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Abstract

In plants, local adaptation across species range is frequent. Yet, much has to be discovered

on its environmental drivers, the underlying functional traits and their molecular determi-

nants. Genome scans are popular to uncover outlier loci potentially involved in the genetic

architecture of local adaptation, however links between outliers and phenotypic variation are

rarely addressed. Here we focused on adaptation of teosinte populations along two eleva-

tion gradients in Mexico that display continuous environmental changes at a short geo-

graphical scale. We used two common gardens, and phenotyped 18 traits in 1664 plants

from 11 populations of annual teosintes. In parallel, we genotyped these plants for 38 micro-

satellite markers as well as for 171 outlier single nucleotide polymorphisms (SNPs) that dis-

played excess of allele differentiation between pairs of lowland and highland populations

and/or correlation with environmental variables. Our results revealed that phenotypic differ-

entiation at 10 out of the 18 traits was driven by local selection. Trait covariation along the

elevation gradient indicated that adaptation to altitude results from the assembly of multiple

co-adapted traits into a complex syndrome: as elevation increases, plants flower earlier,

produce less tillers, display lower stomata density and carry larger, longer and heavier

grains. The proportion of outlier SNPs associating with phenotypic variation, however,

largely depended on whether we considered a neutral structure with 5 genetic groups

(73.7%) or 11 populations (13.5%), indicating that population stratification greatly affected

our results. Finally, chromosomal inversions were enriched for both SNPs whose allele
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frequencies shifted along elevation as well as phenotypically-associated SNPs. Altogether,

our results are consistent with the establishment of an altitudinal syndrome promoted by

local selective forces in teosinte populations in spite of detectable gene flow. Because eleva-

tion mimics climate change through space, SNPs that we found underlying phenotypic varia-

tion at adaptive traits may be relevant for future maize breeding.

Author summary

Across their native range species encounter a diversity of habitats promoting local adapta-

tion of geographically distributed populations. While local adaptation is widespread,

much has yet to be discovered about the conditions of its emergence, the targeted traits,

their molecular determinants and the underlying ecological drivers. Here we employed a

reverse ecology approach, combining phenotypes and genotypes, to mine the determi-

nants of local adaptation of teosinte populations distributed along two steep altitudinal

gradients in Mexico. Evaluation of 11 populations in two common gardens located at

mid-elevation pointed to adaptation via an altitudinal multivariate syndrome, in spite of

gene flow. We scanned genomes to identify loci with allele frequency shifts along eleva-

tion, a subset of which associated to trait variation. Because elevation mimics climate

change through space, these polymorphisms may be relevant for future maize breeding.

Introduction

Local adaptation is key for the preservation of ecologically useful genetic variation [1]. The

conditions for its emergence and maintenance have been the focus of a long-standing debate

nourished by ample theoretical work [2–9]. On the one hand, spatially-varying selection pro-

motes the evolution of local adaptation, provided that there is genetic diversity underlying the

variance of fitness-related traits [10]. On the other hand, opposing forces such as neutral

genetic drift, temporal fluctuations of natural selection, recurrent introduction of maladaptive

alleles via migration and homogenizing gene flow may hamper local adaptation (reviewed in

[11]). Meta-analyzes indicate that local adaptation is pervasive in plants, with evidence of

native-site fitness advantage in reciprocal transplants detected in 45% to 71% of the cases [12,

13].

While local adaptation is widespread, much has yet to be discovered about the traits affected

by spatially-varying selection, their molecular determinants and the underlying ecological

drivers [14]. Local adaptation is predicted to increase with phenotypic, genotypic and environ-

mental divergence among populations [6, 15, 16]. Comparisons of the quantitative genetic

divergence of a trait (QST) with the neutral genetic differentiation (FST) can provide hints on

whether trait divergence is driven by spatially-divergent selection [17–20]. Striking examples

of divergent selection include developmental rate in the common toad [21], drought and frost

tolerance in alpine populations of the European silver fir [22], and traits related to plant phe-

nology, size and floral display among populations ofHelianthus species [23, 24]. These studies

have reported covariation of physiological, morphological and/or life-history traits across envi-

ronmental gradients which collectively define adaptive syndromes. Such syndromes may result

from several non-exclusive mechanisms: plastic responses, pleiotropy, non-adaptive genetic

correlations among traits (constraints), and joint selection of traits encoded by different sets of

genes resulting in adaptive correlations. In some cases, the latter mechanism may involve
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selection and rapid spread of chromosomal inversions that happen to capture multiple locally

favored alleles [25] as exemplified in the monkey flower,Mimulus guttatus [26]. While distinc-

tion between these mechanisms is key to decipher the evolvability of traits, empirical data on

the genetic bases of correlated traits are currently lacking [27].

