
© The Author(s) 2019. Published by Oxford University Press. Page 1 of 10
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2019, 1–10

doi: 10.1093/database/baz096
Review

Review

Benchmarking database systems for Genomic

Selection implementation

Yaw Nti-Addae 1,*, Dave Matthews2, Victor Jun Ulat3, Raza Syed1,

Guilhem Sempéré4, Adrien Pétel5, Jon Renner6, Pierre Larmande7,

Valentin Guignon8, Elizabeth Jones1 and Kelly Robbins9

1Institute of Biotechnology, Cornell University 2Boyce Thompson Institute 3Centro Internacional de
Mejoramiento de Maíz y Trigo (CIMMYT) 4INTERTRYP, Univ Montpellier, CIRAD, IRD 5UMR PVBMT, CIRAD
6University of Minnesota 7UMR DIADE, IRD, University of Montpellier 8Bioversity International 9Section
of Plant Breeding and Genetics, School of Integrative Plants Sciences, Cornell University

*Corresponding Author Email Address: yn259@cornell.edu

Citation details: Nti-Addae,Y., Matthews,D., Ulat,V. J. et al. Benchmarking database systems for Genomic Selection
implementation. Database (2019) Vol. 2019: article ID baz096; doi:10.1093/database/baz096

Received 26 February 2019; Revised 29 May 2019; Accepted 1 July 2019

Abstract

Motivation: With high-throughput genotyping systems now available, it has become

feasible to fully integrate genotyping information into breeding programs. To make use

of this information effectively requires DNA extraction facilities and marker production

facilities that can efficiently deploy the desired set of markers across samples with a rapid

turnaround time that allows for selection before crosses needed to be made. In reality,

breeders often have a short window of time to make decisions by the time they are able

to collect all their phenotyping data and receive corresponding genotyping data. This

presents a challenge to organize information and utilize it in downstream analyses to

support decisions made by breeders. In order to implement genomic selection routinely

as part of breeding programs, one would need an efficient genotyping data storage

system. We selected and benchmarked six popular open-source data storage systems,

including relational database management and columnar storage systems.

Results: We found that data extract times are greatly influenced by the orientation in

which genotype data is stored in a system. HDF5 consistently performed best, in part

because it can more efficiently work with both orientations of the allele matrix.

Availability: http://gobiin1.bti.cornell.edu:6083/projects/GBM/repos/benchmarking/

browse

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
http://orcid.org/0000-0001-8398-9982
http://gobiin1.bti.cornell.edu:6083/projects/GBM/repos/benchmarking/browse
http://gobiin1.bti.cornell.edu:6083/projects/GBM/repos/benchmarking/browse


Page 2 of 10 Database, Vol. 2019, Article ID baz096

Introduction

The development of Next Generation Sequencing (NGS)
technologies has made it feasible to generate huge volumes
of genomic data. In the field of plant breeding, the availabil-
ity of cost-effective genomic data has the potential to change
the way crop breeding is done. Genomic selection (GS) is
a breeding method where the performance of new plant
varieties is predicted based on genomic information (1).
Multiple studies have shown the potential of this method-
ology to increase the rates of genetic gain in breeding
programs by decreasing generation interval, the time it takes
to screen new offspring and identify the best performers for
use as parents in the next generation (2, 3). Although model
capabilities exist for the implementation of GS, mainstream
applications require the computational infrastructure to
manage NGS data, often generated from highly multiplexed
sequencing runs that generate low coverage data with large
amounts of missing information. The lack of computational
infrastructure remains a major barrier to the routine use of
genomic information in public sector breeding programs.

The Genomic Open-source Breeding informatics initia-
tive (GOBii) is a project aimed at increasing the rates of
genetic gain in crop breeding programs serving regions
in Africa and South Asia by developing the capabilities
required for routine use of genomic information. To deal
with the technical challenges of storage, rapid access (i.e.
query execution), and computation on NGS data, the initial
focus of GOBii has been the development of an efficient
genomic data management system (GOBii-GDM). The sys-
tem must be able to efficiently store huge volumes of
genomic information and provide rapid data extraction
for computation. The system must be scalable for large
breeding programs while being able to run effectively at
institutions with limited access to large computational clus-
ters. While many open-source technologies exist for the
management of large two-dimensional datasets, it is unclear
which technologies best suit the needs of plant breeding and
genetics research.

