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Foraging insect parasitoids use specific chemical cues to discriminate between host

and non-host species. Several compounds have been identified in “host location

and acceptance.” However, nothing is known about the molecular variations in these

compounds that could account for host-range differences between parasitoid species.

In a previous study, it was shown that during the host-finding process, contact between

the braconid Cotesia flavipes and its host is crucial, and that α-amylase of oral secretions

from the host plays a key role for host acceptance and oviposition by the parasitoid. The

present study sought to establish whether the variations in this enzyme could explain

specific host recognition in different host-parasitoid associations. Different species

and populations of the C. flavipes complex specialized on graminaceous lepidopteran

stemborers were used. Electrophoresis of α-amylase revealed different isoforms that

mediate the parasitoid’s oviposition acceptance and preference for a specific host. This

discovery opens up new avenues for investigating the evolutionary processes at play in

chemically-mediated host specialization in the species-rich Cotesia genus.

Keywords: parasitic wasp,Cotesia flavipes,Cotesia sesamiae,Cotesia typhae, protein perception, host specificity,

oviposition

INTRODUCTION

Parasitoids comprise the major biological control agents of pest insects (Pimentel et al., 1992;
Tilman et al., 2001; Lazarovitz et al., 2007; Godfray et al., 2010). Among them, the Hymenoptera
order contains the most diversified species: 50,000 in Hymenoptera, compared with only 15,000
in Diptera, and 3,000 in other orders (Quicke, 1997). To reproduce successfully, the parasitoids
need to overcome the behavioral and physiological defenses of their hosts (Kaiser et al., 2017a).
The hosts’ defense mechanisms, which co-evolved with the parasitoids, may be linked to host range
changes and the appearance of host races within different parasitoid species (Kaiser et al., 2017a).
These underlying mechanisms provide insight into evolutionary biology, and they might improve
the selection of parasitoids in bio-control.

The ability of parasitoids to efficiently utilize cues from their habitat and to efficiently
distinguish suitable from unsuitable hosts, determines their field efficiency (Wajnberg et al., 2008;
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Wajnberg and Colazza, 2013). When locating hosts, they first use
long (i.e., from a distance) and short-range chemicals coming
from the host habitat, and secondly those directly present on
the host and on its feeding products (Wajnberg et al., 2008;
Wajnberg and Colazza, 2013). However, long-range chemicals
from the habitat do not generally give them sufficiently reliable
information about the host’s suitability (Vet, 1999). In contrast,
those directly present on the host and on its feeding products are
directly used during host-contact evaluation by the parasitoids.
These chemicals generally allow them to assess the quality and
status of the herbivore’s suitability (Lewis and Martin, 1990;
Vinson, 1991; Godfray, 1994; Wajnberg et al., 2008; Wajnberg
and Colazza, 2013). Moreover, the structure and quantity of these
semiochemicals, which vary according to the host’s species, the
developmental stage of the host, the host’s size, condition, and
diet, influence host acceptance and selection by the parasitoids
(Vinson, 1991; Röse et al., 1997; Wajnberg et al., 2008; Wajnberg
and Colazza, 2013).

Among parasitoids, Cotesia is one of the most diverse genera
in the Braconidae family (Kaiser et al., 2017a). Many Cotesia
species may appear to have broad host ranges, but careful
ecological studies have revealed a hidden complexity with an
assemblage of populations with more restricted host ranges
(Branca et al., 2011; Kaiser et al., 2017b). Whereas recent studies
revealed that variations in virulence genes account for differences
in host range and in the degree of specialization toward a host
(Gauthier et al., 2018), almost nothing is known about the
variations in functions involved in specific host recognition and
acceptance.

The Cotesia flavipes species-monophyletic group is composed
of four sister species: C. chilonis (Matsumura), C. flavipes
Cameron, C. nonagriae (Olliff), and C. sesamiae (Cameron).
They are all gregarious endoparasitoids of crambid, pyralid
and noctuid stem borers feeding on Poaceae, Typhaceae, and
Cyperaceae species (Kaiser et al., 2017b). These small wasps,
after mating, lay egg(s) in a host’s body (generally a caterpillar).
To inhibit the immune response of the caterpillars, they use
a domesticated virus called bracovirus (PolyDNA virus). These
viruses are located in the wasp ovaries and are integrated into the
genome of the wasp and injected into the caterpillar together with
the eggs during the parasitism process (see Kaiser et al., 2017a for
review).