The genes mediating local adaptation are usually revealed by genomic regions harboring

population-specific signatures of selection. These signatures include alleles displaying greater-

than-expected differentiation among populations [28] and can be identified through FST-scans

[29–35]. However, FST-scans and its derivative methods [28] suffer from a number of limita-

tions, among them a high number of false positives (reviewed in [36, 37]) and the lack of

power to detect true positives [38]. Despite these caveats, FST-outlier approaches have helped

in the discovery of emblematic adaptive alleles such as those segregating at the EPAS1 locus in

Tibetan human populations adapted to high altitude [39]. An alternative to detect locally adap-

tive loci is to test for genotype-environment correlations [35, 40–45]. Correlation-based meth-

ods can be more powerful than differentiation-based methods [46], but spatial autocorrelation

of population structure and environmental variables can lead to spurious signatures of selec-

tion [47].

Ultimately, to identify the outlier loci that have truly contributed to improve local fitness, a

link between outliers and phenotypic variation needs to be established. The most common

approach is to undertake association mapping. However, recent literature in humans has ques-

tioned our ability to control for sample stratification in such approach [48]. Detecting poly-

morphisms responsible for trait variation is particularly challenging when trait variation and

demographic history follow parallel environmental (geographic) clines. Plants however benefit

from the possibility of conducting replicated phenotypic measurements in common gardens,

where environmental variation is controlled. Hence association mapping has been successfully

employed in the model plant species Arabidopsis thaliana, where broadly distributed ecotypes

evaluated in replicated common gardens have shown that fitness-associated alleles display geo-

graphic and climatic patterns indicative of selection [49]. Furthermore, the relative fitness of

A. thaliana ecotypes in a given environment could be predicted from climate-associated SNPs

[50]. While climatic selection over broad latitudinal scales produces genomic and phenotypic

patterns of local adaptation in the selfer plant A. thaliana, whether similar patterns exist at

shorter spatial scale in outcrossing species remains to be elucidated.

We focused here on a well-established outcrossing plant system, the teosintes, to investigate

the relationship of molecular, environmental, and phenotypic variation in populations sam-

pled across two elevation gradients in Mexico. The gradients covered a relatively short yet cli-

matically diverse, spatial scale. They encompassed populations of two teosinte subspecies that

are the closest wild relatives of maize, Zea mays ssp. parviglumis (hereafter parviglumis) and Z.

mays ssp.mexicana (hereafter mexicana). The two subspecies display large effective population

sizes [51], and span a diversity of climatic conditions, from warm and mesic conditions below

1800 m for parviglumis, to drier and cooler conditions up to 3000 m formexicana [52]. Previ-

ous studies have discovered potential determinants of local adaptation in these systems. At a

genome-wide scale, decrease in genome size correlates with increasing altitude, which likely

results from the action of natural selection on life cycle duration [53, 54]. More modest struc-

tural changes include megabase-scale inversions that harbor clusters of SNPs whose frequen-

cies are associated with environmental variation [55, 56]. Also, differentiation- and

correlation-based genome scans in teosinte populations have succeeded in finding outlier

SNPs potentially involved in local adaptation [57, 58]. But a link with phenotypic variation has

yet to be established.

In this paper, we genotyped a subset of these outlier SNPs on a broad sample of 28 teosinte

populations, for which a set of neutral SNPs was also available; as well as on an association
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panel encompassing 11 populations. We set up common gardens in two locations to evaluate

the association panel for 18 phenotypic traits over two consecutive years. Individuals from this

association panel were also genotyped at 38 microsatellite markers to enable associating geno-

typic to phenotypic variation while controlling for sample structure and kinship among indi-

viduals. We addressed three main questions: What is the extent of phenotypic variation within

and among populations? Can we define a set of locally-selected traits that constitute a syn-

drome of adaptation to altitude? What are the genetic bases of such syndrome? We further dis-

cuss the challenges of detecting phenotypically-associated SNPs when trait and genetic

differentiation parallel environmental clines.

Results

Trait-by-trait analysis of phenotypic variation within and among

populations

In order to investigate phenotypic variation, we set up two common garden experiments

located in Mexico to evaluate individuals from 11 teosinte populations (Fig 1). The two experi-

mental fields were chosen because they were located at intermediate altitudes (S1 Fig).