There are many appealing characteristics of traditional
relational database management systems (RDBMS), which
are designed and built to store, manage, and analyze large-
scale data. However, performance can be problematic
when dealing with large matrix data like those commonly
encountered in genomic research. One common limitation
of RDBMS is database partitioning, which allows for a
logical database to be divided into constituent parts and
distributed over a number of nodes, (e.g. in a computer
cluster) (4). To address these performance issues, many
RDBMS have capabilities for working with binary large
objects (BLOBs). Current versions of PostgreSQL (version
9.3 and up) have support for JSONB objects that could be

used to store BLOBs of genomic data. However, this still
does not solve the data retrieval performance issues (4). An
alternative to storing genomic data directly in a RDBMS
is to use a hybrid system (5) with high-dimensional data
being stored in files and key meta information required for
querying the data stored in an RDBMS.

Leveraging several decades of work of the database
community on optimizing query processing, columnar store
databases such as MonetDB are designed to provide high
performance on complex queries against large databases,
such as combining tables with hundreds of columns and
millions of rows. In the biological context, experiences
show that MonetDB (8) enables the data to be stored in
a format to allow fast queries of vectors of genomic data
based on marker or sample indexes, which should improve
performance relative to RDBMS. More recently NoSQL
systems have emerged as effective tools for managing high-
dimensional genomic data (9–11). NoSQL systems for
distributed file storage and searching represent scalable
solutions comparable to RDBMS when dealing with semi-
structured data types (12, 13), and MongoDB, a document-
based NoSQL database, has been used to develop a
web-based tool for exploring genotypic information (14).

The Hierarchical Data Format (HDF5) is a member of
the high-performance distributed file systems family. It is
designed for flexible, efficient I/O and for high-volume and
complex data. It has demonstrated superior performance
with high-dimensional and highly structured data such as
genomic sequencing data (6) making it an appealing option
for a hybrid system approach. There are an increasing
number of bioinformatics applications, such as BioHDF
(20), SnpSeek (7), Oxford Nanopore PoreTools (21) and
FAST5, all of which use HDF5 to scale up simple execution
on large numbers of documents. However, there is little
reported information on the performance of HDF5 when
the system is used to process more complex analytical
queries that involve aggregations and joins.

To determine the ideal technology to serve as the back-
end of the GOBii-GDM, testing was performed using a large
genotype-by-sequencing (GBS) dataset (15, 16, 19). Open-
source RDBMS, PostgreSQL and MariaDB, a community-
developed fork under the GNU GPL of MySQL, were
used as a baseline for performance testing and compared
with HDF5, MonetDB, Elasticsearch (17), Spark (18), and
MongoDB. Loading and extraction times were measured
using queries that would be commonly run for applications
of GS in a breeding program.

Methods

Six database systems were tested using a subset of a
maize nested association mapping (NAM) population GBS



Database, Vol. 2019, Article ID baz096 Page 3 of 10

Figure 1. Different orientation of genotyping data. (a) markers in rows and samples in columns, whereas (b) shows markers in columns and samples

in rows.

SNP dataset (19) containing allele calls for 5258 samples
(germplasm lines) and 31,617,212 markers. Each marker
represents a physical position in the reference genome
where polymorphisms were detected in the samples. Each
genotyping call was encoded as a single ASCII character for
the diploid result, using IUPAC nucleotide ambiguity codes
for heterozygotes and “N” for missing data. The input and
output format for all tests was a text file containing only
the tab-delimited allele calls.

