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Abstract: In this work, we study how learning in a special 
environment such as a museum can influence the behavior 
of robots. More specifically, we show that online learning 
based on interaction with people at a museum leads the 
robots to develop individual preferences.
      We first developed a humanoid robot (Berenson) that 
has the ability to head toward its preferred object and 
to make a facial expression that corresponds to its atti-
tude toward said object. The robot is programmed with 
a biologically-inspired neural network sensory-motor ar-
chitecture. This architecture allows Berenson to learn and 
to evaluate objects. During experiments, museum visi-
tors’ emotional responses to artworks were recorded and 
used to build a database for training. A similar database 
was created in the laboratory with laboratory objects. We 
use those databases to train two simulated populations 
of robots. Each simulated robot emulates the Berenson 
sensory-motor architecture.
    Firstly, the results show the good performance of our 
architecture in artwork recognition in the museum. Sec-
ondly, they demonstrate the effect of t raining variability 
on preference diversity. The response of the two popula-
tions in a new unknown environment is different; the mu-
seum population of robots shows a greater variance in 
preferences than the population of robots that have been 
trained only on laboratory objects. The obtained diversity 
increases the chances of success in an unknown environ-
ment and could favor an accidental discovery.
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1 Introduction
Museums are places to conserve and protect collections
of artefacts that represent our heritage, but they are also
places to discover, learn, exchange, feel, and entertain
without the usual functional constraints associated with
objects of everyday life. If the educational role of science
or history museums is easy to understand, the interest of
visiting an art museum is more subtle.

We seek to demonstrate that exposure to artwork in
museums can be used to develop a robot’s capability to
sharpen and differentiate its way of perceiving the world.
In our case, we argue for a synthetic and developmental
approach for the study of animal and human cognitive
functions [1, 2]. Themuseum as a place for social learning
might be a good framework to evaluate developmental ar-
chitectures. However, currentmodels are typically applied
to isolated or discretized problems and tested in environ-
ments that favor a high success rate [3]. Laboratory condi-
tions do not allow researchers to tackle (1) scalability is-
sues nor (2) learning issues related to long-term learning.
Working in amuseum involves the need for the neural net-
works (NN) architecture to manage online and real-time
social interactions with a multitude of non-expert users.
The museum also offers the advantage of short-term in-
teractions (few minutes) which greatly simplifies the con-
straints in order to obtain acceptable interactions.

Our work with the robot Berenson¹ is a continuing ex-
periment developed in collaboration with the Quai Branly
Museum (MQB) in Paris (a museum focusing on different
cultures with an anthropological, sociological and artistic
approach). Berenson is a mobile and expressive robot de-
signed to be a new kind of visitor to the museum. Beren-
son develops its own preferences as the result of its inter-
actions with human visitors (see Figure 1). Afterwards, it
visits the museum, avoiding obstacles and expressing the
preferences developed in the learning phase.

Philippe Gaussier: Neurocybernetic team, ETIS, ENSEA, University
of Cergy Pontoise, CNRS UMR 8051; E-mail: gaussier@ensea.fr
1 The name of our robot comes from the nineteenth-century art critic
Bernard Berenson.
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We began the experiments six years ago with our bio-
inspired sensory-motor architecture based on a neural net-
work (NN). The architecture allowsBerenson to learn asso-
ciation between the visual objects and the emotional value
and to control the robot’s direction inorder to reachobjects
according to a given motivation. For example, the robot
can be trained to go in the direction of preferred objects
and away from objects associated with a negative value.
Wehave shown thatBerenson candevelopanappreciation
of aesthetic preferences by exploiting the principle of so-
cial referencing [4]. This skill ² can be transferred into the
NNmodel, allowing a robot to learn complex taskswithout
an explicit reward [7, 8].

Berenson’s first role is to study the emergence of aes-
thetic preferences and to test the capability of a neuronal
architecture to learn online in a complex social environ-
ment. In this paper, we are particularly interested in eval-
uating the effect of the emergence of aesthetic preferences
on a whole population of robots. We argue that the learn-
ing variability offered by special environments such as a
museum leads to robots’ individuation. We also question
the interest of teaching artificial systems using a single
large database with the goal of improving their perfor-
mance. Avoiding a uniform response of a population of in-
dividuals to an unknown situation increases its chances of
success.

 

Figure 1: The robot ”Berenson” in Quai Branly Museum during PER-
SONA exposition. Berenson generalises its learning on the visitors
faces. Here, the visitor and the robot observe each other.

2 Social referencing is a developmental process allowing an infant to
seek information from another individual and to use that information
to guide his/her behavior [5, 6].

In the following sections, we introduce the case of a
single robot by describing the experiment of Berenson in
the Quai Branly museum, followed by the presentation of
its sensory-motor architecture (used also on robots for the
simulated experiment). Thenwe evaluate this architecture
performance in object recognition. Next, we present the
simulated experiment that represents the case of popula-
tions of robots, and compares the learning experiences of
two robot populations. We end with conclusions on the
presented work.

2 Related work
This section reviews first the importance and effectiveness
of training variability from a psychological point of view.
Then it presents various experiments using robots in amu-
seum environment.

Many studies in psychology show that training vari-
ability can enhance performance in the long term and im-
proves the capability of transferring that training to related
tasks in modified contexts. Schmidt and Bjork [9] demon-
strate this in both motor and verbal tasks. Another study
[10] finds that the learning rate under conditions of re-
lated variation is significantly greater than under condi-
tions of specialization or unrelated variation. The same
idea is supported for motor tasks. For example, Wulf et
al. [11] studied the effect of the type of practice on motor
learning. They found that a variable practice, in general,
facilitates recall and recognition for the novel task. Oth-
ers studies [12] suggest that the durability and the trans-
fer of performance are shown only when themental proce-
dures developed during training are re-established at test-
ing. More recently, Gonzalez andMadhavan [13] argues for
the benefits of categorical diversity in training on the de-
tection of novel items in a visually complex cognitive task.
The paper states that, "Humans seem more capable than
automated aids at extrapolating from previous knowledge
and engaging in adaptive decision making (thinking "out-
side the box") when faced with novel threat targets". We
agree with this statement. Here, we try to go beyond clas-
sical object recognition to suggest that a robot could think
outside the box in some way using its ability to generalize
to the unlearned objects. For the second step, we show the
ability of a population of robots to find the object classified
as "important" (a kind of accidental discovery) when they
have been taught in the laboratory and in themuseum (cu-
mulative learning).