Although natural teosinte populations are not typically encountered around these locations

[52], we verified that environmental conditions were compatible with both subspecies (S2 Fig).

The 11 populations were sampled among 37 populations (S1 Table) distributed along two alti-

tudinal gradients that range from 504 to 2176 m in altitude over ~460 kms for gradient a, and

from 342 to 2581m in altitude over ~350 kms for gradient b (S1 Fig). Lowland populations of

the subspecies parviglumis (n = 8) and highland populations of the subspecies mexicana
(n = 3) were climatically contrasted as can be appreciated in the Principal Component Analysis

(PCA) computed on 19 environmental variables (S2 Fig). The corresponding set of individuals

grown from seeds sampled from the 11 populations formed the association panel.

We gathered phenotypic data during two consecutive years (2013 and 2014). We targeted

18 phenotypic traits that included six traits related to plant architecture, three traits related to

leaves, three traits related to reproduction, five traits related to grains, and one trait related to

stomata (S2 Table). Each of the four experimental assays (year-field combinations) encom-

passed four blocks. In each block, we evaluated one offspring (half-sibs) of ~15 mother plants

from each of the 11 teosinte populations using a semi-randomized design. After filtering for

missing data, the association panel included 1664 teosinte individuals. We found significant

effects of Field, Year and/or their interaction for most traits, and a highly significant Popula-

tion effect for all of them (model 1, S3 Table).

We investigated the influence of altitude on each trait independently. All traits, except for

the number of nodes with ears (NoE), exhibited a significant effect of altitude (S3 Table, model

4). Note that after accounting for elevation, the population effect remained significant for all

traits, suggesting that factors other than altitude contributed to shape phenotypic variation

among populations. Traits related to flowering time and tillering displayed a continuous

decrease with elevation, and traits related to grain size increased with elevation (Fig 2 & S3

Fig). Stomata density also diminished with altitude (Fig 2). In contrast, plant height, height of

the highest ear, number of nodes with ear in the main tiller displayed maximum values at

intermediate altitudes (highland parviglumis and lowlandmexicana) (S3 Fig).

We estimated narrow-sense heritabilites (additive genotypic effect) per population for all

traits using a mixed animal model. Average per-trait heritability ranged from 0.150 for tassel

branching to 0.664 for female flowering time, albeit with large standard errors (S2 Table). We

obtained higher heritability for grain related traits when mother plant measurements were

included in the model with 0.631 (sd = 0.246), 0.511 (sd = 0.043) and 0.274 (sd = 0.160) for
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grain length, weight and width, respectively, suggesting that heritability was under-estimated

for other traits where mother plant values were not available.

Multivariate analysis of phenotypic variation and correlation between

traits

Principal component analysis including all phenotypic measurements highlighted that 21.26%

of the phenotypic variation scaled along PC1 (Fig 3A), a PC axis that is strongly collinear with

altitude (Fig 3B). Although populations partly overlapped along PC1, we observed a consistent

tendency for population phenotypic differentiation along altitude irrespective of the gradient

(Fig 3C). Traits that correlated the most to PC1 were related to grain characteristics, tillering,

flowering and to a lesser extent to stomata density (Fig 3B). PC2 correlated with traits exhibit-

ing a trend toward increase-with-elevation within parviglumis, but decrease-with-elevation

withinmexicana (Fig 3D). Those traits were mainly related to vegetative growth (Fig 3B).

Together, both axes explained 37.4% of the phenotypic variation.

We assessed more formally pairwise-correlations between traits after correcting for the

experimental design and population structure (K = 5). We found 82 (54%) significant correla-

tions among 153 tested pairs of traits. The following pairs of traits had the strongest positive

Fig 1. Geographical location of sampled populations and experimental fields. The entire set of 37 Mexican teosinte populations is shown with

parviglumis (circles) andmexicana (triangles) populations sampled along gradient a (white) and gradient b (black). The 11 populations indicated

with a purple outline constituted the association panel. This panel was evaluated in a four-block design over two years in two experimental fields

located at mid-elevation, SENGUA and CEBAJ. Two major cities (Mexico City and Guadalajara) are also indicated. Topographic surfaces have

been obtained from International Centre for Tropical Agriculture (Jarvis A., H.I. Reuter, A. Nelson, E. Guevara, 2008, Hole-filled seamless

SRTM data V4, International Centre for Tropical Agriculture (CIAT), available from http://srtm.csi.cgiar.org).

https://doi.org/10.1371/journal.pgen.1008512.g001
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correlations: male and female flowering time, plant height and height of the highest ear, height

of the highest and lowest ear, grain length with grain weight and width (S4 Fig). The correla-

tion between flowering time (female or male) with grain weight and length were among the

strongest negative correlations (S4 Fig).

