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Abstract

Background

To access the long term relationship between efavirenz plasma concentrations and evolu-

tion of HIV RNA loads and CD4 cell counts in children.

Methods

Retrospective analysis of data from HIV-infected children on first line efavirenz-containing

regimen. A population pharmacokinetic-pharmacodynamic (PK-PD) model was developed

to describe the evolution of HIV RNA load and CD4 cell count (efficacy outcomes) in relation

to efavirenz plasma concentration. Individual CYP2B6 516 G>T genotype data were not

available for this analysis. A score (ISEFV) quantifying the effect of efavirenz concentrations

on the long-term HIV replication was calculated from efavirenz concentrations and PD

parameters and, a value of ISEFV below which HIV replication is likely not suppressed was

determined. Cox proportional hazards regression models were used to assess the associa-

tion of the risk of viral replication with ISEFV, and with efavirenz mid-dose concentration

(C12).

Results

At treatment initiation, median (interquartile range, IQR) age was 8 years (5 to 10), body

weight 17 kg (14 to 23), HIV RNA load 5.1 log10 copies/mL (4.6 to 5.4), and CD4 cell count
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71 cells/mm3. A model of PK-PD viral dynamics assuming that efavirenz decreases the rate

of infected host cells adequately described the relationship of interest. After adjusting for

age, baseline HIV RNA load and CD4 cell counts an ISEFV <85% was significantly associ-

ated with a higher risk of viral replication (p-value <0.001) while no significant association

was observed with C12 <1.0 mg/L.

Conclusion

The ISEFV score was a good predictor of viral replication in children on efavirenz-based

treatment.

Introduction

Efavirenz in combination with a dual-nucleoside reverse transcriptase inhibitor (NRTIs) back-

bone is the preferred first line antiretroviral therapy (ART) for HIV-infected children >3 years

of age and weighing >10 kg [1]. The use of efavirenz-based ART has been shown very effective

in suppressing viral replication in children and restoring immune function [2–3]. Efavirenz

has been shown associated with a lower rate of virological failure compared to nevirapine in

children [4–5]. However, a variability in response to efavirenz has been ascribed to differences

in pharmacologic, virologic, immunologic, and behavioral characteristics [6]. To achieve target

drug exposure, dose adjustment strategies have been designed using therapeutic drug monitor-

ing (TDM), which individualizes drug dosing in order to maintain plasma drug concentrations

within a target range (therapeutic window) [7–8].

Among children initiating first line efavirenz-based ART in Africa, a higher percentage of

those with a minimum efavirenz plasma concentration >1.1 mg/L had an HIV RNA load

decrease greater than 2 log10 copies/mL after 3 months compared to children below this

threshold [9].

A retrospective study in adult Marzolini et al. [10], reported that 50% of patients with efa-

virenz plasma concentration (below 1.0 mg/L) had viral replication (HIV RNA load>400 cop-

ies/mL). Among children, lower efavirenz concentrations were associated with higher risk of

viral replication >400 copies/mL [11]. Recent data indicates that the efavirenz plasma concen-

trations may not provide an efficient tool to accurately predict the risk of viral replication [12–

13].

Our aim was to predict with more accuracy than efavirenz concentrations alone the risk of

viral replication using model taking into account the relationship between exposure to efavir-

enz and evolution of HIV-1 RNA load and CD4 cell count.

Materials and methods

Patients

This analysis includes data from the prospective Program for HIV Prevention and Treatment

(PHPT) Observational Cohort (NCT00433030). We selected all antiretroviral HIV-infected

children who started as first line an efavirenz-containing ART in between May 1, 2002 and

March 30, 2010, had HIV-1 RNA load and CD4 cell count measurements, and at least one efa-

virenz plasma concentration measurement available at any time point. Efavirenz was pre-

scribed following US FDA approved weight-based dosing guidelines, as capsules or tablets to

be taken once a day in the evening without regard for food. Children demographics (sex, age,

PK-PD viral dynamics of efavirenz-based ART
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body weight and height), antiretroviral treatment, adverse events, and laboratory data, includ-

ing lipid plasma concentrations, alanine transaminase levels, HIV-1 RNA loads and CD4 cell

counts were extracted from the cohort study database. Children receiving drugs known to

interact with efavirenz, such as rifampicin, were excluded from the analysis.