In this paper, we are considering a simple case of an
accidental discovery of a winner object. In philosophy of
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science, Karl Popper [14] analyzed the nature of scientific
discovery. His work defends an evolutionary view of hu-
man innovation. Recently, some studies look forward to
integrating computers in scientific reasoning. Someworks
[15–18] present automated data-driven systems that could
discover scientific laws (algebraic equations). Sparkes et
al. [19] used the AI techniques to automate some aspects
of the scientific discovery process; in this work, the system
iteratively creates hypotheses about a problem and later
interprets experimental results (closed-loop learning).

Some other works focus on exploring and analysing
the nature of the accidental discovery or the chance dis-
covery. Prendinger and Ishizuka [20] presents the chance
discovery approach in contrast with the knowledge dis-
covery in databases. They discuss the chance discovery
in an open system. They consider the human initiative
(thinking "outside the box") as a distinguishing feature of
chance discovery as opposed to the knowledge discovery
in databases. In [21], a specific neural network for chance
discovery was developed. In our case we focus only on the
very first step of the chance discovery and we show how
chance discovery can emerge as a controlled side effect of
cumulative learning (or long life learning) when some en-
vironments are unrelated to the task and are associated
with a high variability of labels (for instance, visiting amu-
seumwith artworks). Learning new categories and correct
associations from the success or failure of the trial is not
addressed in the present work but it could be performed
using our NN architecture.

At another level, many studies focus on the applica-
tion of robots in museums. For instance, a robot medi-
ator can guide the visitors in the museum. Robots have
sensors allowing them to navigate and sometimes inter-
act with visitors. They move along predefined routes and
avoid obstacles. One of the first studies in a museum [22]
was to develop amodel of navigation and localization for a
mobile robot. Other studies [23, 24] have taken advantage
of certain specific environments such as museums, fairs,
and exhibitions to test their algorithms. Their objective
was to test existing algorithms in complex environments
to highlight the limitations of the algorithms. For example,
Ogata’s study [25] discusses the communication between
autonomous robots andhumans through the development
of a robot which has an emotion model. On the learning
side, Marsland [26] presents a method for performing un-
supervised online novelty detection. The method is based
on learning to ignore inputs that have been seen before, so
that novel inputs are highlighted. Finally, Csikszentmiha-
lyi [27] proposed that the processes essential to creativity
are not only to be found in the minds of creators but also
in the interactions between individuals and their socio-

cultural environment. There is also evidence that variable
categories help in generalizing to novel members of each
category.

3 Berenson experimental setup
The experiment with Berenson took place at the Quai
Branly Museum for 10 days, for 4 hours each day. We lim-
ited our experiment to a zone about 800m2 corresponding
to (40mx 20m) andmuseummediatorswere there to assist
in carrying out the experiment. Since the environment is
dominated by art, we dressed the robot in a long dark coat
and a bowler hat corresponding to an early nineteenth-
century style. Berenson is built from a Robulab 10 plat-
form and an expressive head. The Robulab platform from
Robosoft embeds a computer ³ and supports the human
shape of Berenson. The height of Berenson is 1.80 m, and
its weight is almost 20 kg. To avoid obstacles, Berenson is
equipped with proximity sensors, 15 infrared sensors and
9 ultrasonic rangers that are arranged all around him. One
laser range sensor is also used to avoid human visitors at a
smaller distance. One pan camera and one magnetic com-
pass, located on Berenson’s head, are used for navigation.
Furthermore, the robot has another camera in its right eye
to perform artwork recognition task. Berenson’s expres-
sive head has 9 degrees of freedom (DoF): 4 for the eye-
brows, 3 for the mouth, 1 for the front tilt and 1 that allows
the eyes to tilt. The control of the expressions is performed
by an SSC-32 (serial servo controller able to control up to 32
servo motors). The embedded computer runs sensors, ac-
tuators management (including camera control), obstacle
avoidance and artwork recognition.

During the training phase, visitors were asked to se-
lect an artwork they found more interesting or impressive
than the others (positive appreciation) or on the contrary
less interesting than others (negative appreciation). Using
a two-button mouse, the mediator assigned each visitor’s
appreciation value to the object. Berenson associated the
object with the given emotional value. Next, if no order
was provided to the robot, it went toward artworks asso-
ciated with a positive value and ignored the objects with
a negative or neutral value. Throughout the experiment,
the robot displayed either a positive expression (smile), a
negative expression (sadness) or a neutral expression ac-
cording to the value associated to the objects in the field of
view of its camera.

3 An Intel i5 processor at 2.50GHz with 4 GB of memory.
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4 Berenson sensory-motor
architecture for visual processing

Our model is based on a simple neural sensory-motor
architecture named PerAc (Perception Action) [28, 29],
which allows on-line learning of sensory-motor associa-
tions. Figure 2 shows the generic architecture; it involves
two data streams associated respectively with perception
and action. In the low-level pathway, we suppose we can
extract reflex or involuntary information to directly con-
trol the robot’s actions. The conditioning pathway allows
the robot to anticipate the reflex or the involuntary be-
havior through the learning process. During learning, as-
sociations are formed between the recognition of sensory
information (high-level) and the reflex or involuntary be-
havior (low level). By associating the recognized situation
with the unconditional input during the learning phase,
the system can recognize a situation and react correctly
and avoid the reflex or involuntary pathway.

Yd Z

modifiable link
non modifiable link

Wij

Y

VF

Wij
I-VF

I

Figure 2: Sensory-motor architecture (PerAc).

Berenson’s global sensory-motor architecture in-
cludes:
1. the social referencing model (estimation of the What

channel) performed by using a cascade of PerAc
architecture which allows the learning of more and
more complex skills;

2. the object pose estimation model (estimation of the
Where channel);

3. the navigation model (not discussed in this paper).

Next, we briefly present the first and second models con-
stituting the bio-inspired visual systemwhere two types of
visual information are processed in parallel: theWhat and
Where information.

4.0.1 What channel estimation

A bio-inspired visual system based on a sequential explo-
ration of focus points allows the learning of different lo-
cal views, or what we call theWhat information. For each
focus point in the image, a local view centered on the fo-
cus point is extracted and transformed in log/polar coor-
dinates to allow robustness to scale variation and small
perspective changes. The extracted local view is learned
and categorized by a group of neurons VF (visual features)
using a K-means variant that allows online learning and
real-time functions called SAW (Selective Adaptive Win-
ner) [30]:

VFj = netj · H𝛾(netj) (1)

The VFj is the activity of neuron j in the group VF and 𝛾 is
a vigilance parameter (the threshold of recognition), while
Hθ(x) is the Heaviside function. Incoming local views are
compared with learned patterns. The value of netj is the
complement to 1 of the sum of the distances between the
input feature and the nearest similar learned feature (see
Appendix for the equation). If the maximum activity netj
is below 𝛾 (the given threshold), the current local view
is learned as a new pattern and associated with a newly
recruited neuron (incremental learning). Otherwise, the
SAW algorithm adapts the links between the winner neu-
ron and the input pattern. The modification of the weights
(Wij) is computed as follows:

∆W I−VF
ij = aj(t)Ii + ϵ(Ii −Wij)(1 − VFj) (2)

Where Ii is the input visual feature. When a new neuron
is recruited aj = 1 and otherwise aj = 0. In the use mode,
the robot computes the distance between the current local
views and the learned views.