Cotesia flavipes Cameron is widespread in Asia and was
introduced into Africa to control the invasive Asian crambid
Chilo partellus Swinhoe (Overholt et al., 1994a,b). It parasitizes
the larvae of more than 30 Lepidoptera species, including the
crambids C. partellus and Chilo suppressalis (Walker), as well
as the African noctuid Sesamia calamistis Hampson, a new
association host (https://www.cabi.org/isc/datasheet/5951). The
C. flavipes population brought into Africa for classical biological
control was specific to C. partellus in Asia (Muirhead et al.,
2012). Cotesia sesamiae is widespread in Sub-Saharan Africa and
is commonly found on Busseola fusca and S. calamistis (Kfir,
1995; Kfir et al., 2002), but its parasitism success greatly depends
on the host species and parasitoids populations (Mochiah et al.,
2002; Gitau et al., 2010). Two factors contribute to the differences
and hence to the performance of C. sesamiae populations on

stem borer pests across Africa, namely, the symbiotic polyDNA
viruses, which are responsible for the differences in virulence
of C. sesamiae population on B. fusca (Gitau et al., 2010), and
the bacteriaWolbachia, by creating cytoplasmic incompatibilities
between populations of C. sesamiae populations (Mochiah
et al., 2002). In contrast to the C. sesamiae population from
Mombasa/coastal Kenya (Cs-Coast), the C. sesamiae population
from Kitale/inland Kenya (Cs-Inland) is able to develop in B.
fusca, which is predominant in the highlands, whereas both are
able to develop in the noctuid S. calamistis, the main host of
C. sesamiae population from Mombasa/coastal Kenya (Ngi-Song
et al., 1995). The Cs-Inland is mostly present in the highlands
and wet regions, where its host B. fusca occurs, and is absent
in the dry and warmer regions, where Cs-Coast and C. flavipes
predominate (Mailafiya et al., 2010; Mwalusepo et al., 2015).
The genetic diversity of these C. sesamiae populations, especially
regarding their relationships with spatial, biotic, and abiotic
ecological factors, is reported by Branca et al. (2018). The authors
highlighted the importance of host forces in the evolution of the
diversity of parasitoid-host interactions.

Cotesia sesamiae and C. flavipes locate their host at a distance
by the emission of volatiles from the plants infested by their
hosts. However, these volatiles do not convey reliable information
on host suitability but are simply indicators of the presence
of herbivores in the plant. As a result, C. sesamiae and C.
flavipes might be attracted to plants infested by unsuitable
Lepidoptera stemborers (Potting et al., 1993, 1995; Ngi-Song
et al., 1996; Obonyo et al., 2008). It is only when approaching
and touching the host that C. sesamiae and C. flavipes are able
to identify their hosts properly, relying on specific host-produced
signals. The signals particularly arise from oral secretions, which
give reliable information on the host identity perceived by the
tactile and contact-chemoreception of the parasitoid (Obonyo
et al., 2010a,b). These authors observed that host selection
and acceptance by the parasitoid females for parasitism is
characterized by two behavioral steps: drumming the body of the
host with the antennae (antennation), followed by an attempt to
oviposit into the host. Recently, Bichang’a et al. (2018) showed
that α-amylase present in the oral secretions of C. partellus larvae
mediates these behavioral responses of C. flavipes. The present
study investigates whether α-amylase presents variations which
allow for recognition and selection of host species or population
in Cotesia spp. using the two populations of C. sesamiae living
in Kenya with their respective hosts B. fusca and S. calamistis,
as well as a new species of Cotesia described recently as C.
typhae Fernandez-Triana sp., parasitizing Sesamia nonagrioides
(Lefèbvre) (Lepidoptera, Noctuidae) (Kaiser et al., 2017a), and
the introduced C. flavipes and its old association host C. partellus.