Fig 2. Population-level box-plots of adjusted means for four traits. Traits are female flowering time (A), male flowering time (B), grain length (C)

and stomata density (D). Populations are ranked by altitude. Parviglumis populations are shown in green andmexicana in red, lighter colors are used

for gradient ‘a’ and darker colors for gradient ‘b’. In the case of male and female flowering time, we report data for 9 out of 11 populations because most

individuals from the two lowland populations (P1a and P2b) did not flower in our common gardens. Covariation with elevation was significant for the

four traits. Corrections for the experimental setting are detailed in the Material and Methods section (Model 2).

https://doi.org/10.1371/journal.pgen.1008512.g002
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Neutral structuring of the association panel

We characterized the genetic structure of the association panel using SSRs. The highest likeli-

hood from Bayesian classification was obtained at K = 2 and K = 5 clusters (S5 Fig). At K = 2,

the clustering separated the lowland of gradient a from the rest of the populations. From K = 3

to K = 5, a clear separation between the eight parviglumis and the threemexicana populations

Fig 3. Principal component analysis on phenotypic values corrected for the experimental setting. Individuals factor map (A) and corresponding

correlation circle (B) on the first two principal components with altitude (Alt) added as a supplementary variable (in blue). Individual phenotypic values

on PC1 (C) and PC2 (D) are plotted against population ranked by altitude and color-coded following A. For populations from the two subspecies,

parviglumis (circles) andmexicana (triangles), color intensity indicates ascending elevation in green for parviglumis and red formexicana. Corrections

for experimental setting are detailed in the Material and Methods (Model 3).

https://doi.org/10.1371/journal.pgen.1008512.g003
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emerged. Increasing K values finally split the association panel into the 11 populations it

encompassed (S6 Fig). The K = 5 structure reflected both altitude (lowland parviglumis versus

highland mexicana) and gradients a and b (Fig 4A & 4B). TreeMix analysis for a subset of 10 of

these populations confirmed those results with an early split separating the lowlands from gra-

dient a (cf. K = 2, S6 Fig) followed by the separation of the three mexicana from the remaining

populations (Fig 4C). TreeMix results further supported three migration edges, a model that

explained 98.75% of the variance and represented a significant improvement over a model

without admixture (95.7%, S7 Fig). This admixture model was consistent with gene flow

between distant lowland parviglumis populations from gradient a and b, as well as between

parviglumis andmexicana populations (Fig 4C). Likewise, Structure analysis also suggested

admixture among some of the lowland populations, and to a lesser extent between the two sub-

species (Fig 4B).

Identification of traits evolving under spatially-varying selection

We estimated the posterior mean (and 95% credibility interval) of genetic differentiation (FST)

among the 11 populations of the association panel using DRIFTSEL. Considering 1125 plants for

which we had both individual phenotypes and individual genotypes for 38 SSRs (S4 Table), we

estimated the mean FST to 0.22 (0.21–0.23). Note that we found a similar estimate on a subset

of 10 of these populations using 1000 neutral SNPs (FST (CI) = 0.26 (0.25–0.27)). To identify

traits whose variation among populations was driven primarily by local selection, we employed

the Bayesian method implemented in DRIFTSEL, that infers additive genetic values of traits from

a model of population divergence under drift [59]. Selection was inferred when observed phe-

notypic differentiation exceeded neutral expectations for phenotypic differentiation under

random genetic drift. Single-trait analyses revealed evidence for spatially-varying selection at

12 traits, with high consistency between SSRs and neutral SNPs (Table 1). Another method

that contrasted genetic and phenotypic differentiation (QST-FST) uncovered a large overlap

with nine out of the 12 traits significantly deviating from the neutral model (Table 1) and one

of the remaining ones displaying borderline significance (Plant height = PL, S8 Fig). Together,

these two methods indicated that phenotypic divergence among populations was driven by

local selective forces.

Altogether, evidence of spatially varying selection at 10 traits (Table 1) as well as continuous

variation of a subset of traits across populations in both elevation gradients (Fig 2, S3 Fig) was

consistent with a syndrome where populations produced less tillers, flowered earlier, displayed

lower stomata density and carried larger, longer and heavier grains with increasing elevation.