Cond.1 Cond.2

VF

Robot Control

IV IS ISP

Short time memory 

Internal Variables
Internal State
Internal State Prediction
Visual Features
Facial Expression
Object emotional value

One to one uncondional link
One to all condional link

IV
IS
ISP
VF
FE
OEV

Wij

VF-ISP

Wij

VF-OEV

Figure 3: Social referencing model. The recognised facial expres-
sions is used as an unconditional stimulus to associate an emo-
tional state with an object or a scene.
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The What channel associates the visual features VF
extracted from a scene and an emotional value EV (indi-
cated by a visitor). The emotional value association is su-
pervised. It is computed thanks to a Pavlovian condition-
ing [31] based on the Least Mean Square (LMS) rule [32] as
formalized in Equation 3. The LMSminimizes the error be-
tween the desired output (one-to-one unconditional link)
and the current output (one-to-one conditional link). The
groups of neurons ISP and OEV use the same conditioning
algorithm (see Figure 3):

∆WVF−OEV
ij = ϵ1 · VFi · (FEj − OEVj) (3)

Our social referencing model is performed using two
PerAc architectures:
1. Facial expression learning: this is based on the hy-

pothesis that the robot makes random facial expres-
sions according to its internal state and the human im-
itates it during the learning phase (2-3 minutes). The
sensory-motor model learns the visual conditioning
between the robot’s internal state (triggering the facial
expression) and the visual feedback provided by the
human [33, 34] (see Figure 3: Cond.1). The ISP group
associates thehuman facial expressionVF to the robot
internal state IS (see equation in Appendix), allowing
the robot to recognize and respond to human facial ex-
pressions in use mode.

2. Emotional values and objects association: the second
conditioning (see Figure 3: Cond.2) is used to associate
the visual features of an object with a positive or neg-
ative emotional value. The unconditional stimulus is
supposed to be the emotional value. It comes from the
robot’s internal state or from the recognized human
facial expression. The OEV associates the recognized
facial expression FE to a visual scene VF. At this de-
velopmental level, the robot can associate emotional
values with each object.

In themuseum experiments, we simplified the referencing
problem by asking the visitors to use a two-button mouse
to directly provide the emotional value (positive or neg-
ative) to the artworks when learning them. After several
learning iterations, stable connections are reinforced, and
non-pertinent associations are decreased. For instance, if
a distractor is present in the background of an artwork,
it will be associated first with the same value as the art-
work. The dissociation occurs if the distractor is present
both with positive and negative values. Berenson’s facial
expression is then the result of the temporal integration
of the decisions for each local view. To be acceptable, the
frame rate of the global visuomotor loop must be higher

than 10 Hz (16 Hz in our case). This allows Berenson to
filter the wrong associations.

4.0.2 Where channel estimation

In our model, an object is considered as an ensemble of
local views. Estimating the object position in the camera’s
field of vision corresponds to estimating the relative po-
sitions of its components according to a given reference
point. Figure 4 represents the fundamental schema of the
Where information processing. The groups θ, θL and θS
use population coding for angle computation. The neu-
rons in the θ group correspond to the focuspoint’s position
along the x coordinates in the input image. The θL group
corresponds to the learned position and the θS group cor-
responds to the shifted position.

VF WTA

 �L

LMS

P.I
Local 

view

Pose 

Estimation
 �S

 �L

 �S
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 � Current local view position in the image.

Learned local view position

Shifted local view position

One to all link
One to one link

WTA

VF

P.I

Winner Takes All

Visual Features

Pose Integration

Least Mean SquareLMS

Figure 4: Architecture model for object pose estimation.

During the learning phase, the robot is oriented man-
ually to center the object in the camera field of view. The θL
group associates each local view explored with the center
of the image thanks to the LMS rule (see Equation 4):

θL = [W] · VF (4)

The learning between neurons associated with the view
recognition and the angular position of the object center
is done via one-to-all conditional links. They work like a
memory, storing the local viewpositions (see details inAp-
pendix).

The robot chooses a winner direction to control its ori-
entation. It should be associated with the winner value of
an object. The system is able to generalize by associating
anemotional value tounlearnedobjects includingvisitors’
faces.
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Using only the integrated activity PI cannot lead to
the real winner in many cases because it depends on the
number of recognized local views. We give two examples
of cases which cause problems:
1. many learned objects with a different number of focus

points are present in the robot’s field of view;
2. the presence of distractors in a heavily textured envi-

ronment (the number of local views can increase a lot
in this case).

To enhance the object recognition and the coherence of
winner selection, a modulation with the emotional value
was added to the model. Further, a normalization of the
object pose estimation fields, and a competition mecha-
nism were also necessary. Those steps are detailed in [35]
and Figure 5 represents the final model used on Berenson
in the museum experiments. The same model is also used
on all of the simulated robots for the following comparison
between robot populations.

One to all link (condional link)
One to one link (uncondional link)

θ

EI

θS

VF WTA

Local 

view

LMS

θL PI

X

Modulation

WTAOEV

LMS

Robot 

direction

Proposed

facial

expression

Human

Signal

Neutre

EV

SAW

Figure 5: Berenson global sensory-motor architecture.

As mentioned above the robot assigns an emotional
value to some artworks, or to some of the visitors’ faces
that present some similarities with the learned objects. In
test mode we put a low vigilance that allows this general-
ization to unlearned objects. Consequently, the robot can
attribute valences to objects it has never seen before. This
ability to generalize to unlearned objects is very interest-
ing, as it allows the robot to generalize learned aesthetic
preferences.

In the next section,wepresent a detailed evaluation of
the visual system performance in a museum environment
followed in Section 6.1 by three summarized tests of the
performance needed to approve the populations’ compar-
ison conditions.