Genomic matrices can be stored in two different orienta-
tions as shown in Figure 1. Given that traditional RDBMS
(PostgreSQL and MariaDB) or disk stores are optimized for
extracting data by rows, and columnar stores (MonetDB
and Parquet) are optimized for extracting data by columns,
we stored data in these two different orientations where
possible for each of the database systems. Unfortunately,
due to size and technology restrictions, not all systems could
handle both orientations. We tested if the orientation of
genotype matrix has an impact on query execution times.
For the purposes of this benchmarking, we will define
“marker-fast”orientation as the orientation of the genotype
matrix in a system that favors the extract of markers, and
converse, “sample-fast” as orientation of data in a system
that favors the extract of samples. For example, in Mon-
etDB, sample-fast orientation will have samples in columns
and markers in rows and as such favor the querying of
samples to markers. Vice versa, sample-fast orientation in
PostgreSQL will have samples in rows and markers as
indexes in a binary JSON object.

Three use cases were used to test the performance of
systems with queries set up to extract data by:

I. All samples for a list of markers (USECASE I). We
will refer to this use case as MARKER-EXTRACT
USECASE throughout the remainder of this article.

II. All markers for a list of samples (USECASE II). We
will refer to this use case as SAMPLE-EXTRACT
USECASE throughout the remainder of this article.

Table 1. Server configuration and software versions

Server Configuration

Processor Intel Xeon E5 2620 V3 2.4GHz 6C 15 Mb
Number of Processors 24
Memory 128GB DDR-42133 MHz ECC/REG
Raid 6
Network File Storage 50 TB
Operating System Debian

Software Version
HDF5 1.8
MariaDB 10.1
MonetDB 1.1
MongoDB 3.6.0 (compression level: snappy)
PostgreSQL 9.5
Spark 2.3
Java Hotspot 1.8 (64 bit)
Elasticsearch 2.3.3 (under Java 1.8.0_92 64bit)

III. A block of data defined by a list of markers and
samples (USECASE III). We will refer to this use-case
as BLOCK-EXTRACT USECASE.

For each use case, we tested extracting a contiguous list
of markers or samples versus a random list. Care was nec-
essary to avoid unrepeatable timing results due to memory
caches in the system. We turned off caching features of
database systems where applicable to ensure repeated test
runs were consistent with first-time execution of queries on
each system. Reported times are an average of execution
times for multiple runs of the same query. All tests were run
on a single node server with a 10 gigabit ethernet connec-
tion to a fast-access file server. The server specifications and
version of the tested systems are listed in Table 1.

Database Implementation

The default parameters were applied to each benchmarked
system, with some parameters critical for performance, such
as memory allocation, manually optimized.



Page 4 of 10 Database, Vol. 2019, Article ID baz096

Table 2. Data stored in “marker-fast” orientation in PostgreSQL and MariaDB. Marker column is of type string and contains the

name of the marker, and Data column is of type JSON object for PostgreSQL and Dynamic column for MariaDB, and contains

a JSON formatted string

Marker Data

S6_120018 {“B73(PI550473):250028951”:”C”,”B97(PI564682):250027958”:”T”,”CML103(Ames27081):

250027883”:”C”,”CML228(Ames27088):250027960”:”C”}
S6_120046 {“B73(PI550473):250028951”:”A”,”B97(PI564682):250027958”:”A”,”CML103(Ames27081):

250027883”:”A”,”CML228(Ames27088):250027960”:”A”}

PostgreSQL Implementation

PostgreSQL is one of the most widely used open source
object-relational database systems. Tests were done in ver-
sion 9.5 and its configuration file was modified to consume
up to 30GB of memory per query, whereas the default con-
figurations use only 250 MB of memory. Data was stored in
“marker-fast” orientation for MARKER-EXTRACT USE-
CASE as shown in Table 2.

Conversely, data was stored in sample-fast orientation
for SAMPLE-EXTRACT USECASE, where samples were in
one column and associated markers and SNP allele calls
in JSON format in another column. We recognize that
PostgreSQL can be optimized in cases of highly sparse data
by storing only non “N” SNPs, which allows PostgreSQL
to act like a document store, thereby reducing the size of
stored information by many fold. For the purposes of this
benchmarking, all data was treated as complete as many use
cases in genomic selection will pull information in which
missing data has been imputed.