The PHPT Cohort Study was approved by the ethical committees at the Thai Ministry of

Public Health, local hospital ethics committees, and the Faculty of Associated Medical Sci-

ences, Chiang Mai University, Thailand. Written informed consents were obtained from

parents/legal guardians, and assents as appropriate.

HIV-1 RNA load and CD4 cell count measurements

HIV-1 RNA loads and CD4 cell counts were performed before treatment initiation and every

6 months after starting or switching ART. Plasma HIV-1 RNA loads were measured using the

Cobas Amplicor HIV-1 Monitor RNA test version 1.5 (Roche Molecular Systems) from 2002

to 2008 and Abbott Real-Time HIV-1 assay (Abbott Molecular) since 2009 at the PHPT central

laboratory in Chiang Mai (lower limits of detection, 50 copies/mL for Roche technique and 40

copies/mL for Abbott technique; Comparison of results showed Pearson’s correlation coeffi-

cient, r = 0.95), with quality assured through the Virology Quality Assurance Proficiency Pro-

gram (VQA). CD4 cell counts were measured using a flow cytometer at each local hospital

laboratory, with quality control from the Center of Excellence for Flow Cytometry, Mahidol

University, Bangkok, Thailand.

Population pharmacokinetic analysis

Efavirenz plasma concentration data were predicted using a previously published population

PK model generated from the same study population [11]. Efavirenz plasma concentrations

over 24 hours were described using a one-compartment model with delayed absorption via

two transit compartments. Children were separated into two groups as either ‘fast’ (95% of

children) or ‘slow’ metabolizers using a mixture model for efavirenz clearance (CL/F). Allome-

tric scaling best described the relationship between body weight, apparent oral CL/F and vol-

ume of distribution.

HIV-1 RNA load and CD4 cell count data according to treatment duration were fitted

using a nonlinear mixed effects modelling software program Monolix (Version 4.1.3, wfn.

software.monolix.org). The population means and variances for the PD parameters were esti-

mated by computing the maximum likelihood estimator without any approximation of the

model (no linearization) using the stochastic approximation expectation maximization

(SAEM) algorithm combined to a Markov Chain Monte Carlo (MCMC) procedure [14] (num-

ber of chains = 5 for all estimations). Residual variability (ε) was investigated using propor-

tional, constant or combined error models. The between-subject variability (BSV or η) was

ascribed to an exponential model. The Bayesian information criterion (BIC) was used to com-

pare different models, i.e. structural models, covariate effect(s) on PD parameter(s). residual

variability models, and structure of the variance-covariance matrix for the BSV parameters.

Age, body weight, height, body mass index z-score (continuous or categorized), alanine trans-

aminase levels, sex and type of NRTI backbone were individually tested as covariate effects. Cat-

egorical covariates (CA), e.g. sex, were modelled according to the equation IC50 ¼ yIC50
� BCA,

where BCA is the estimated influential factor for the categorical covariate (CA = 0,1). Continu-

ous covariates (CO) were systematically tested via generalized additive modelling versus the

basic model. For example, for IC50, the equation IC50 ¼ yIC50
½CO=medianðCOÞ�BCO was used,

where yIC50
is the typical value of IC50 for an individual with the median covariate value and BCO

PK-PD viral dynamics of efavirenz-based ART
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is the estimated influential factor for the continuous covariates. A covariate was retained in the

model if it (i) was biologically plausible, (ii) produced a BIC decrease, and (iii) produced a

reduction in the variability of the PD parameter, assessed be the associated BSV. Goodness-of-

fit were assessed graphically.

The PK-PD model was similar to that reported to describe the relationship between the

exposure to three antiretroviral drugs (efavirenz, didanosine and lamivudine) and the evolu-

tion of HIV-1 RNA load and CD4 cell count in Africa [15]. Following Ribeiro and Perelson