5 Evaluating Berenson’s
visual system performance
in the museum
Once the experiments at the museum were over, a
database was created during an o�ine analysis of the im-
ages recordedbyBerenson. An expert used amouse to pro-
vide the object position (the object center) and the correct
label (emotional value) for each object in each image of the
database. It was found that the objects most frequently in-
dicated by the visitors had the largest number of both posi-
tive and also negative values. For instance, the sameobject
was labeled as a negative object by seven visitors and as a
positive object by sevenother visitors (see Figure 12). Then,
the emotional value annotation of objects was changed of-
fline by defining four different emotional categories. These
were as follows: negative (objects few selected but mostly
negative), positive (objects few selected but mostly posi-
tive), surprising or interesting (thus selected both negative
and positive objects) and neutral. The surprise category
was used to define interesting objects with bimodal emo-
tional value distributions, while the neutral category was
used for objects of no particular emotional value such as
walls and doors. This was to stop the generalization when
the robot was in front of such objects. There is a specific
color for each category, blue for negative, red for positive,
yellow for neutral, pink for surprising or interesting (see
Figure 6).

Figure 6: (Top) represents the learning mode, local views associ-
ated with the emotional value. (Bottom) represents the test mode,
Berenson associates the recognized object to the learned emotional
value. Here the images are taken from the same test but with differ-
ent number of local views (8 were extracted in learning mode and
20 in test mode), the cercle’s color represents the emotional value.

As in the online experience, in the o�ine test (using
the database) five local views per image were extracted
and learned in the learning mode, and fifteen local views
were extracted in the test mode. The larger number of ex-
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tracted local views in the test mode is due to the order of
focus points’ extraction. The order of focus points’ extrac-
tion is only related to the local contrast and the local cur-
vature extracted thanks to the DOG filter. In an unknown
image (test image), there is no reason that the first selected
focus points correspond to a learned object (see Figure 6).
Hence, in the test image, if there are three objects of simi-
lar complexity to one of the learned objects, then the robot
should focus on the learned object and off the usual explo-
ration. The issue will be to ensure that distractors will not
win or change the winning label because of some wrong
generalization over the unknown objects.

We limit the number of neurons or units in the SAW
group to 500 neurons which means the learning of 500 lo-
cal views. This corresponds to the capability to learn 100
images of objects with 5 local views per object; 100 objects
if we suppose one view is sufficient or that the robot can-
not turn around the object. As there were twenty artworks
present in our experiment, these numbers are entirely suf-
ficient. This allows the learning of several 2D views of the
same object and to deal with the possible distractors. As
discussed above, the vigilance parameter determines how
fine the categories will be (see Equation 1). The vigilance
parameter is in the interval [0, 1], and was set to 0.98 in
the learning mode, and to 0.78 in the test mode. Low vig-
ilance in the test allows a generalization to the unlearned
objects. The generalization is one of the bases of our think-
ing about artwork appreciation and aesthetic experience
because we want to observe how Berenson will generalize
when confronted with new objects. After the SAW, a Win-
ner Takes All mechanism (WTA) selects the neuron with
the maximum of activity and inhibits the others.

Two measurements were done. One was the object
recognition rate without taking its position into account,
and the other was the object recognition rate taking its po-
sition into account. When the object position is taken into
account, if the object is found to be too far away from its
correct location thewinning categorywill be considered as
false. Anobject is considered as recognized if andonly if its
label corresponds to the label proposed by the expert and
if the distance between the center proposed by the robot
and the center proposed by the expert is less than 30 pix-
els. This means that we accept an error in the position of
10% maximum of the image size (the width of the image
being subsampled to 320 pixels to speed up the compu-
tations). We also note that when the object is large in the
camera’s field of view, the expert precision to locate the ob-
ject center is very low (the variance can be superior to the
30 pixels) and this can create false results. Regardless, this
measure provides a good indicator of the robot’s capability
to navigate in the direction of the correct object.

Figure 7: Learning mode, (Top) and (Middle) represent the objects
learning from different distances and angles. (Bottom) represents
the object 1 learning from different angles and distances. The cir-
cles represent the object’s identity.

Figure 8: (Top) the object 1 recognition from different angles in
test mode. (Bottom) objects recognition in test mode. The circles
represent the object’s identity.

For the o�ine learning phase, 13 objects were used
with 10 images per object that represent the object under
different distances and angles (see Figure 7). The 130 im-
ages were extracted from the images recorded by the robot
during the online learning episodes in MQB. The condi-
tions are not exactly the same for each object since, ac-
cording to their location in the museum, some of the ob-
jects were visible from long or short distances, while oth-
ers were located in the center of the area of experience,
andwere visible frommultiple points of view. The different
images were associated with four labels: neutral, positive,
negative and surprise, as mentioned above. For the test
phase, we used 1300 test images randomly selected from
Berenson’s recording in MQB (in some cases, they corre-
sponded to non-learned objects) (see Figure 8).

The identity of the different objects were correctly
found for 892 images (success rate of 68%), but if we take
into account the position of the objects within a certain
threshold (less than 30 pixels of error), the objects were
correctly identified in only 747 images (success rate of
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57%), while random decision provides a 25% success rate
(see Figure 9 for detailed results).

Figure 9: The histogram represents the comparison of two success
rates. First, find only the correct object in the image and second,
find the correct object and its position in the image.

By analyzing the detailed results shown in (Figure 9),
it can be seen that using only theWhat information leads
to a high rate of error (false positive) in some cases. For ex-
ample, the third object for which the robot is over gener-
alizing. The robot can move toward another object and ex-
press anemotional valuebybelieving that it is the thirdob-
ject, thereby inducing a behavioral error. This case shows
the importance of using both theWhat and theWhere in-
formation together. Other objects such as 1, 12 or 13 have an
almost equivalent recognition rate for the two tests (with
and without taking the object position into account). Of
note is object 8, which seems to show one of the limita-
tions of our model. It seems hard for the system to find Ob-
ject 8 in the image. However, once found, its position is
also well recognized. Looking to the general success rate
where the objects were correctly identified and localized
(success rate of 57%), the system has only one wrong re-
sponse every three times, which is sufficient to have a cor-
rect behavior. In dynamical conditions during the online
experiments, the motor control is much slower than the
image processing (more than three images from almost the
same position). Then the processing speed of our system
(20 images per second online) implies that the robot is not
wrong even with 57% of success rate.

6 Effect of cumulative learning in a
special environment on
population diversity

Now that we have shown that our NN architecture can
learn and recognize objects, we can study the effect of
a museum visit on the long-term performance of either
a robot or a system trained in a laboratory environment.
Once the learning is finished, the robot should be able to
recognize the emotional value of a learned object and to
generalize this to new objects. To illustrate the advantages
of the learning in a specific environment like a museum,
we propose to compare the variation between two pop-
ulations’ responses in the generalized case to a new en-
vironment. We demonstrate that exposure to artwork in
museums can be used to develop the robot’s capability
to sharpen its preferences and to differentiate from oth-
ers (individuation). The development of individual prefer-
ences in a museum using a social referencing approach
has an important effect when we take the whole popula-
tion into consideration. If we imagine a population of in-
dividuals that have been taught exactly in the same way,
all these individuals will have the same preferences, and
they will answer any question in the same way. The online
learning based on a social referencing approach leads the
robots to develop different preferences. After this kind of
learning, we obtain a large diversity of individual answers
that could maximize their chance of success when facing
new objects and new problems.