MariaDB Implementation

MariaDB is a community-developed, commercially sup-
ported fork of MySQL relational database. MariaDB was
configured to utilize up to the maximum available memory
on the server. Similar to PostgreSQL, data was stored in
marker-fast for MARKER-EXTRACT USECASE, as shown
in Table 2, and sample-fast for SAMPLE-EXTRACT USE-
CASE. Although the data format is the same as in Post-
greSQL, MariaDB uses a Dynamic column data object to
store the JSON string in Data field. Similar to JSONB object
columns in PostgreSQL, Dynamic columns in MariaDB
allow one to store different sets of columns, in a JSON
format, for each row in a table. It works by storing a set
of columns in a BLOB and having a small set of functions
to manipulate it.

MongoDB Implementation

MongoDB is an open source document-oriented database
system. MongoDB tests were performed using version 3.6.0
configured with the WiredTiger storage engine and the

snappy compression level, a choice driven by a comparison
work done in (14). MongoDB was tested with data stored
in both orientations, marker-fast and sample-fast. For the
marker-fast orientation, two types of documents were used:

- one for storing the genotype array corresponding to
each marker, as follows:
{

“_id”: “S6_120018”,
“g”: [.

“T”,
“A”,
“C”,
“N”, ...]

}
- the second for mapping sample names to indices in the
latter array.

{
“_id”: “CML247(PI595541):250027894”,
“n”: NumberInt(0).

}
In the sample orientation, the sample collection

remained the same as above, but the documents storing
genotypes were refactored as:

{
“_id”: {.

“ii”: “B73(PI550473):250028951”,
“c”: NumberInt(0).

},
“g”: [.

“C”,
“A”,
“G”,
“C”, ...]

}
Ideally, the document id would have been just the sample

name, and the genotype array length would have been equal
to the number of markers, i.e. 31,617,212. But because
MongoDB has a 16 Mb document-size limitation, we had to
split each sample’s genotype array into chunks of maximum
size 100,000. This explains why the id here is composite and
consists in the following pair: sample name + chunk index.



Database, Vol. 2019, Article ID baz096 Page 5 of 10

Table 3. Times in minutes for extracting M markers for all samples

Contiguous # of markers (mil) MonetDB HDF5 MongoDB PostgreSQL MariaDB Spark

Yes 0.001 0.1 0 0 0.1 1566 19.5
Yes 0.005 0.2 0 0.1 0.5 1623 43.45
Yes 0.01 0.3 0 0.3 0.8 1523 71.3
Yes 0.05 1.2 0.1 1.4 3.9 1579 373.08
Yes 0.1 3.7 0.3 2.5 7.8 1663 423.07
Yes 0.5 10 1.2 12.3 39.2 1520 420.32
Yes 1 21.7 2.3 26.8 78.4 1632 426.8
Yes 5 134.2 11.6 134.3 391.8 475
No 0.001 44.5 0.1 0.2 0.5 1545 252
No 0.005 47.2 0.4 0.7 0.6 2043 251
No 0.01 47.8 0.9 1.8 1.2 2108 251
No 0.05 58.6 4.4 7.1 6 3017 252
No 0.1 74.8 8.6 13.7 13.2 6021 252
No 1 2700 80.8 130.8 149.5 264
No 5 443 858.8 945.6 316

Table 4. Times in minutes for extracting N samples for all markers

Contiguous # of samples MonetDB HDF5 MongoDB PostgreSQL MariaDB Spark

Yes 50 1.8 2 190.8 1282 1830 2.7
Yes 100 4 4 195.8 1301 1868 2.82
Yes 500 42.1 19.6 234.4 1401 13.73
Yes 1000 103.2 40.5 291.4 1528 32.63
Yes 2000 238.5 84.7 405.5 1804 92.52
Yes 3000 432.5 128.4 518.2 2069 149.38
Yes 4000 698.5 169 632.8 2327 211.52
No 50 1.9 1.7 188.5 1482 1575.63 2.9
No 100 4.7 2.4 195.6 1505 1535.53 3.3
No 500 48.7 15.6 239.3 1648 14
No 1000 118.3 22.6 295.7 1696 35.5
No 2000 306.6 58.5 409 1678 108
No 3000 547 81.6 621.3 1674 171
No 4000 626.9 107.7 677.9 1681 239