MATERIALS AND METHODS

Insect Rearing
Females of C. flavipes, an inland and coastal population of C.
sesamiae (hereafter namedCs-Inland andCs-Coast, respectively),
as well as that of C. typhae, came from laboratory-reared
colonies established at icipe, Nairobi, Kenya. Cotesia flavipes
was initially obtained in 2005 from C. partellus larvae collected
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TABLE 1 | Suitability of lepidopteran stem borer species to different Cotesia

species and strains based on field observations and the literature.

Chilo

partellus

Busseola

fusca

Sesamia

calamistis

Sesamia

nonagrioides

Cotesia flavipes o w new non

Cotesia sesamiae

Cs-Inland w o o non

Cs-Coast new w o non

Cotesia typhae non non w o

A code was attributed to indicate the level of host suitability, where non, non-host; w,

“weak” host association; new, new host association; o, old host association.

from maize fields in Mombasa, coastal Kenya. Cs-Inland was
initially obtained in 2006 from B. fusca larvae infesting maize
fields in Kitale, Western Kenya, while the Cs-Coast was initially
obtained in 2007 from S. calamistis larvae infestingmaize fields in
Mombasa (coastal Kenya). Cotesia typhae was initially obtained
in 2013 from S. nonagrioides larvae infesting Cyperus dives at
Kobodo near Lake Victoria, Kenya.

Cotesia flavipes, Cs-Inland, Cs-Coast, and C. typhae were
continuously reared on larvae of C. partellus, B. fusca, S.
calamistis, and S. nonagrioides, respectively, as previously
described by (Overholt et al., 1994a). Twice a year, all colonies
were rejuvenated by field-collected parasitoids.

For each colony, the cocoons were kept until emergence. After
emergence, adult parasitoids were fed on a 20% honey/water
solution and placed under artificial light for 8 h to mate. In all the
behavioral bioassays, 1-day-old naïve (i.e., without oviposition
experience), mated females were used. Similar to Overholt et al.
(1994a), experimental conditions were at 25 ± 2◦C, at 50–80%
relative humidity (RH) and with a 12:12 h (L:D) photoperiod.

Different host species that varied in their suitability according
to the Cotesia species and strains were used (Table 1). Old host
association (=natural host) was defined according to both the
origin of the parasitoid and the host (Table 1). For example, C.
partellus is considered an old host association, since this host is
from the same origin of the parasitoid in Asia (Overholt et al.,
1994b) and was parasitizing this host before its introduction into
Africa, whereas the African S. calamistis is a new association.

Chilo partellus and S. calamistis were initially collected from
maize fields in coastal regions of Kenya, and B. fusca from maize
fields in Western Kenya (Kitale), while S. nonagrioides were
initially collected from Typha domingensis in Makindu, Kenya.
The larvae of C. partellus were continuously reared at icipe on
artificial diets of Ochieng et al. (1985), whereas the larvae of
the other species were fed on the artificial diet of Onyango and
Ochieng’-Odero (1994). Twice a year, all host’s colonies were
rejuvenated by field-collected stemborer larvae. Table 1 gives the
host-parasitoid species and strains associations.

Collection of Oral Secretions From Host
Larvae
Acceptance of host larvae for oviposition by Cotesia parasitoids
is enhanced when the host larvae are fed on maize stems for

24 h prior to exposure to parasitism (Mohyuddin et al., 1981;
Inayatullah, 1983; Van Leerdam et al., 1985; Potting et al., 1993;
Overholt et al., 1994a), most likely because more α-amylase can
be found in the oral secretion from larvae after feeding on maize
stems than on artificial diets (Bichang’a et al., 2018). Therefore,
α-amylase was isolated from third and fourth instar larvae
previously fed for 24 h on maize stems. Each larva was squeezed
by soft forceps behind the head to collect its oral secretion
into a capillary tube and was immediately transferred to an
Eppendorf tube which had been placed on ice. This was repeated
for at least 100–200 larvae per species to get a sufficient amount
of oral secretion (about 500–800 µL per species), estimated
by weighing. All samples were preserved at −80◦C until
further use.