In this section,we consider a population of robots that
have learned mainly in the laboratory, and we divide this
population into two groups. The first group will have a
second learning experience in the same laboratory while
the second group will have a second learning in the mu-
seum. For each learning experience, the robots associate
local views of an object with an emotional value (positive
or negative) using the same architecture implemented on
Berenson, as discussed above.

6.1 The learning task

For each learning experiment, we have a set of anno-
tated images used for the learning databases. Two main
databases were created. A laboratory database, and a mu-
seum database. In the laboratory database (see Figure 10),
each object is annotatedwith a negative or a positive value
that will not change depending on our emotional state. In
our laboratory’s objects annotation, the value was chosen
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Figure 10: Examples of objects learned in our laboratory.

Figure 11: Examples of objects learned in Quai Branly.

according to the fact that the robot has to reach or avoid
these objects. Consequently, their emotional values are the
same for all of the robots. For example, a drill press is a
negative object because it can be dangerous. We will call
this a type of "functional learning".

In the museum database (see Figure 11), all annotated
images are taken from a previous experiment where the
robot Berenson learned from interactionswith the visitors.
As the experiment was started from scratch every day, we
obtained eight different museum databases. According to
the visitors’ preferences, somedays one objectwas learned
as positive while on another day it was learned as nega-
tive. As a result, the same artwork has been labeled with
a positive value, or a negative value corresponding to the
visitors’ opinion (see Figure 12). As previously explained,
the objects with higher positive scores were also the ones
with higher negative scores. Approximately, the objects
that were overall more cited were equally cited positively
and negatively.

We simulate an initial population P of 16 robots that
had learned in the laboratory during a first period (T1).
The learning speed in Equation 3 was set to (ϵ1 = 0.3).
For this learning, we used 1024 images from the labora-
tory database representing 60 different objects (17 images
per object). Then, during a second learning period (T2)
this population was divided into two subpopulations each
containing eight robots. We denote by P1 the population
that has been through a secondary learning in a labora-
tory, while P2 refers to the population that did the sec-
ondary learning in a museum. The learning speed in T2
was increased to (ϵ1 = 0.6).

During the second learning period (T2) of P1 in the
laboratory, each robot learns from new images of the same
objects used in the first learning period (T1). The number
of images used in T2 is the same as the number of images
per day visit in the museum (between 6 and 36 images).
This is to avoid the possibility of the first group of robots
learning more than the second group of robots.

Figure 12: Objects’ citation at Quai Branly Museum provided by the
visitors during the experiments.

The robot population P2 continue a second learning pe-
riod (T2) atMQB (see Figure 11). The database contains 128
images that represent 20 different artworks. Each of the
simulated robots has learned a set of images containing
between 6 and 36 images which correspond to one exper-
imentation day of Berenson in the museum. Hence, each
robot in P2 has a small but specific learning database.
Each artwork is then associated with a value correspond-
ing to the subjective visitors’ opinions on the selected day
of Berenson at MQB. As a result, the database built from
eight days of experiments is used as if we brought a new
robot from the lab each day to learn from different visitors.
The learning speed was increased to 0.6 in T2 to compen-
sate for the fewer number of images to be learned com-
pared to the T1 period (T2 is supposed to be a shorter ex-
periment) but also to give some importance to the novelty
of the museum experience. Changing the learning speed
can be seen as increasing the robot vigilance because of
the novelty of the museum experience. A novelty detector
could have been used to automatically change the epsilon
value.

Before going further we needed to evaluate the P2 cu-
mulative learning. We had to assure that the second learn-
ing period (T2) in the museum doesn’t significantly affect
the main learning (T1) in the laboratory. We evaluated the
performance of the population P2 on the museum objects
recognition, and we compared its performance on labora-
tory object recognition before and after the museum expe-
rience.

First, we checked the P2 performance on laboratory
object recognition before the museum experience (P2
passed only through the initial learning (T1) in the labora-
tory).We used 1500 test images representing 60 laboratory
objects. The performances of P2 population’s individuals
(robots) is very close to each others (see the first column
of Table 1). The success rate is about 94% for the whole
population of robots. The better performance of our visual
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Table 1: The first and the third columns represent the performances
of P2 robots before and after the learning at the museum. The sec-
ond column represents the performance of the P2 robots tested on
learned museum objects.

P2 T1/laboratory T2/museum T2/laboratory
R1 95% 100% 95%
R2 95% 81% 95%
R3 95% 100% 95%
R4 94% 82% 94%
R5 94% 93% 94%
R6 93% 89% 93%
R7 94% 100% 94%
R8 95% 88% 95%

system in this test is due to the uniform background of lab-
oratory object images (see Figure 10).

After the second learning period (T2) in the museum
(P2 passed through the initial learning (T1) in the labo-
ratory and the second learning (T2) in the museum), we
tested the recognition performance of each robot of P2 on
the museum set of images used for its learning (to verify
the robots learning). The performances are up to 100% for
some robots and not less than 80% for the whole popu-
lation’s individuals. These very high performances are ex-
plained because we used exactly the same dataset for the
learning and for the test (see the second column of Table
1).

After being sure that all robots learned some mu-
seum artworks, we repeated the first test of laboratory ob-
ject recognition after the museum experiment (P2 passed
through the initial learning (T1) in the laboratory and
the second learning (T2) in the museum). The P2 perfor-
mances showed very similar results to the first test. The
performances of almost all of the population’s individuals
in laboratory object recognition was still about 94% (see
the third column of Table 1). This shows that the museum
learning doesn’t affect the first laboratory learning, as the
difference of recognition level of laboratory objects before
and after museum learning is less than 1%. Once the P2
cumulative learning is evaluated, we studied its effect on
a population of robots. The next section details the cho-
sen test, thereby allowing us to evaluate the impact of the
cumulative learning at a special environment such as the
museum on population diversity.

Figure 13: Examples of test images that represent new environ-
ments.