HDF5 Implementation

Hierarchical Data Format (HDF5) file format is designed
to store and organize extremely large and complex data
collections. The allele matrix was stored in one-byte cells
in both orientations, marker-fast with samples as columns
(HDF5 dimension 1) and markers as rows (dimension 0)
and sample-fast in the opposite orientation. When extract-
ing data for a list of samples and a list of markers, BLOCK-
EXTRACT USECASE, the most straightforward approach
would be to use HDF5’s H5Sselect_elements function to
address each allele call by its (sample, marker) coordi-
nates. However, it was found to be much faster to extract
all the data for each marker into a memory array using
H5Sselect_hyperslab, and then look up the results for the
desired samples in that array. The speed increase from
this approach was more than 30-fold under all conditions
tested.

Under some conditions HDF5 performance can be
improved by structuring the HDF5 data file in a “chunked”

format, depending on the patterns of data access in actual
use. A chunk is a contiguous two-dimensional block of the
data array that is stored and retrieved as a unit whenever
any element within it is accessed. The results reported
above were obtained without chunking. Separate tests were
performed to compare the unchunked format with four
different (marker, sample) chunk dimensions: (256, 256),
(1000, 1000), (1000, 5258), and (1, 5258). Loading the
HDF5 file was no faster for any of these configurations, and
7-fold slower for (1000, 1000). Retrieval times were also
not improved by chunking, using the H5Sselect_hyperslab
procedure described above.

Spark Implementation

Apache Spark is an open-source distributed general-
purpose cluster computing framework with an in-memory
data processing engine. Spark version 2.3.0 was used,
together with PySpark (Python 3.6.5) interface. The



Page 6 of 10 Database, Vol. 2019, Article ID baz096

Figure 2. Load times for database systems.

Table 5. Times in minutes for extracting M markers by N samples

Contiguous? # of markers # of Samples MonetDB HDF5 MongoDB PostgreSQL MariaDB Spark

Yes 1k 1000 0.00 0.0 0.00 0.10 1287 1.60
Yes 1k 3000 0.10 0.0 0.00 0.10 1684 8.55
Yes 1k 4000 0.10 0.0 0.00 0.10 1718 13.37
No 1k 1000 8.40 0.1 0.20 0.20 1073 20.4
No 1k 3000 28.60 0.1 0.20 0.20 1163 144
No 1k 4000 24.70 0.1 0.20 27.10 1662 201
Yes 50k 1000 0.10 0.10 0.70 2.60 1726 38.08
Yes 50k 3000 0.40 0.10 1.20 3.40 1635 204.3
Yes 50k 4000 0.80 0.20 1.50 3.80 1111 299.3
No 50k 1000 10.80 4.10 6.60 5.00 1297 20.05
No 50k 3000 33.20 4.20 7.20 5.20 1623 145
No 50k 4000 32.40 4.20 8.00 4.80 1756 203
Yes 1m 1000 3.40 0.90 12.10 49.90 1045.00 41.32
Yes 1m 3000 10.60 2.10 22.10 68.20 1048.00 222.12
Yes 1m 4000 14.70 2.60 29.60 76.10 1492.00 314.2
No 1m 1000 192.1 72.6 109.60 121.80 1802.00 22.77
No 1m 3000 1846.6 78.5 138.10 143.40 1911.00 152.5
No 1m 4000 3291.7 83.0 153.90 151.00 1935.00 212.6

Java VM used was Java Hotspot 64 bit 1.8.0_171.
Although Spark operates optimally in a distributed cluster
environment (23), we set it up in its simplest form as
a standalone node cluster to expose Spark to the same
amount of CPU and memory as the other database systems.
For data storage, we implemented Apache Parquet, which
is a columnar storage file format available to any project
in the Hadoop ecosystem like Hive, Impala and Pig, and
has an interface for most programming languages. For this
exercise we used PySpark. It is possible there might be a
small improvement in benchmark results using the pure
Scala interface for Spark, though in general the overhead
for using PySpark is not large. Spark benchmarks were run
by reading from a pre-prepared Parquet file-format version
of the genotype matrix. Data was stored in sample-fast
orientation with samples in columns and markers in rows,
and vice versa for marker-fast orientation.

