassic sandstones of the EST433 drilling could have come from
upper geological formations leached by paleo-recharges and from recharge areas.

Interestingly, in this study we detected two sequences found in ice environments (Methylophilus,
Aquabacterium). One explanation for this could be that the paleo-recharge partly resulted from melting
ice that formed in the last Quaternary ice age, and especially during the period between the Holocene
and the Pleistocene, less than one million years ago [92]. The possibility that a groundwater from the
Triassic formation recharged under cold conditions has also been raised by Rebeix et al. [48]. Thus,
some of the microorganisms that were detected in deep Triassic sandstones would then appear to be
younger than surrounding rocks, but still far older than contemporary periods.

5. Conclusions

In the four Triassic rock cores that were harvested from down to 2000 m depth, we found a low
biomass consistent with previous findings. Molecular approaches evidenced eight genera that were
considered as truly indigenous and belonging to α, β, and γ-Proteobacteria and Firmicutes, all more or
less distantly related to genera that are found in the deep subsurface. Despite extensive cultivation
approaches, no cultivable bacteria were retrieved. This raises many questions about metabolic states,
adaptive capacities, and origins of these resident microorganisms. Physicochemical constraints
combining high temperature, salinity, high hydrostatic pressures, anoxia, and possibly geological
events might have had a direct impact on deep indigenous microbial communities. A study of the
microbial behavior in response to the change of environmental constraints induced by a geological
event could help us to improve our knowledge on the potential metabolic and physiological abilities
of deep microorganisms and help to establish the boundaries of life in the deep subsurface.
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