6.2 Formulating the test

In the simulation, various possible tests can be chosen to
analyze the effect of online learning in the museum on the
development of the robots’ preferences. In our case, the
idea is to arbitrarily choose a target object in a new envi-
ronment, and to measure whether the robot chooses the
same object. We then compare the populations’ diversity
and their success rate (the population success depends on
whether at least one of its individuals find the winning ob-
ject). However, we know that if we use images in this test,
all robots will browse the focus points one by one in the
same order, and theywill associate one focus point at each
iterationwith an emotional value. Then, we did not simply
define a winner focus point but a winner area in each im-
age of test (test images represent new environments). The
winner area of each test image will be associated with a
winner emotional value. We tested at which iteration the
robots would associate a point of the winner area with the
winner emotional value, andwenamed this iteration the it-
eration of matching. The difference between the iterations
of matching of each robot reflects the difference between
their answers, and reveals their individual preferences.

We arbitrarily chose completely new test images taken
from completely different environments to test all the
robots (see Figure 13). It would also have been possible
to test the differences of preferences with images from the
MQB database, but we think that testing the generalized
learning on a new database is far better at showing the
building of individual preferences. In each test image, we
arbitrarily selected a focus point to be part of a "target" (or
goal) object, with Xg, Yg representing the position of the
winning focus point. We will annotate it arbitrarily with
a winner emotional value (negative or positive), see Fig-
ure 14:

Vgoal = V(Xg , Yg)

We defined a rectangle representing the winning area
around the winner focus point, allowing a range of error
tolerance. This is defined by a threshold of error in x and
in y goal position (∆Xg, ∆Yg). In thisway, every robot could
propose the correct emotional value in thewinner area but
during a different iteration. In order to compare the itera-
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Figure 14: The image represents the position of the goal and the
winner emotional value, where positive emotional value = 1, and
negative emotional value = 0.

tion of matching of each robot (i.e. when the robot asso-
ciates any point of the winner area with the correct emo-
tional value) we used the following Equation 5, where i
annotates the iteration order and V(Xi , Yi) annotates the
emotional value related to the selected focus point:

Nbiter = Argmin|V(Xi , Yi) − V(Xg , Yg)| (5)

where |Xi − Xg| ≤ ∆Xg, |Yi − Yg| ≤ ∆Yg, Nbiter is the
iteration of matching and i ∈ Scanpath.

For testing and comparing the robots’ answers, eigh-
teen images taken from completely different environments
(new environments) were chosen. A winning zone and a
winning emotional value were annotated for each test im-
age. The threshold that represents the range of error toler-
ance was set to ∆Xg = ∆Yg = 0.08.

The test was repeated on a larger test database. We
used 106 different images representing completely differ-
ent environments. As for the first test, a winning zone and
a winning emotional value were annotated for each test
image and the same constraints were respected.

In the next section, we present the first test results
(18 test images) and the second test results (106 test im-
ages). We use different calculations (the minimum itera-
tion of matching, the mean value of the robots’ iterations
of matching, the standard deviation of the robots’ itera-
tions of matching and the mean absolute deviation of the
robots’ iterations of matching) to compare the variations
in the answers for the two populations.

6.3 Experimental results and evaluation

6.3.1 First test results and evaluation

We compared themean of the iterations’ averages (each it-
erations’ average represents the iterations ofmatching of a
population’s individuals averaged for a single test image),
and we see that this number does not change between the
main population P and P1. It is equal to 82 iterations,
but for the P2 population learned in the museum, it was
slightly higher, 85 iterations.

For each test image (18 in total), we calculated the de-
viation of the iterations ofmatching of a population’s indi-
viduals. First for the initial population P learned at the lab-
oratory, then for P1 and P2. After that, we averaged those
deviations of iterations of matching for all of the test im-
ages. This average was equal to 47 for P and P1 popula-
tions, and increased to 57 for P2. This gives us an indica-
tion about the highest diversity of choices for the museum
learning population P2 compared with P1 (see Table 5 in
Appendix for the P2 robots’ answers). We can even infer
that the preferences of Robot 1 are closer to the winning
preferences because it has the minimum average of itera-
tions of matching.

.

Figure 15: Examples of images that represent the different answers
of four robots on a test image. These robots learned in the museum
and we notice their different preferences by the colors of the circles
representing the emotional category associated with local views.

Table 2: Results of testing on 18 images.

Learning P/T1 P1/T2 P2/T2
ϵ1 0.3 0.60 0.60

Mean 82 82 85
of iterations
Deviation 47 47 57
Mean of 35 35 24

min of iterations

For each population, we considered the minimum of
all iterations ofmatching for each test image. Next, we cal-
culated the average of thoseminimums for all of the 18 test
images. This average was equal to 35 for P and P1 popu-
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Figure 16: The figure displays the mean and the standard deviation
of the average of iteration of matching to find the target object for
the robot population over the 18 test images.
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Figure 17: The figure displays the mean of the minimums of iteration
of matching to find the target object for the robot population over
the 18 test images (the lowest being the best).

lations, and to 24 for P2. This result shows that the robot
population with a small experience at the museum could
find the goal faster than the population taught only in the
laboratory. These results point out that learning in themu-
seum increases on average the generalization capability of
the robots immersed in this environment. The robots with
a second learning phase in MQB show a higher general-
ization capability than the robots that were only taught in
the laboratory (see Figures 16 and 17, as well as Table 2).
Moreover, a population with a learning phase in the mu-
seum can find the goal faster.

6.3.2 Second test results and evaluation

The same calculations as for the first test were repeated for
the 106 test images. As in the first results, there is an indi-
cation of a higher diversity of choices for the robots that
have gone through a second learning in the museum. This
second test made on a larger database showed a clearer
difference (significant difference). The average of diversity
(the average of the deviations of iterations of matching for
all the test images) reflects a clear difference between the
two populations P1 and P2. For the P and P1 populations
we had 30.5, while for P2we had 45.2. The averagedmin-
imums of all iterations of matching was equal to 46.6 for
P and P1 populations, and to 20.5 for P2 (see Figures 18
and 19, as well as Table 3).
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Figure 18: The figure displays the mean and the standard deviation
of the average of iteration of matching to find the target object for
the robot population over the 106 test images.

Table 3: Results of testing on 106 images.

Learning P/T1 P1/T2 P2/T2
ϵ1 0.3 0.60 0.60

Mean 78.4 78.6 73.9
of iterations
Deviation 30.7 30.5 45.2
Mean of 46.6 46.6 20.5

min of iterations

After taking a closer look at our two populations’
robots’ answers P1 and P2, we realized that both popu-
lations did not find the goal in 30 test images. For the re-
maining 76 test images at least one of the two populations
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Figure 19: The figure displays the mean of the minimum of iteration
of matching to find the target object for the robot population over
the 106 test images (the lowest being the best).