MonetDB Implementation

MonetDB is an open source column-oriented database
management system. Version 1.1 of MonetDB was used
for the benchmarking. Similar to Parquet file format in
Spark, data was stored in sample-fast orientation with
samples as columns and markers in rows. Due to the column
number restriction in MonetDB, we were not able to store
data in marker-fast orientation as the number of markers
exceeded the limit for number of columns. MonetDB out
of the box is configured to use any available memory on
the server.

Elastic search Implementation

To achieve optimal performance, ES settings must be tuned
according to each dataset, hardware environment and
expected response time. Furthermore, ES is not designed to



Database, Vol. 2019, Article ID baz096 Page 7 of 10

Figure 3. Times for extracting increasing number of markers across all samples. (a) Times for extracting a contiguous set of markers for all samples.

Times for MariaDB are excluded because they exceed 25 hours, and times for MongoDB and MonetDB were essentially identical. (b) Times for

extracting a random set of markers for all samples. Times for MariaDB and MonetDB are excluded since they exceed 25 hours. (c) A zoom-in at

extract times up to 500,000 random markers to show if there is significant difference between HDF5, MongoDB and PostgreSQL.

return large amounts of data at once, using a scrolling API
instead, which complicates the task of gathering query re-
sults. Based on these initial results and the complexity of im-
plementing ES as part of GOBii-GDM solution, the decision
was made to not pursue further benchmarking on ES.

Results and Discussion

Data Loading

The load times for each system are presented in Figure 2.
HDF5 was the fastest, with MongoDB also performing

reasonably well. The two RDMS performed poorly, with
MariaDB being the worst, taking approximately 90 times
longer than HDF5. While loading time is a lower priority
than extraction times, the tight turnaround times from
receiving marker data from the lab and generating genomic
predictions for selection makes loading times of more than
a day for large datasets undesirable for routine implementa-
tion of GS. While the process used for loading the data was
not optimized, it is unlikely that loading times for MariaDB
could be reduced to an acceptable level of performance. The
performance of PostgreSQL could potentially be reduced to



Page 8 of 10 Database, Vol. 2019, Article ID baz096

Figure 4. Times for extracting increasing number of samples across all markers. (a) Times for extracting contiguous set of samples for all 32 million

markers. (b) Times for extracting random set of samples for all 32 million markers. Times for MariaDB and PostgreSQL are excluded in both (a) and

(b) because their queries exceeded 20 hours.

less than 1 day, but the large gap in performance compared
to the others is undesirable. Overall, given that none of
the systems have been optimized, we find HDF5, MonetDB
and Spark loading times to be acceptable for routine GS
implementation.

Data Extraction

Data extraction tests intentionally extended to very large
result sets to test performance beyond the limits expected in
actual use. Figure 3 shows the extraction times for increas-
ing number of markers, for all samples in the dataset. For a
contiguous block of markers, HDF5 showed the best perfor-
mance, with the next best solution, MonetDB, performing
11 times slower. On the other hand, for a random list of
markers, although HDF5 shows better performance overall,
Spark showed a steady performance across different marker
blocks, and seems to outperform HDF5 at high marker
numbers. The big discrepancy in performance of Spark
between contiguous and random list of markers can be
explained in the columnar nature of Spark. Spark Parquet
file format is a column-oriented data format, so it does not
have an “index” of rows and their order, so to ask for a

contiguous chunk of rows is antithetical to the design of
the data format. Results for MariaDB were greater than
25 hours for all points, off scale in Figure 3a and 3b. When
selecting random markers for all samples, MonetDB extrac-
tion times exceeded 25 hours for even modest numbers of
markers. This is likely due to the orientation of the data
stored in the system. Due to limitations in the number
of columns for the MonetDB and Spark set-up used for
benchmarking, data could not be stored with markers as
the columns (> 31 million columns). Given that MonetDB
is designed for fast querying of columns, the system did not
perform well for marker (row) queries. For lower numbers,
less than 500,000, of random markers, a practical case in
genomic selection, Figure 3b shows that there might not
be significant difference in performance between HDF5,
MongoDB and PostgreSQL. Figure 3c zooms in on fewer
random markers and shows that HDF5 is more than 1.5
times faster than both MongoDB and PostgreSQL.