[16], three differential equations described the viral dynamics where efavirenz inhibits the pro-

duction of infected cells:

dT=dt ¼ l � ðd � TÞ � ½IðtÞ � b� T � V� ð1Þ

dT�=dt ¼ ½IðtÞ � b� T � V� � ðd� T�Þ ð2Þ

dV=dt ¼ ðp� T�Þ � ðc� VÞ ð3Þ

These equations represent three compartments including (i) uninfected T lymphocyte tar-

get cells (T), (ii) HIV-infected cells (T�) and (iii) free virions (V). The model assumes that T

lymphocyte target cells are produced at a constant rate λ and die at rate d. Parameters β and δ
are infection and death rates of infected cells. The virus is produced at rate p per infected cell

and eliminated at rate c. Efavirenz, which reduces the ability of HIV virus to infect new target

cells by inhibiting the reverse transcriptase enzyme [17], was assumed to decrease the produc-

tion of infected cells via the inhibition of the parameter β (Fig 1). The corresponding inhibition

function I(t) is defined according to the following an Emax model [18];

IðtÞ ¼ 1 � ½ðImax � CavÞ�=½IC50 þ Cav� ð4Þ

where Imax is the maximum fractional inhibition, IC50 is the efavirenz plasma concentrations

producing 50% of the maximal inhibitory effect (mg/L) and Cav is the individual average efa-

virenz plasma concentration (mg/L). Cav = (dose/dosing interval)/CLi, where CLi is the individ-

ual efavirenz clearance (L/h). The individual efavirenz clearances for each child were estimated

using our previously published population PK model described above [11].

At steady state, before initiating antiretroviral treatment, the initial conditions of the system

are T0 = (c×δ)/(β×p), T�
0
¼ ðc� VL0Þ=p and VL0 = [(λ×p)/(c×δ)]−(d/β) [15].

Initial conditions were then re-formulated in order to estimate HIV-1 RNA load (VL0) and

CD4 cell counts (CD0) as baseline parameters, allowing the determination of the correspond-

ing between-subject variability. Thus, λ, d, β, δ, p and c were derived from HIV-1 RNA load

and CD4 cell count at baseline.

Model validation

The final population PK-PD model was evaluated using a visual predictive check (VPC). For

the VPC, prediction-corrected (Uppsala prediction correction) visual check were used as

informative diagnostic tools to allow inspection of model appropriateness across time as well

as across covariate values.

Impact of efavirenz plasma concentrations on viral replication

We defined virological failure as viral replication (HIV-1 RNA load >200 copies/mL) at least

after 6 months of treatment and confirmed by a consecutive measurement after 6 months of

treatment. The C12 and C24 were estimated using our population PK model [11].

PK-PD viral dynamics of efavirenz-based ART
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From the final model, an inhibitory score (ISEFV) was calculated from Cav, the Imax, and

IC50 values as follows:

ISEFV ¼ ½ðImax � CavÞ=ðIC50 þ CavÞ� � 100 ð5Þ

The ISEFV stands for the resulting effect of efavirenz on HIV replication. A higher ISEFV
indicates a higher effect of efavirenz on HIV replication.

Sex, baseline characteristics (age, body mass index Z-score, alanine transaminase levels,

type of NRTI combination, HDL, LDL, total cholesterol and triglycerides), C12, C24, Cav, IC50

and ISEFV during the period of observation were compared between children with or without

viral replication using Fisher’s exact test for categorical variables and the Wilcoxon rank-sum

test for continuous variables.

A value of the ISEFV below which HIV replication is likely not to remain suppressed was

determined using three methods as Youden’s index, a closest-to-(0,1) criterion and Lui

method [19].

The time to confirmed viral replication during the first three years of treatment was esti-

mated by Kaplan-Meier method, and time-to-event distributions were compared using a log-

rank test. We estimated the hazard ratio of viral replication between children with C12 above/

below 1.0 mg/L and with ISEFV above/below cut-off value, after adjusting for potential con-

founders (HIV-1 RNA load, CD4 cell count and age at treatment initiation) using Cox propor-

tional hazard regression models. The Cox proportional hazards assumption of each model was

assessed using Schoenfeld residuals.

Results

Study population and follow up

Eighty-seven children (51% boys) met the selection criteria for analysis. Their first-line regi-

mens contained zidovudine (n = 57) or stavudine (n = 30), plus lamivudine (n = 84) or didan-

osine (n = 3) in combination with efavirenz (dosed according to US FDA approved weight-

Fig 1. Pharmacokinetic-pharmacodynamic (PK-PD) viral dynamic model in which efavirenz decreases the rate of infected host cells. Abbreviations: T;

Target cells; T�, infected cells; V, free virions; λ, production rate constant of uninfected target cells; d, elimination rate constant of uninfected target cells; β,

infected rate constant of target cells; δ, elimination rate constant of infected cells; p, virion production rate constant; C, elimination rate constant of free

virions.

https://doi.org/10.1371/journal.pone.0216868.g001
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band dosing guideline). Baseline characteristics are shown in Table 1. The median duration of

follow up was 24 months (12 to 34) and a total of 443 HIV-1 RNA load and 447 CD4 cell count

measurements were available.