Purification of the α-Amylases
The oral secretions were first centrifuged at 11,000 × g for
5min in order to remove the undetected debris (grass and
undigested food materials). About 600–800 µL of supernatant
was transferred to a clean tube and the proteins precipitated using
ammonium sulfate salt. To the supernatant, ammonium sulfate
salt was gradually added to a final salt saturation of 90% and
precipitated overnight at 4◦C. The proteins were subsequently
pelleted by centrifugation at 12,000 × g for 1 h at 4◦C and were
then resuspended in HEPES-NaCl buffer (HEPES 20mM, NaCl
20mM, CaCl2 1mM, pH 7.5) and dialyzed (MWCO 12–14000
Da) overnight at 4◦C in the same buffer.

The α-amylase was purified using the glycogen-amylase
complex precipitationmethod described by Loyter and Schramm
(1962) with somemodifications. Briefly, ice-cold absolute ethanol
was added dropwise (2/3 v/v) to the dialyzed samples placed on
ice and mixed for 40min at 4◦C. This mixture was centrifuged
at 20,000 rpm for 30min at 4◦C to pellet the nucleic acids.
To the supernatant, glycogen (Sigma Aldrich) was added to
a final concentration of 2.4 mg/ml per sample and mixed for
20min for S. calamistis and S. nonagrioides, and 5min for B.
fusca and C. partellus at 4◦C (As observed in previous assays;
the different timings allowed for optimum yield of α-amylases).
Subsequently, the mixtures were centrifuged for 20min at 20,000
rpm at 4◦C to pellet the amylase-substrate complex, and the
pellets were dissolved in the aforementionedHEPES-NaCl buffer.
The amylase-substrate complexes were left on the bench for 3 h
at room temperature to digest the glycogen in the complexes.
The remaining α-amylases were dialyzed (MWCO 12-14000
Da) overnight against the same buffer and kept at −20◦C for
electrophoresis and bioassays.

Native PAGE and α-Amylase zymogram
For the α-amylases of each host species, electrophoresis was
conducted under non-denaturing conditions (native PAGE
electrophoresis) as follows: For each host species, ten microliters
of purified α-amylase were mixed separately with 10µL
buffer (50mM tris-HCl, pH 6.8, 10% glycerol (v/v), and 1%
bromophenol blue) and electrophoresed in the Ornstein-Davis
discontinuous buffer system on a 7.5% native polyacrylamide
gel at 4◦C according to Schrambach and Jovin (1983) and
Niepmann and Zheng (2006). After running the gel at a
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constant voltage of 150V and a current of 25mA for 1 h, and
when the dye-containing sample reached the bottom of the
glass, the polyacrylamide gel was stained according to Nagaraju
and Abraham (1995) with minor modifications. The gel was
incubated for 1 h at 37◦C in 1% soluble potato starch (Sigma
Aldrich) and 1M CaCl2, washed thoroughly with ddH20 and
subsequently stained with 0.1% of Lugol’s iodine solution (I3K)
until white bands against a blue background were visible. The
proteins were compared to a molecular mass standard (Sigma
Aldrich) containing albumin from bovine serum (Sigma A8654,
132 kDa), albumin from chicken egg white (Sigma A8529, 45
kDa), and α lactalbumin from bovine milk (Sigma L4385, 14.2

kDa). The gel images were acquired using the myECL
TM

Imager

(Thermo) and analyzed using myImageAnalysis
TM

Software
(Thermo).

It was previously observed that the concentration of α-amylase
in the extract conditioned the behavioral response of the wasp
(Bichang’a, 2018; Bichang’a et al., 2018).

For each host species, the concentration of α-amylase was
estimated using a calibration electrophoretic migration obtained
from increasing concentrations of between 50 and 1000µg/mL
of α-amylase of Aspergillus oryzae from Sigma No A9857
and of D. melanogaster produced on the Pichia pastoris yeast
(Figure S1). This calibration electrophoretic migration did not
lead us to a precise amount of α-amylase but rather to a
range of concentrations. Moreover, it was observed that the
optimal range of concentrations of α-amylase to induce host
recognition and acceptance for oviposition behaviors by the
parasitoids was 300–500µg/ml (Bichang’a, 2018; Bichang’a et al.,
2018). For each of the host species, the concentrations of α-
amylase used for the subsequent bioassays was adjusted at 300–
500µg/ml.