Extraction times for retrieving all markers for subsets of
samples are shown in Figure 4. Again, the results for Mari-
aDB were greater than 25 hours for all queries. As expected
MonetDB performed significantly better with queries on
samples (columns). As with queries on markers, HDF5



Database, Vol. 2019, Article ID baz096 Page 9 of 10

Figure 5. Times for extracting increasing cross-section of samples and 1 million markers. Time for extracting a block contiguous number of samples

and 1 million contiguous markers. Extract times for MariaDB are excluded since they exceeded 25 hours. (b) Times for extracting random set of

samples across 1 million random markers. Extract times for MariaDB and MonetDB are excluded because their queries exceeded 25 hours.

performed best, with the next best solution, Spark, being 1.2
and 2.2 times slower than HDF5 for the contiguous and
random sample scenarios respectively. For queries on sam-
ples, the relative performance of PostgreSQL dropped sub-
stantially, with extract times exceeding 20 hours for all data
points. The drop in relative performance, and insensitivity
to number of samples in the random sample scenario,
may be related to the way in which the data is stored in
PostgreSQL. A JSONB object is stored for each marker, with
each object containing the allele calls for all samples. The
observed performance indicates that the total extraction
time is influenced more strongly by the time to fetch the
JSONB objects from disk into memory, than to extract data
for desired samples from the JSONB objects in memory. For
the queries extracting all markers from selected samples,
two data orientations were tested for MongoDB, with the
sample-fast orientation (shown) performing significantly
better.

Results from BLOCK-EXTRACT USECASE, extraction
based on varying lists of markers and samples. Results for
a list of 1 million markers and varying numbers of samples
is shown in Figure 5. Once again HDF5 gave the best per-
formance with the next best system performing 5.7 and 1.8

times slower for the largest contiguous and random marker
and sample lists, respectively. For the contiguous scenario,
MonetDB gave the second-best performance, twice as fast
as MongoDB, but exceeded 48 hours for the random list
selecting data from 4000 samples and 1 million markers.
Neither of the RDBMS performed well for scenario 3, with
all extractions taking more than 48 hours for 4000 samples
and 1 million markers.

Conclusion

For all USECASEs the orientation of the data storage
had a substantial impact on the performance time of
extraction. The fact that PostgreSQL and MonetDB had
limitations on storing the data in sample fast and marker
fast orientations reduces their utility for systems that would
be regularly queried based on either markers or samples.
For systems using HDF5 or MongoDB, best performance
would be obtained by storing the data in both orientations
with queries being directed to the optimal orientation.
While HDF5 showed consistently superior performance
in extraction times and loading, implementation in a
genomic data management system would require a hybrid



Page 10 of 10 Database, Vol. 2019, Article ID baz096

approach, with critical meta information likely stored in
a RDBMS. A final determination on whether to build
a system around HDF5 would need to account for the
performance and complexity of developing and deploying
a hybrid system. All performance tests were done using a
fixed number of cores, but previous studies have shown
that the performance of NoSQL distributed file systems,
such as MongoDB and Spark, increase with access to more
cores (8). Further testing is required to determine if the
performance of MongoDB or Spark would surpass HDF5
when deployed on large clusters.

Funding
This work has been supported by the Bill & Melinda Gates Founda-
tion and Agropolis Foundation grant E-SPACE (1504–004).

Conflict of interest. None declared.

References

1. Meuwissen,T.H.E., Hayes,B.J. and Goddard,M.E. (2001) Predic-
tion of Total Genetic Value Using Genome-Wide Dense Marker
Maps, Genetics, 157, 1819 LP-1829.

2. Hickey,J.M., Chiurugwi,T., Mackay,I. et al. (2017) Genomic
prediction unifies animal and plant breeding programs to form
platforms for biological discovery. Nat. Genet., 49, 1297.

3. Lin,Z., Hayes,B.J. and Daetwyler,H.D. (2014) Genomic selec-
tion in crops, trees and forages: a review, Crop Pasture Sci., 65,
1177–1191.

4. Wang,S. et al. (2014) High dimensional biological data
retrieval optimization with NoSQL technology, BMC genomics,
15, S3.