Overall, 16 of 87 children (18%) had confirmed viral replication >200 copies/mL during

the first 3 years of ART. The median (interquartile rang, IQR) of the first viral replication

>200 copies/mL was 3.96 log10 copies/mL (2.92 to 4.65). In addition, 24 of 87 children (28%)

had confirmed viral replication >50 copies/mL. The median (IQR) of the first viral replication

>50 copies/mL was 2.92 log10 copies/mL (2.01 to 4.20). The Kaplan–Meier estimate of the

cumulative risk of confirmed viral replication >200 copies/mL was 16% (10 to 26) at 12

months of treatment, and 20% (12 to 31) at 36 months. The median time at first viral replica-

tion >200 copies/mL was 9.45 months (7.05 to 11.55), and 8.60 months (6.75 to 11.45) for first

viral replication >50 copies/mL.

Population pharmacokinetic-pharmacodynamic analysis

The PK-PD viral dynamic model adequately described the relationship between efavirenz

plasma concentrations, viral replication, and evolution of CD4 cell counts over the first 3 years

of treatment. All fixed-effect parameters had a residual standard error (RSE%) below 25%,

except for the efavirenz IC50 (RSE = 47%). All random effect parameters had a RSE below 34%.

After the maximum inhibitory effect (Imax) was fixed to 100% (not identifiable), the estimated

mean efavirenz IC50 was 0.1 mg/L. The infected cells (δ) elimination rate constant was fixed to

15.2 per month [20]. Between-subject variability parameters were retained for (i) production

and elimination rates of uninfected target cells, (ii) infected rate of infected cells, (iii) produc-

tion and elimination rates of free virions, and (iv) IC50. The residual variability was best

described by an additive error model for HIV-1 RNA load and CD4 cell count data. None of

the covariates had a significant effect on PD parameters. The final population PD parameters

are summarized in Table 2.

Model evaluation

The VPCs of the final model, i.e. median, 25th and 75th percentile curves drawn over observed

HIV-1 RNA loads and CD4 cell counts as a function of treatment duration, showed that the

Table 1. Baseline characteristics of the 87 HIV-infected children.

Characteristics Median (Interquartile Range) or Number (%)

Male 44 (51%)

Age (years) 8 (5 to 6)

Bodyweight (kg) 17 kg (14 to 23)

Height (cm) 110 (98 to 124)

Body mass index z-score 0.01 (-1.05 to 1.44)

Normal 58 (67%)

Thinness 24 (27%)

Overweight 5 (6%)

Alanine aminotransferase (IU/L) 30 (19 to 44)

CD4 cell counts (cells/mm3) 71 (23 to 262)

HIV RNA load (log10 copies/mL) 5.1 (4.6 to 5.4)

Total cholesterol (mg/dL) 133 (106 to 157)

Triglycerides (mg/dL) 135 (85 to 108)

Efavirenz dose (mg/kg) 13.9 (13.0 to 16.2)

https://doi.org/10.1371/journal.pone.0216868.t001
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median, 25th and 75th percentiles of observed values were within the corresponding 90% confi-

dence interval of simulated percentiles (S1 Fig).

Efavirenz plasma concentrations and viral replication

Regardless of metabolizer phenotypes, the median (IQR) C12 was 2.9 mg/L (2.0 to 3.7), C24 1.1

mg/L (0.7 to 1.4) and Cav 1.7 mg/L (1.3 to 2.2). From Eq 5, the median ISEFV score calculated

was 95% (86 to 96).

Baseline characteristics and estimated C12, C24 and Cav were not significantly different

between the 16 children with viral replication >200 copies/mL and the 71 virologically sup-

pressed. However, both IC50 and ISEFV significantly differed (p-value <0.001) between chil-

dren with and without viral replication (median IC50: 0.60 versus 0.07; median ISEFV: 63%

versus 96%, respectively).