Outlier detection and correlation with environmental variables

We successfully genotyped 218 (~81%) out of 270 outlier SNPs on a broad set of 28 popula-

tions, of which 141 were previously detected in candidate regions for local adaptation [58].

Candidate regions were originally identified from re-sequencing data of only six teosinte pop-

ulations (S1 Table) following an approach that included high differentiation between high-

lands and lowlands, environmental correlation, and in some cases their intersection with

genomic regions involved in quantitative trait variation in maize. The remaining outlier SNPs

(77) were discovered in the present study by performing FST-scans on the same re-sequencing

data (S5 Table). We selected outlier SNPs that were both highly differentiated between high-

land and lowland populations within gradients (high/low in gradient a or b or both), and

between highland and lowland populations within subspecies in gradient b (high/low within

parviglumis,mexicana or both). FST-scans pinpointed three genomic regions of particularly

high differentiation (S9 Fig) that corresponded to previously described inversions [55, 56]: one

Altitudinal syndrome in teosintes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008512 December 20, 2019 8 / 34

https://doi.org/10.1371/journal.pgen.1008512


Fig 4. Genetic clustering, historical splits and admixture among populations of the association panel. Genetic

clustering visualization based on 38 SSRs is shown for K = 5 (A). Colors represent the K clusters. Individuals (vertical

lines) are partitioned into colored segments whose length represents the membership proportions to the K clusters.

Populations (named after the subspecies M:mexicana, P: parviglumis and gradient ‘a’ or ‘b’) are ranked by altitude

indicated in meters above sea level. The corresponding geographic distribution of populations along with their average

membership probabilities are plotted (B). Historical splits and admixture between populations were inferred from

neutral SNP data for a subset of 10 populations of the association panel (C). Admixtures are colored according to their

weight.

https://doi.org/10.1371/journal.pgen.1008512.g004
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inversion on chromosome 1 (Inv1n), one on chromosome 4 (Inv4m) and one on the far end of

chromosome 9 (Inv9e).
A substantial proportion of outlier SNPs was chosen based on their significant correlation

among six populations between variation of allele frequency and their coordinate on the first

environmental principal component [58]. We extended environmental analyses to 171outlier

SNPs (MAF>5%) on a broader sample of 28 populations (S1 Table) and used the two first

components (PCenv1 and PCenv2) to summarize environmental information. When consid-

ering all 37 populations, the first component that explained 56% of the variation, correlated

with altitude but displayed no correlation to either latitude or longitude. PCenv1 was defined

both by temperature- and precipitation- related variables (S2B Fig) including Minimum Tem-

perature of Coldest Month (T6), Mean Temperature of Driest and Coldest Quarter (T9 and

T11) and Precipitation of Driest Month and Quarter (P14 and P17). The second PC explained

20.5% of the variation and was mainly defined (S2B Fig) by Isothermality (T3), Temperature

Seasonality (T4) and Temperature Annual Range (T7).

We first employed multiple regression to test for each SNP, whether the pairwise FST matrix

across 28 populations correlated to the environmental (distance along PCenv1) and/or the

geographical distance. As expected, we found a significantly greater proportion of environ-

mentally-correlated SNPs among outliers compared with neutral SNPs (χ2 = 264.07, P-

value = 2.2 10−16), a pattern not seen with geographically-correlated SNPs. That outlier SNPs

Table 1. Signals of selection (posterior probability S) for each trait considering SSR markers (11 populations) or

SNPs (10 populations).

Traitsa SSRb SNPb

Plant height 0.995 0.972

Height of the lowest ear� 0.950 0.959

Height of the highest ear 0.982 0.966

Number of tillers� 1.000 1.000

Number of lateral branches� 1.000 0.990

Number of nodes with ears 0.682 0.699

Leaf length 0.888 0.875

Leaf width 0.999 0.996

Leaf color 0.633 0.583

Female flowering time� 1.000 1.000

Male flowering time� 1.000 1.000

Tassel branching� 0.925 0.908

Number of grains per ear 0.832 0.622

Grain length� 1.000 1.000

Grain width� 0.995 0.984

Grain weight� 1.000 0.999

Grain color 0.717 0.689

Stomata density� 0.999 0.999

a: Traits displaying signal of selection (spatially-varying traits, S > 0.95) are indicated in bold, and marked by an

asterisk (�) when significant in QSTFSTComp analysis. We considered the underlined traits as spatially varying. For a

detailed description of traits see S2 Table.
b: Values reported correspond to S from DRIFTSEL. S is the posterior probability that divergence among populations

was not driven by drift only. Following [60], we used here a conservative credibility value of S > 0.95 to declare

divergent selection.