Western Blot Analysis of the Purified
α-Amylases of Each Host Species
In order to confirm for each stem borer species that the
purified proteins were indeed α-amylases, after being used for
all bioassays, a western blot was performed using an antibody
specific to Drosophila melanogaster Meigen α-amylase using the
similar protocol of Bichang’a et al. (2018). Tenmicroliters of each
heat denatured protein sample (about 500 ng/µl) were loaded on
a NuPAGE 4–12% Bis-Tris Gel (Invitrogen) and electrophoresis
conducted for 1 h at 200 volts in a MOPS buffer. The proteins
were then transferred to an iBlot Gel Transfer Nitrocellulose
membrane (Invitrogen) using the iBlot Gel Transfer Device
(Invitrogen). The membrane was washed in 1X PBS for 20min,
after which it was incubated for 90min in a milk solution (1X
PBS, 0.1% Tween, 5% milk) in order to saturate the membrane
with proteins. The membrane was then incubated with the
primary anti Drosophila melanogaster α-amylase antibody (gift
from Dr B. Lemaitre) according to Chng et al. (2014), it was
diluted 1,000-fold in a solution of 1X PBS, 0.1% Tween, 1%
milk for several hours. After this step, the membrane was
washed six times in 1X PBS, 0.1% Tween before incubating
with the secondary antibody (anti-guinea pig IgG Peroxidase,
Sigma A7289), diluted 1,000-fold in a solution of 1X PBS, 0.1%

Tween, 1%milk, for 1 h. The membrane was then washed 3 times
in 1X PBS, 0.1% Tween. The peroxidase activity was detected
using Amersham ECL Prime Western Blotting Detection
Reagent (GE Healthcare) and recorded on an Odyssey FC
imager.

Behavioral Bioassays
In this study, the two behavioral steps (antennation + stinging
attempt), as shown by Obonyo et al. (2010a,b), were used to
confirm host acceptance by Cotesia females for oviposition. To
test the behavioral activities triggered by different α-amylases,
300–500µg/ml of α-amylases [the minimal concentration found
to mediate a positive response of C. flavipes (Bichang’a et al.,
2018)] were placed on small pieces of cotton wool and presented
to female parasitoids. A small piece of cotton wool was rolled into
a spherical shape of around 2mm in diameter and placed at the
center of a Petri dish of 8 cm in diameter without a cover. About
0.5–1 µL of α-amylase was deposited on the cotton wool ball. A
single female wasp was introduced near the cotton wool and both
were covered with a transparent circular Perpex lid (3 cm wide,
1 cm high) to prevent the parasitoid from flying off, and to allow
for observations.

The behavior of the parasitoid in the Petri dish was monitored
for a maximum of 120 s. For each female, both antennation
and stinging attempts were recorded. The percentage of positive
responses (i.e., antennation + stinging) was calculated from 30
females tested per type of α-amylase. The females, the cotton
wool balls with tested α-amylase and the arena were replaced after
each observation.

According toObonyo et al. (2010a), all behavioral experiments
were carried out in a room at 26 ± 1◦C between 10 a.m. and
2 p.m. with a constant source of light to maintain an optimal
temperature for the behavioral activities of the female parasitoids.

Statistical Analysis
For each bioassay, Marascuilo’s procedure, that is, a pairwise
comparison after Pearson’s Chi-square test to check the overall
significance differences, was used to separate the proportions
of wasps that exhibited positive responses (i.e., antennation +

stinging attempts) (Marascuilo, 1966).