Overall, 10 of 87 children had C12 <1.0 mg/L and 77 children (89%) had C12�1.0 mg/L.

Among the 10 children with a C12 <1.0 mg/L (target threshold for efavirenz efficacy), three

(30%) had confirmed viral replication compared with 13 (17%) of those 77 with C12 above 1.0

mg/L (p-value = 0.383). Using the Youden’s index, an 85% ISEFV cut-off value provided a

Table 2. Parameter estimates for the pharmacokinetic-pharmacodynamic (PK-PD) viral dynamic model.

Parameter Mean RSE (%) Parameter Mean RSE (%)

Fixed effects Between-subject variability
λ—cells/mm3/month 89.2 8 ωλ 0.6 16

d—cells/mm3/month 0.1 11 ωd 0.6 34

β ×10−6—per month 6.7 17 ωβ 1.0 15

δ—per month (fixed) 15.2 - ωp 0.4 23

p ×104—per month 6.5 10 ωc 0.5 14

c—per month 3.3 10 oIC50
2.1 19

Imax (fixed) 1.0 - ωλ,d 0.6 21

IC50—mg/L 0.1 47 Residual variability
σVL—log10 copies/mL 0.7 4

σCD4–cells/mm3 176.0 4

Abbreviations. RSE%, relative standard error (standard error of estimate / estimate×100); λ, production rate constant of uninfected target cells; d, elimination rate

constant of uninfected target cells; β, infection rate constant of target cells; δ, elimination rate constant of infected cells; p, production rate constant of free virions; c,
elimination rate constant of free virions; Imax, maximum fractional inhibition of efavirenz on the production of infected cells; IC50, efavirenz plasma concentration at

which effect reaches 50% of its maximum; ω, between-subject variability estimates; σ, residual variability estimate; VL, HIV RNA load; CD4; CD4 cell count.

https://doi.org/10.1371/journal.pone.0216868.t002

Fig 2. Cumulative probability of viral replication as a function of treatment duration between C12 below and

above 1.0 mg/L (A), and ISEFV below and above 85% (B). Abbreviations: C12, efavirenz mid-dose concentration;

ISEFV, inhibitory score.

https://doi.org/10.1371/journal.pone.0216868.g002
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sensitivity of 94% and a specificity of 89% to predict viral replication, and classification accu-

racy was 90%. An 50% ISEFV cut-off value using the closet-to-(0,1) criterion provided a sensi-

tivity of 7%, a specificity of 99% and a classification accuracy of 82%. Using Lui method, an

78% ISEFV cut-off value provided sensitivity of 63%, a specificity of 92% and a classification

accuracy of 86%. The ISEFV cut-off value of 85% provided a high sensitivity, high specificity

and high classification accuracy. Using this ISEFV cut-off, 15 of 23 children (65%) with a score

below cut-off had viral replication compared with 1 of the 64 children (2%) with a score above

cut-off (log-rank, p-value <0.001).

The cumulative risk of viral replication was not different in children with C12 below and

above 1.0 mg/L in the univariate analysis, or adjusting for HIV-1 RNA load, CD4 cell count

and age at treatment initiation (adjusted hazard ratio [aHR], 2.74 [95% CI, 0.65 to 11.55],

p-value = 0.170) (Fig 2A). In contrast, it was significantly higher in children with ISEFV<85%

than children with ISEFV�85% in the univariate analysis or adjusted for HIV-1 RNA load,

CD4 cell count and age at treatment initiation (aHR, 67.17 [95% CI, 8.29 to 544.45], p-value <

0.001) (Fig 2B).

Discussion

A PK-PD viral dynamics model assuming that efavirenz decreases the rate of infected host

cells production adequately described the relationship between efavirenz plasma concentra-

tions and efficacy outcomes (HIV-1 RNA load and CD4 cell count evolutions) over the first 3

years of treatment. However, there was no significant difference in the time to viral replication

between children with C12 below and above 1.0 mg/L. This finding is consistent with previous

studies in adults and children starting efavirenz-based regimen. In a study in Cambodian

adults, efavirenz plasma concentrations (12 to 16 hours after post-dose) below 1.0 mg/L were

not significantly associated with virologic failure (HIV RNA load>250 copies/mL) [21]. This

was similar to a study in African children, where there was no significant difference in the risk

of virologic failure (HIV RNA load>400 copies/mL) according to efavirenz plasma concentra-

tion [22]. While, a study A5202 found an interaction between weight and low efavirenz con-

centration (at least one plasma concentration <1mg/L) was associated with virologic failure