https://doi.org/10.1371/journal.pgen.1008512.t001
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displayed a greater isolation-by-environment than isolation-by-distance, indicated that

patterns of allele frequency differentiation among populations were primarily driven by

adaptive processes. We further tested correlations between allele frequencies and environmen-

tal variation. Roughly 60.8% (104) of the 171 outlier SNPs associated with at least one of the

two first PCenvs, with 87 and 33 associated with PCenv1 and PCenv2, respectively, and little

overlap (S5 Table). As expected, the principal component driven by altitude (PCenv1) corre-

lated to allele frequency for a greater fraction of SNPs than the second orthogonal component.

Interestingly, we found enrichment of environmentally-associated SNPs within inversions

both for PCenv1 (χ2 = 14.63, P-value = 1.30 10−4) and PCenv2 (χ2 = 33.77, P-value = 6.22

10−9).

Associating genotypic variation to phenotypic variation

We tested the association between phenotypes and 171 of the outlier SNPs (MAF>5%) using

the association panel. For each SNP-trait combination, the sample size ranged from 264 to

1068, with a median of 1004 individuals (S6 Table). We used SSRs to correct for both structure

(at K = 5) and kinship among individual genotypes. This model (model 6) resulted in a uni-

form distribution of P-values when testing the association between genotypic variation at SSRs

and phenotypic trait variation (S10 Fig). Under this model, we found that 126 outlier SNPs

(73.7%) associated to at least one trait (Fig 5 and S11 Fig) at an FDR of 10%. The number of

associated SNPs per trait varied from 0 for leaf and grain coloration, to 55 SNPs for grain

length, with an average of 22.6 SNPs per trait (S5 Table). Ninety-three (73.8%) out of the 126

associated SNPs were common to at least two traits, and the remaining 33 SNPs were associ-

ated to a single trait (S5 Table). The ten traits displaying evidence of spatially varying selection

in the QST-FST analyses displayed more associated SNPs per trait (30.5 on average), than the

non-spatially varying traits (12.75 on average).

A growing body of literature stresses that incomplete control of population stratification

may lead to spurious associations [61]. Hence, highly differentiated traits along environmental

gradients are expected to co-vary with any variant whose allele frequency is differentiated

along the same gradients, without underlying causal link. We therefore expected false positives

in our setting where both phenotypic traits and outlier SNPs varied with altitude. We indeed

found a slightly significant correlation (r = 0.5, P-value = 0.03) between the strength of the

population effect for each trait—a measure of trait differentiation (S3 Table)–and its number

of associated SNPs (S5 Table).

To verify that additional layers of structuring among populations did not cause an excess of

associations, we repeated the association analyzes considering a structuring with 11 popula-

tions (instead of K = 5) as covariate (model 7), a proxy of the structuring revealed at K = 11 (S6

Fig). With this level of structuring, we retrieved much less associated SNPs (S5 Table). Among

the 126 SNPs associating with at least one trait at K = 5, only 22 were recovered considering 11

populations. An additional SNP was detected with structuring at 11 populations that was

absent at K = 5. Eight traits displayed no association, and the remaining traits varied from a

single associated SNP (Leaf length—LeL and the number of tillers—Til) to 8 associated SNPs

for grain weight (S5 Table). For instance, traits such as female or male flowering time that dis-

played 45 and 43 associated SNPs at K = 5, now displayed only 4 and 3 associated SNPs,

respectively (Fig 5). Note that one trait (Leaf color) associated with 4 SNPs considering 11 pop-

ulations while displaying no association at K = 5. Significant genetic associations were there-

fore highly contingent on the population structure. Noteworthy, traits under spatially varying

selection still associated with more SNPs (2.00 on average) than those with no spatially varying

selection (1.25 SNPs on average).
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Altogether the 23 SNPs recovered considering a neutral genetic structure with 11 popula-

tions corresponded to 30 associations, 7 of the SNPs being associated to more than one trait

(S5 Table). For all these 30 associations except in two cases (FFT with SNP_7, and MFT with

SNP_28), the SNP effect did not vary among populations (non-significant SNP-by-population

interaction in model 7 when we included the SNP interactions with year�field and population).