Table 4: Detailed results of testing on 106 images.

Learning P/T1 P1/T2 P2/T2
Success 66 66 76
Failes 40 40 30

had a right answer (see Table 4). Averaging the variances
of all images as above doesn’t precisely reflect the popula-
tion’s diversity. To obtain a more precise evaluation of our
results we used another way to compare the populations’
diversity and their capability of an accidental discovery.
We calculated the mean absolute deviation (MAD) (equa-
tion in Appendix) of robots’ answers for each population
on each test image. TheMAD is a way to describe variation
in a data set and helps us to get a sense of how "spread
out" the values are (the dispersion of a population indi-
viduals’ answers in our case). By comparing the MAD of
the two populations, we can find out if the museum learn-
ing increases the population diversity. We write MADP1
and MADP2 to refer to the mean absolute deviation of the
population P1 and the population P2 respectively. The re-
sult shows that the two populations had exactly similar re-
sponses for 38 images (the robots belonging to P1 answers
exactly the same as the robots belonging to P2 for a test
image). The MADP1 is equal to MADP2 for all 38 images.

For the last 38 test images, themuseumpopulation P2
has a largely superior diversity (MADP2 >MADP1) in 24 im-
ages. We should mention here that in ten images, at least
one individual of P2 found the goal whereas none of the
individuals of P1 found the goal. The opposite scenario
does not exist in our results. The population P1 (labora-
tory populations) has a very slightly higher diversity for 4
images (MADP1 > MADP2) and for the last 10 test images,

the diversity is the same (MADP1 = MADP2) for both pop-
ulations.

The number of test images where a population has
a higher diversity is considered as a frequency data. We
chose to use the two sample proportions test to evaluate
the significance of our populations’ difference.

We used ’significant’ to mean statistically significant
at the P = 0.05 level. The number of trials is N = 76 (the
number of test imageswhen at least one population has an
answer). We used Fisher’s exact method to calculate the
p-values as we have only four cases when P1 has a larger
diversity than P2 (the number of events is less than 5 in
our sample). The test indicates that our two populations
have a statistically significant difference (P < 0.0001). The
results showed a clear difference in diversity between the
two populations P1 (learned only in the laboratory) and
P2 (learned in both laboratory andmuseum). The cumula-
tive learning at themuseum played a role on robots’ differ-
entiation (individuation) and significantly increased their
diversity. Not only does P2 show a higher diversity than
P1, but the fact that one of its individuals found the goal
when the whole of the P1 population did not find it indi-
cates the higher probability of an accidental discovery for
the P2 population (in our results the high diversity of P2
increases the accidental discovery chances).

6.4 Formal analysis

In a formal framework, we suppose that the robots have
first learned to associate the patterns from the set A =
{A1, A2, ..., Ai , ..., AN} to different vectors Vi describing
the value of each pattern V = (v1, v2, ..., vT). Here, N is
the number of patterns (supposed to be large) and T is the
number of emotional states and vp ∈ R. Hence, the learn-
ing of the robot k allows the building of a function fk such

as Ai
fk
↦→ Vi = fk(Ai). Next, in our experimental framework,

some robots are put in another environment (in our case
themuseum, population P2) and learn to associate a small
database B = {B1, B2, ..., BM} with M << N to specific
V vectors. After learning, the function fk becomes a new
function f ′k. To be able to compare those robots with the
ones having learned only in the laboratory environment
(P1 population), the learning is continued for the same
number of time steps with images coming from the labo-
ratory environment. This second phase of learning in the
laboratory explains the previous results where P1 and P
have a slightly higher diversity for 4 images. Those 4 im-
ages present a higher similarity to the laboratory learning
database.
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If the dataset B is different enough ⁴. from the dataset
A, we can suppose that the new learning in the museum
is not affecting the first learning in the laboratory. This is
because the new patterns are projected onto orthogonal
components to the first learned patterns. This condition
is satisfied in our experiment where the recognition rate
of laboratory objects changed less than 1% before and af-
ter museum learning. Of course, this is only true in a first
approximation since an image is not recognized as a sin-
gle input but is considered as a collection of local views
voting for a given output label. Hence, some local views
can be common to twodifferent patterns belonging respec-
tively to A and B. These induce some changes in the output
V if the desired output vectors are different. Yet, since the
common local views are limited to a small part of the to-
tal number of views (otherwise a new shape should not be
recruited), the effect of learning on the fk function is lim-
ited to new patterns and the generalization cases (by defi-
nition, a new pattern cannot have amajority of views com-
mon to another pattern already present in the database). If
the pattern Ai activates only the neuron i of the visual fea-
ture group (VF): VFi = 1 and VFj = 0 for all j ≠ i then only
the weights connecting VFi to OEVk will be modified since
the LMS rule (see Equation 3)modifies only theweights as-
sociated to none null inputs. Here, k is the item number of
the associated Object Emotional Value.

At the end of learning, the robots having faced two
episodes of learning in the laboratory environment will
not change their answers from the first phase of learning.
Only their weights will be reinforced leaving their outputs
identical. There is no difference in answers between the
main population P and P1. When these robots face the
test examples, all of the robots will react in the same way
since their weight matrices have converged onto the same
solution. This is assuming the learning in the laboratory
environment was long enough to ensure all of the robots
learned all of the objects the same number of times (this is
the reason for a choice of a small learning rate ϵ for the
LMS). Hence, if the test examples C1 to CL are far away
from A1 to AN then the robots’ reaction will appear as ran-
dom but identical for all the robots as shown in the experi-
mental results. The number of correct choices over the test
examples Ck will decrease as a function of the number L
of examples. Yet, for the population P2 having faced a sec-
ond learning phase in the museum, the robots can have

4 i.e. for all (i, j) ∈ N × M, we have ||Ai − Bj|| > 𝛾 with 𝛾 a threshold
representing the vigilance level used for recruiting new shapes and
||.|| a norm or distance measure (in our case a Manhattan distance to
simplify the computations).

different reactions to a pattern Ck if, during the museum
experiment, the nearest Bj pattern verifies

Min||Bj − Ck|| < Min||Ai − Ck||

for all (i, j) ∈ N ×M and has received different output val-
ues from the visitors. For the L test examples, if Q examples
are nearer to Bj patterns than to Ai patterns, and that all
these Bj patterns have received at least one positive and
one negative value, then the probability that the popula-
tion as a whole proposes one correct answer for the Q ex-
amples will be 1. The diversity of the population responses
will guarantee that at least one robot will find the correct
answer for each of the Q examples.