RESULTS

The α-amylase exhibited species-specific electrophoretic
migrations showing different numbers of isoforms using the
Lugol test (Figure 1). The α-amylase of C. partellus exhibited
mostly 1 band, whereas α-amylase of B. fusca appeared to have
two main different isoforms, while that of S. calamistis exhibited
two thick, highly visible isoforms, and three thinner bands
between and three faint bands, which migrated much faster than
the others. α-Amylase of S. nonagrioides had three thick groups
of isoforms, one thin band and a pair of highly visible thin bands
migrating faster. We confirmed by Western blot analysis for S.
nonagrioides, S. calamistis and B. fusca that these were alpha-
amylase proteins (Figure 2). In the non-denaturing gels stained
using iodine at Figure 1, which show white bands where active
amylases have migrated, proteins are separated by their electric
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FIGURE 1 | Non-denaturing gel electrophoresis of the amylolytic activity of the purified α-amylases from the oral secretions of larvae of Chilo partellus (1), Busseola

fusca (2), Sesamia calamistis (3), and Sesamia nonagrioides (4). For each species, the arrows highlight the main isoforms obtained.

charge, which is mostly the result of the difference between (Lys
and Arg) and (Asp and Glu) residue numbers. A single gene may
exhibit two bands if the two alleles differ in charge. If there are
more than two bands, especially if they are separated, e.g., as two
pairs of bands, one can infer that there are two active copies.
In contrast, in the SDS-PAGE (denaturing) used for Western
blot, all the proteins migrate to the same position because
they have the same molecular weight. This is the reason why
a single labeled band was observed in Figure 2. For a mixture
of various proteins, migration of Figure 1 depends on both
electric charge and molecular weight (as well as conformation,
shape, etc.); but as far as amylases only are concerned, since they
all have similar molecular weight, the differences observed in
migration distances are due to the differences in electric charges
(electromorphs). However, no band was obtained forC. partellus,
although α-amylase activity was seen in these sample type in
Figure 1. The amount of protein sample of the C. partellus used
for western blot was lower compared to amounts of the other
species. The limit of protein detection was therefore attained for
this sample type by Western blot.

For each parasitoid species and strains used in this study,
parasitoid females exhibited different behavior according to the
origin of the α-amylase (C. flavipes: Chi-square = 13.43; df =
3, P = 0.0038; Cs-Inland: Chi-square = 27.548; df = 3, P <

0.0001; Cs-Coast: Chi-square = 8.2458; df = 3 and P = 0.04119
and C. typhae: Chi-square = 15.239; df = 3 and P = 0.001623)
(Figure 3). For C. flavipes females, α-amylases from the larvae
of the old association host C. partellus and the new association
host S. calamistis induced the highest positive responses followed
by those from B. fusca, whereas those from S. nonagrioides
larvae did not induce any behavior (Figure 3). For Cs-Inland
females, α-amylases from the preferred host B. fusca induced the

highest positive response, followed by those from the suitable S.
calamistis, whereas those from the unsuitable hosts C. partellus
and S. nonagrioides did not induce any response (Figure 3).
For the Cs-Coast females, α-amylases from the suitable new
association hosts C. partellus and the natural host S. calamistis
induced higher responses than those from the unsuitable B.
fusca and S. nonagrioides (Figure 3). For the more specific
Cotesia species, α-amylase from the suitable host S. nonagrioides
induced a higher response than those from the unsuitable species
(Figure 3).

In summary, for each parasitoid species and population there
was a strong co-relationship between the behavioral response
toward α-amylases of the larvae by the parasitoid female
(Figure 3) and the level of host suitability (Table 1).

DISCUSSIONS

This study revealed that the response of female Cotesia
to the α-amylase from larval oral secretions depended on
both the host and parasitoid species or population, with a
strong relationship between the level of response and host
preference/suitability. Highest responses were observed with the
proteins of the old association host (i.e., most suitable host),
whereas protein of unsuitable species triggered little or no
response. Variations of host α-amylase between host species
would thus allow specific host recognition and acceptance by the
parasitoids.