For a subset of two SNPs, we illustrated the regression between the trait value and the shift of

allele frequencies with altitude (Fig 6A & 6B). We estimated corresponding additive and domi-

nance effects (S7 Table). In some cases, the intra-population effect corroborated the inter-pop-

ulation variation with relatively large additive effects of the same sign (Fig 6). Note that in both

Fig 5. Manhattan plots of associations between 171 outlier SNPs and 6 phenotypic traits. X-axis indicates the positions of outlier

SNPs on chromosomes 1 to 10, black and gray colors alternating per chromosome. Plotted on the Y-axis are the negative Log10-

transformed P values obtained for the K = 5 model. Significant associations (10% FDR) are indicated considering either a structure

matrix at K = 5 (pink dots), 11 populations (blue dots) or both K = 5 and 11 populations (purple dots) models.

https://doi.org/10.1371/journal.pgen.1008512.g005

Altitudinal syndrome in teosintes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008512 December 20, 2019 12 / 34

https://doi.org/10.1371/journal.pgen.1008512.g005
https://doi.org/10.1371/journal.pgen.1008512


examples shown in Fig 6, one or the other allele was dominant. In other cases, the results were

more difficult to interpret with negligible additive effect but extremely strong dominance (S7

Table, SNP_210 for instance).

Independence of SNPs associated to phenotypes

We computed the pairwise linkage disequilibrium (LD) as measured by r2 between the 171

outlier SNPs using the R package LDcorSV [62]. Because we were specifically interested by LD

pattern between phenotypically-associated SNPs, as for the association analyses we accounted

for structure (K = 5) and kinship computed from SSRs while estimating LD [63]. The 171 out-

lier SNPs were distributed along the 10 chromosomes of maize, and exhibited low level of link-

age disequilibrium (LD), except for SNPs located on chromosomes eight, nine, and a cluster of

SNPs located on chromosome 4 (S12 Fig).

Fig 6. Regression of phenotypic average value on SNP allele frequency across populations, and within-populationaverage phenotypic value for

each SNP genotype. Per-population phenotypic average values of traits are regressed on allele frequencies at SNP_149 (A) and SNP_179 (B) with

corresponding within-population average phenotypic value per genotype (C & D). In A and B, the 11 populations of the association panel are shown

with parviglumis (green circles) andmexicana (red triangles) populations sampled along gradient a and gradient b. Phenotypic average values were

corrected for the experimental design (calculated as the residues of model 3). Pval refers to the P-value of the linear regression represented in blue. In C

and D, genotypic effects from model 7 are expressed as the average phenotypic value of heterozygotes (1) and homozygotes for the alternative allele (2)

as compared to the homozygous for the reference allele (0). FDR values were obtained from the association analysis on 171 SNPs with correction for

genetic structure using 11 populations.

https://doi.org/10.1371/journal.pgen.1008512.g006
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Among the 171, the subset of 23 phenotypically-associated SNPs (detected when consider-

ing the 11-populationstructure) displayed an excess of elevated LD values—out of 47 pairs of

SNPs phenotypically-associated to a same trait, 16 pairs were contained in the 5% higher val-

ues of the LD distribution of all outlier SNP pairs. Twelve out of the 16 pairs associated to

grain weight, the remaining four to leaf coloration, and one pair of SNPs associated to both

traits. Noteworthy was that inversions on chromosomes 1, 4, and 9, taken together, were

enriched for phenotypically-associated SNPs (χ2 = 8.95, P-value = 0.0028). We recovered a

borderline significant enrichment with the correction K = 5 (χ2 = 3.82, P-value = 0.051).

Finally, we asked whether multiple SNPs contributed independently to the phenotypic vari-

ation of a single trait. We tested a multiple SNP model where SNPs were added incrementally

when significantly associated (FDR< 0.10). We found 2, 3 and 2 SNPs for female, male flower-

ing time and height of the highest ear, respectively (S5 Table). For the two former traits, the

SNPs were located on different chromosomes. For the latter trait, the SNPs were both located

on chromosome 5 but displayed no LD (SNP_25 and SNP_30, S12 Fig).

Discussion

Plants are excellent systems to study local adaptation. First, owing to their sessile nature, local

adaptation of plant populations is pervasive [13]. Second, environmental effects can be effi-

ciently controlled in common garden experiments, facilitating the identification of the physio-

logical, morphological and phenological traits influenced by spatially-variable selection [64].

Identification of the determinants of complex trait variation and their covariation in natural

populations is however challenging [65]. While population genomics has brought a flurry of

tools to detect footprints of local adaptation, their reliability remains questioned [61]. In addi-

tion, local adaptation and demographic history frequently follow the same geographic route,

making the disentangling of trait, molecular, and environmental variation, particularly ardu-

ous. Here we investigated those links on a well-established outcrossing system, the closest wild

relatives of maize, along altitudinal gradients that display considerable environmental shifts

over short geographical scales.