7 Conclusion and discussion
This study began with a presentation of our neural net-
workmodelwhich enables Berenson to develop some kind
of individual preferences thanks to its interactions with
museum visitors. First, we introduced the evaluation of
Berenson’s visual system in the museum and its ability
to recognize the previously learned objects. The results
showed the importance of taking into account two types of
visual information,What andWhere when processing an
object recognition task. The results showed a false positive
recognition rate when using only the What information.
Indeed, the robot does answer correctly to the question "is
the object present in the image", but selects a wrong ob-
ject when it is asked to localize it. This may happen when
there are several learned objects in the same image be-
cause sometimes the robot overgeneralizes on other ob-
jects. We consider the ability to generalize on unlearned
objects as essential to generalize learned aesthetic prefer-
ences, but it is necessary to have a compromise between
generalization and discrimination to maintain a good per-
formance on the object recognition task.

Secondly, we used the capability of Berenson to ap-
preciate artworks to go further and studied the impacts
of cumulative learning in special environments such as
museums on a whole population of robots. Online learn-
ing in the museum environment offers categorical diver-
sity thanks to the real-time interaction with different vis-
itors having distinguished preferences. Such an experi-
ment increases the diversity of choices for the members of
a population in a new environment and therefore plays a
role in the process of individuation. We mention here that
Berenson’s way of navigating in amuseumwas influenced
by its previous learning. We can imagine the individuals
of a population visiting a place such as a museum. They
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will havedifferent directions toward their preferredobjects
and theywillmakedifferent expressions in front of objects.
Moreover, the diversity of individual reactions maximizes
the chance of success of thewhole populationwhen facing
new objects and new problems thanks to their different re-
actions.

The simulation tests indicated the difference in di-
versity between the two tested populations. According to
the learning, the population P2 (which attended a second
learning phase in the museum) shows a higher diversity
than P1 (which attended a second learning phase in the
laboratory)when facing newobjects in newenvironments.
When we repeated the test for a higher number of test im-
ages, the difference between the two populations’ answers
was clearer. Not only was there a difference in the aver-
age of iterations ofmatching between the twopopulations,
but furthermore the population which had learned only
in the laboratory didn’t find the winner object whereas for
the same images of test, the probability that one robot in
the museum population found it was high. Comparing the
mean absolute deviations of the robots’ answers shows a
significant difference between the two populations, high-
lighting the effect of the second learning at themuseumon
the population diversity. This representative result consid-
ers a small population of individuals (robots). Hence, the
performances of a robot population visiting the museum
(taking or avoiding an unknown object in an unknown vi-
sual scene) will be higher if the museum contains a high
diversity of artworks associatedwith a high diversity of ap-
preciations. The fact of getting a high diversity of answers
after a museum experience is an important feature to be
used in integrating the intelligent systems in scientific rea-
soning. Such diversity could increase the chances in cases
of accidental discovery. However, the nature of scientific
discoveries is debated as to whether it is an orderly march,
or a kind of random stroll. From a lot of arguments sup-
porting each point of view, we like to highlight that only
the persons whose mind is prepared to see things will ac-
tually notice them. Then a scientific discovery is unlikely
to be purely random. Our point here is to indicate that the
museum visit increases the diversity thanks to the learn-
ing variability that could increase the chance of acciden-
tal discoverywithout passing by an absolutely randomap-
proach.

A Appendix
In Equation 1:

netj = 1 − 1
N

N∑︁
i=1

|Wij − Ii|

Hθ(x) =
{︃

1 if θ < x
0 otherwise

Here, N is the local view size, Ii is the input visual fea-
ture, and the learned features are coded on the neuron’s
weightWij. The Hθ(x) is the Heaviside function.

The facial expression learning is based on the follow-
ing LMS equation:

∆WVF−ISP
ij = ϵ1 · VFi · (ISj − ISPj)

The Where channel treats the estimation of the ob-
ject’s positions also using the LMS rule. The θL group as-
sociates the predictedWhere information with each local
view VF in order to compute in θS the artwork’s shifted po-
sition during the usemode. Then, based on θS, the angular
command is given to the robot to head toward a recognized
object. The next equation shows the weight modification
for each iteration in learning mode (the time variable t is
not represented),

∆WVF−θL
ij = ϵ1VFi(θj − θLj)

In usemode, when a local view is recognized, the neu-
ron coding for its learned position is activated. Then θS
computes the distance between the learned and the cur-
rent position, as formalized in thenext equation.When the
local view is at the learning position then θS = 0. If the lo-
cal view is translated by a distance ∆d, then θ = θL + ∆d
and the neuron ∆d is activated in θS. Here, θS represents
the vector θ circularly shifted,

θS(Circ(x − argmax(θL))) = θ(x)

Circ(x) =
{︂

x, x > 0
x + N, x < 0

Now, if we assume that the learned object was cen-
tered in the camera field, the referential becomes the ob-
ject center (in the x abscissa). The local views belonging to
this object predict in θS their distance to the object center.
The system can estimate the object pose by integrating the
activity of the neurons in θS,

PI(x) =
τ∑︁
t=1

1
2πσ21

e
−(xt−dst )

2

2σ21
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Figure 20: Schematic example of pose estimation applied to a square.
(1) is the learned object at the image center. Below is the activity in the PI
group. It creates a peak at the object location. (2) shows the same square
translated and the translation result in the PI group. (3) is the same square
with deformation, and its estimated pose below. (4) contains same local view
as in (1) scattered in the image.

dst = (Circ(dt − argmax(θL)))

In the two previous equations, dst is the distance
of each local view to the referential (object center), and
the Position Integration (PI) group integrates the local
view distances to the referential with a Gaussian kernel
summation (more details in [35]). In the learning phase
when the object is in the center of the field of view, the
sum of the activity creates a peak at the image center.
When the object is translated, the peak is also translated
in the image referential. The activity in the PI group
may represent the confidence level the system has in the
object’s estimated pose and even in the object recognition
(see Figure 20).

The following equation describes the calculation of
the Mean Absolute Deviation (MAD). The MAD of a data
set is the average distance between each data value and
the mean:

MAD =
∑︀

|(xi − x)|
n

Table 5: The iterations of matching of all robots in P2 for some test
images revealing their different preferences.

I1 I2 I3 I4 I5 I.. Averge
R1 10 27 12 41 200 .. 66,8
R2 48 27 12 41 200 .. 74,4
R3 48 200 12 41 200 .. 73,6
R4 48 27 12 41 200 .. 74,4
R5 10 55 12 200 10 .. 106
R6 42 200 12 41 200 .. 121,7
R7 10 27 12 41 200 .. 80,2
R8 48 27 12 200 200 .. 84,9
SD 19,1 78,5 0 73,6 67,1 .. 56,9
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