(defined as a confirmed HIV-1 RNA load�1,000 copies/mL at or after 16 weeks and before 24

weeks or�200 copies/mL at or after 24 weeks) [23]. Similarly, an adult study in South Africa

found higher mid-dose efavirenz plasma concentration was associated with decreased risk of

virologic failure (HIV RNA load>400 copies/mL at Week 16 and>40 copies/mL at Week

48), but they found a new threshold of mid-dose efavirenz concentration with 0.7 mg/L was

the most predictive of virologic failure [24].

In our study, we defined a novel inhibitory score based on a PD hypothesis, ISEFV, calcu-

lated from Cav, the maximum possible effect of efavirenz on HIV replication (Imax) and efavir-

enz plasma concentrations producing 50% of the maximal effect of drug (IC50). The ISEFV
accounted for the contribution of individual efavirenz plasma concentration and viral suscep-

tibilities, and appeared to provide a better predictor of viral replication during the first 3 years

of treatment than drug plasma concentration or viral susceptibilities alone. The risk of viral

replication was significantly higher in children with a ISEFV below 85%.

Of note, an inhibitory quotient (IQ) was calculated from actual or expected trough drug

concentration (C24) divided by a measure of viral susceptibilities to that drug, IC50. In adults, a

study published in 2003 in patients on lopinavir/ritonavir with or without efavirenz found that

baseline efavirenz IQ was correlated with the 24th week virologic response (HIV RNA load

below 400 copies/mL) but the logarithmically transformed efavirenz concentration was not

significantly correlated with virologic response [25]. Another study in children calculated a
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composite inhibition score (CIS), based on the same PD hypothesis as in our analysis, using

the plasma concentrations of three drugs (efavirenz, didanosine and lamivudine) to estimate

the relative potency of each drug, and efavirenz accounted for 65% of the total effect. A low

CIS was associated with the risk of viral replication [15].

There are some limitations to our findings. Firstly, our PK-PD model was developed using

data from HIV-infected children, median age 8 years, in Thailand, who may differ from popu-

lations previously studied in terms of frequencies of gene polymorphisms affecting efavirenz

metabolism [26–27]. A study in Thailand found 48%, 44% and 11% of children with CYP2B6

516G/G, G/T, and T/T genotypes, respectively. The CYP2B6 516G>T gene polymorphisms

were strongly associated with higher efavirenz plasma concentration (mean ±SD of efavirenz

plasma concentrations were 1,604 ±729 ng/mL for children with G/G genotype, 2,635 ±1,199

ng/mL for G/T genotype and 11,582 ±2,972 for T/T genotype; p-value <0.001) [28]. Of note,

the individual CYP2B6 516G>T genotype results were not available for the population studied

but we took into account the presence of a small proportion of ‘slow’ metabolizers in the stud-

ied population. Secondly, the risk of viral replication may also be related to the NRTI back-

bone. However, in our model, there was no significant association with the NRTI backbone

combinations. Thirdly, our PK-PD model was developed to investigate the effect of efavirenz

on HIV-RNA time-course and CD4 cell count based on data from HIV-infected children initi-

ating efavirenz-based combination in Thailand; thus the data may not describe a population

with different antiretroviral combinations, races and/or ages.

In conclusion, the target threshold of efavirenz plasma concentration <1.0 mg/L may not

be an optimal marker of the risk of viral replication. The ISEFV based on a PD hypothesis was a

better predictor of confirmed viral replication during the first 3 years of treatment than C12.

Supporting information

S1 Fig. Visual predictive checks (VPC) for HIV-1 RNA loads (A) and CD4 cell counts (B)

after efavirenz initiation. The observed HIV-1 RNA loads and CD4 cell counts are displayed

using blue points and the censored data (simulated from the model) using red points. The

green lines show the 25th, 50th and 75th percentiles of observed HIV-1 RNA loads and CD4

cell counts. The blue shaded areas represent the 90% CI around the simulated 25th and 75th

percentiles, and the pink shaded areas represent the 90% CI around the predicted median.

Abbreviations: CI, confidence interval.
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