5. Röhm,U. and Blakeley,J. (2009) Data management for high-
throughput genomics, arXiv Prepr. arXiv0909.1764.

6. Hoffman,M.M., Buske,O.J. and Noble,W.S. (2010) “The
Genomedata format for storing large-scale functional genomics
data,” Bioinformatics, 26, 1458–1459.

7. Alexandrov,N., et al. (2014) “SNP-Seek database of SNPs
derived from 3000 rice genomes,” Nucleic Acids Res., 43,
D1023–D1027.

8. Cijvat,R. et al. (2015) “Genome sequence analysis with Mon-
etDB,” Datenbank-Spektrum, 15, 185–191.

9. Guimaraes,V. et al. (2015) “A study of genomic data provenance
in NoSQL document-oriented database systems,” in Bioinfor-
matics and Biomedicine (BIBM), 2015 IEEE International Con-
ference on, 1525–1531.

10. Manyam,G., Payton,M.A., Roth,J.A. et al. (2012) “Relax with
CouchDB—Into the non-relational DBMS era of bioinformat-
ics,” Genomics, vol. 100, no. 1, pp. 1–7.

11. Gabetta,M., Limongelli,I., Rizzo,E. et al. (2015) “BigQ: a
NoSQL based framework to handle genomic variants in i2b2,”
BMC Bioinformatics, 16, p. 415.

12. Schulz,W.L., Nelson,B.G., Felker,D.K. et al. (2016) Evaluation
of relational and NoSQL database architectures to manage
genomic annotations. J. Biomed. Inform., 64, 288–295.

13. Dede,E., Govindaraju,M., Gunter,D. et al. (2013) “Performance
evaluation of a mongodb and hadoop platform for scientific
data analysis,” in Proceedings of the 4th ACM workshop on
Scientific cloud computing, pp. 13–20.

14. Sempéré,G., Philippe,F., Dereeper,A. et al. (2016) “Gigwa—
Genotype investigator for genome-wide analyses,” Gigascience,
5, 25.

15. McMullen,M.D. et al. (2009) “Genetic properties of the maize
nested association mapping population,” Science (80-.), 325,
737–740.

16. Glaubitz,J.C. et al. (2014) “TASSEL-GBS: a high capacity geno-
typing by sequencing analysis pipeline,” PLoS One, 9, e90346.

17. Gormley,C. and Tong,Z. (2015) Elasticsearch: The Definitive
Guide: A Distributed Real-Time Search and Analytics Engine.
O’Reilly Media, Inc.

18. Zaharia,M. et al. (2016) “Apache spark: a unified engine for big
data processing,“Commun. ACM, 59, 56–65.

19. Bukowski,R., Guo,X., Lu,Y. et al. (2018) Construction of the
third-generation Zea mays haplotype map, GigaScience, 7,
gix134, https://doi.org/10.1093/gigascience/gix134.

20. Mason,C.E. et al. (2010) Standardizing the Next Genera-
tion of Bioinformatics Software Development with BioHDF
(HDF5). In: Arabnia H (ed). Advances in Computational Biol-
ogy. Advances in Experimental Medicine and Biology, Vol. 680.
Springer, New York, NY.

21. Loman,N., Quinlan,A. Poretools: a toolkit for analyzing
nanopore sequence data, bioRxiv 007401; doi: https://doi.org/
10.1101/007401.

22. Thomson,M.J. (2014) “High-Throughput SNP Genotyping to
Accelerate Crop Improvement.”.

23. Ahmed et al. (2016), “Performance Comparison of Spark Clus-
ters Configured Conventionally and a Cloud Service”.

https://doi.org/10.1093/gigascience/gix134
https://doi.org/10.1101/007401
https://doi.org/10.1101/007401

	Benchmarking database systems for Genomic Selection implementation
	Introduction 
	Methods
	Database Implementation
	PostgreSQL Implementation
	MariaDB Implementation
	MongoDB Implementation
	HDF5 Implementation 
	Spark Implementation
	MonetDB Implementation
	Elastic search Implementation

	Results and Discussion 
	Data Loading 
	Data Extraction

	Conclusion
	Funding