Lepidopteran stemborers in Africa present high ecological and
genetic diversity (Le Ru et al., 2006a,b), characterized by a large
number of closely related plant-specific species (Le Ru et al.,
2006a,b; Moolman et al., 2014; Ong’amo et al., 2014; Goftishu
et al., 2018). Correspondingly, Mailafiya et al. (2009) found a
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FIGURE 2 | Western blot performed using a Drosophila melanogaster α-amylase-specific antibody toward the purified α-amylases from the oral secretions of larvae of

Chilo partellus (1), Busseola fusca (2), Sesamia calamistis (3), and Sesamia nonagrioides (4). Ladder: molecular weight markers (pre-stained SeeBlue Plus2, Thermo

Fischer). 5: α-amylase from Drosophila melanogaster.

high diversity of the Cotesia spp., particularly among Busseola
spp. and Chilo spp., which also revealed a strong host-parasitoid
specificity. This suggests that the chemical(s) involved in host
recognition and acceptance by these parasitoids must be specific
to the host species involved, as verified in the present study.
However, the response of parasitoid females to α-amylase is
not binomial (yes or no), and becomes more intense with the
α-amylase of its natural host. Some behavioral responses still
occurred with α-amylases of unsuitable hosts, nonetheless. The
probability of an encounter between B. fusca with C. flavipes and
Cs-coast, as well as between C. partellus with Cs-Inland, is very
low, however, due to the different geographical distribution of
their respective hosts: B. fusca is mostly present in the highlands,
whereas C. partellus is mostly found in the lowlands (Mailafiya
et al., 2010; Mwalusepo et al., 2015). Such ecological patterns of
the host-parasitoid associations suggest that their preference for

the α-amylase of their host results from adaptation (even recent
adaptation, e.g., for C. flavipes toward S. calamistis) to local hosts,
as shown for the virulence function for C. sesamiae populations
(Dupas et al., 2008; Gauthier et al., 2018).

α-Amylases are among the important classes of digestive
enzymes used by the insects to hydrolyse starch in various
plant tissues to oligosaccharides. Thus, they play a critical role
in insect survival by providing energy (Franco et al., 2000).
They have also been identified in most insect orders, such
as Orthoptera, Hemiptera, Heteroptera, Hymenoptera, Diptera,
Lepidoptera, and Coleoptera (Kaur et al., 2014). In Lepidoptera,
several α-amylase genes commonly occur (e.g., Özgür et al.,
2009; Pytelkova et al., 2009; Da Lage et al., 2011). In our
study the same enzyme had different isoforms in electrophoresis
that exhibited species-specific migration patterns. Since isoform
migration distance depends on the molecule electric charge, it is
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FIGURE 3 | Response of Cotesia flavipes, Cotesia sesamiae-Inland, Cotesia sesamiae-Coast, and Cotesia typhae females to purified α-amylase from different host

species. The percentages of females (n = 30) that exhibited antennation and stinging attempts are given for each bar. After Pearson’s Chi-squared test, bars headed

with a different letter are significant at a 5% level according to the Marascuilo procedure (multiple proportions comparison).

not obvious whether different bands represent allelic variation or
if they duplicate gene copies. However, in species showing well-
separated groups of bands, such as the two species of Sesamia, it
is likely that at least those groups reflect different gene copies.
It can be hypothesized that within these species, individuals
can express different isoforms of the α-amylase. To confirm
this hypothesis, it would be necessary to look at the α-amylase
expression in each individual. Up to now, only one α-amylase
gene sequence has been identified in S. nonagrioides (actually a
cDNA; Da Lage J.-L., unpublished study), but given that most
Lepidoptera with published genomes harbor several α-amylase
genes (Da Lage, 2018 for a review), it is quite likely that this is
the case in S. nonagrioides. Several α-amylase gene copies are
expressed in a species close to C. partellus, Chilo suppressalis;
and three α-amylase gene copies in Ephestia kuhniella (Pytelkova
et al., 2009). Nevertheless, all these studies indicated that the
insects express multiple α-amylase at the same time; suggesting
that no individual variation in α-amylase genes expression might
occur within the same species. Therefore, the α-amylase gene
expression is species-specific.

The two Sesamia species have different ranges of host plants
(Le Ru et al., 2006a,b), so genes coding for digestive enzymes like
α-amylase may have evolved under different selective pressures.
Tri-dimensional amylase structures may vary according to the
species or even to the isoform if significant sequence differences
exist, such as presence or absence of some disulfide bonds,
or particular loops (Da Lage et al., 2002). Those structural
differences might be discriminated by the sensory equipment of
the parasitoid wasp.

For C. flavipes it was shown that it is the conformation of
the α-amylase rather than its catalytic activity that induces
the parasitoid responses (i.e., antennation + stinging
attempts; Bichang’a et al., 2018). Therefore, the existence
of different α-amylase isoforms specific to each stem borer
species as shown in Figure 1 corroborates the variable
behavioral responses obtained in relation to the host-parasitoid
association.

The question arises of how the parasitoids access host α-
amylase in nature. Lepidopteran stemborer larvae spend their
lives and feed inside plant stems. Before entering the feeding
tunnel of the host larvae, the wasp first contacts the fecal pellets
left by the larvae pushed outside of the stem. These pellets act
as a marker of the status of the larva inside the stem tunnel
as being host or non-host (Obonyo et al., 2010b), and shows
whether they are actively feeding or not. It is most probable
that the fecal pellets already contain the stimulatory compounds,
since the pellets induced oviposition (Bichang’a et al., 2018).
However, the parasitoid is able to definitely recognize the host
and accept to oviposit in it only when it is in contact with the
host body (Obonyo et al., 2010a,b). We hypothesized that it is
during this final step that the parasitoid can confirm the identity
of the host larva by detecting the same stimulatory compounds
found in the previous fecal pellets and also present on the body
of the larva deposited by its feeding activity. These stimulatory
compounds need to give quick and appropriate information to
the parasitoid on the suitability of the larva (both host and health
status) because host larvae often bite the attacking wasps inside
the tunnel created by the borer, causing a 50% mortality risk
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(Takasu and Overholt, 1997). The high selection pressure due
to the high mortality at oviposition should favor wasps that can
recognize hosts with a minimal risk of injury (Ward, 1992). In
this context, the parasitoid response to α-amylase needs to be
specific to the host involved. In addition, this supposes that the
parasitoids can perceive the α-amylase through their sensorial
equipment.

Obonyo et al. (2010a) observed that female parasitoids use the
tip of their antennae to recognize and accept their host larvae
for oviposition. They identified the presence of specific sensilla
known to have gustatory functions in insects on the last antennal
segment (Obonyo et al., 2011). Mailhan (2016) showed that these
sensilla chaetica are able to detect the α-amylase. However, this
result was not confirmed until recently by Tolassy (2018), who
suggested that other sensilla from other sensorial organs, such as
from the tarsi, might be involved.

There is no physiological evidence that the parasitoid can
detect the α-amylase, since gustation in insects is known to be
influenced generally by small compounds such as sugars, free
amino acids and water-soluble alkaloids (Thiéry et al., 2013
for review). Nevertheless, it is well-known that hymenopterans
are able to detect large molecules such as long chain cuticular
hydrocarbons of more than 60 carbons (Cvacka et al., 2006;
Blomquist and Bagnères, 2010) and that non-volatile long-chain
hydrocarbons can been detected by olfactory sensilla (Ozaki
et al., 2005, 2012). We cannot therefore rule out the detection
of α-amylase by sensilla specialized in olfaction on Cotesia spp.
antennae.

In conclusion, this study shows that α-amylase is a key protein
for host acceptance and oviposition by species of the C. flavipes
complex, and that its variation is involved in the specificity of
host-parasitoid association. These findings open new routes for
the investigation of evolutionary processes at play in Lepidoptera
stem borers-Cotesia and their interactions.

In addition, these findings highlight some issues in biological
control perspectives. The ecosystem service provided by
biological control relies to a large extent on the natural adaptive
abilities of biological control agents. Pest resistance is less
frequent in biological control than in chemical control (Holt
and Hochberg, 1997). One reason advanced for this better

protection against host resistance is that biological control agents
can co-evolve and adapt to host resistance, whereas chemical
control agents cannot. The link between α-amylase isoforms
and Cotesia species and population in this study gives a strong
insight into such adaptive processes of the parasitoid to its host.
In the near future the main relevance in agriculture will be
to deliver more efficient parasitoid strains against pest insects.
The identification of α-amylase’s receptors involved in host
acceptance mediation will help in targeting the genes of these
receptors with the aim of carrying out genetic improvements
on them.
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