The syndrome of altitudinal adaptation results from selection at multiple

co-adapted traits

Common garden studies along elevation gradients have been conducted in European and

North American plants species [66]. Together with other studies, they have revealed that adap-

tive responses to altitude are multifarious [67]. They include physiological responses such as

high photosynthetic rates [68], tolerance to frost [69], biosynthesis of UV-induced phenolic

components [70]; morphological responses with reduced stature [71, 72], modification of leaf

surface [73], increase in leaf non-glandular trichomes [74], modification of stomata density;

and phenological responses with variation in flowering time [75], and reduced growth period

[76].

Our multivariate analysis of teosinte phenotypic variation revealed a marked differentiation

between teosinte subspecies along an axis of variation (21.26% of the total variation) that also

discriminated populations by altitude (Fig 2A & 2B). The combined effects of assortative mat-

ing and environmental elevation variation may generate, in certain conditions, trait differenti-

ation along gradients without underlying divergent selection [77]. While we did not measure

flowering time differences among populations in situ, we did find evidence for long distance

gene flow between gradients and subspecies (Fig 4A & 4C). In addition, several lines of argu-

ments suggest that the observed clinal patterns result from selection at independent traits and

is not solely driven by differences in flowering time among populations. First, two distinct
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methods accounting for shared population history concur with signals of spatially-varying

selection at ten out of the 18 traits (Table 1). Nine of them exhibited a clinal trend of increase/

decrease of population phenotypic values with elevation (S3 Fig) within at least one of the two

subspecies. This number is actually conservative, because these approaches disregard the

impact of selective constraints which in fact tend to decrease inter-population differences in

phenotypes. Second, while male and female flowering times were positively correlated, they

displayed only subtle correlations (|r|<0.16) with other spatially-varying traits except for grain

weight and length (|r|<0.33). Third, we observed convergence at multiple phenotypes

between the lowland populations from the two gradients that occurred despite their geo-

graphic and genetic distance (Fig 4) again arguing that local adaptation drives the underlying

patterns.

Spatially-varying traits that displayed altitudinal trends, collectively defined a teosinte alti-

tudinal syndrome of adaptation characterized by early-flowering, production of few tillers

albeit numerous lateral branches, production of heavy, long and large grains, and decrease in

stomata density. We also observed increased leaf pigmentation with elevation, although with a

less significant signal (S3 Table), consistent with the pronounced difference in sheath color

reported between parviglumis andmexicana [78, 79]. Because seeds were collected from wild

populations, a potential limitation of our experimental setting is the confusion between genetic

and environmental maternal effects. Environmental maternal effects could bias upward our

heritability estimates. However, our results corroborate previous findings of reduced number

of tillers and increased grain weight inmexicana compared with parviglumis [80]. Thus,

although maternal effects could not be fully discarded, we believe they were likely to be weak.

The trend towards depleted stomata density at high altitudes (Fig 2) could arguably repre-

sent a physiological adaptation as stomata influence components of plant fitness through their

control of transpiration and photosynthetic rate [81]. Indeed, in natural accessions of A. thali-
ana, stomatal traits showed signatures of local adaptation and were associated with both cli-

matic conditions and water-use efficiency [82]. Furthermore, previous work has shown that in

arid and hot highland environments, densely-packed stomata may promote increased leaf

cooling in response to desiccation [83] and may also counteract limited photosynthetic rate

with decreasing pCO2 [84]. Accordingly, increased stomata density at high elevation sites has

been reported in alpine species such as the European beech [85] as well as in populations of

Mimulus guttatus subjected to higher precipitations in the Sierra Nevada [86]. In our case,

higher elevations display both arid environment and cooler temperatures during the growing

season, features perhaps more comparable to other tropical mountains for which a diversity of

patterns in stomatal density variation with altitude has been reported [87]. Further work will

be needed to decipher the mechanisms driving the pattern of declining stomata density with

altitude in teosintes. Altogether, the altitudinal syndrome was consistent with natural selection

for rapid life-cycle shift, with early-flowering in the shorter growing season of the highlands

and production of larger propagules than in the lowlands. This altitudinal syndrome evolved

in spite of detectable gene flow.

Although we did not formally measure biomass production, the lower number of tillers and

higher amount and size of grains in the highlands when compared with the lowlands may

reflect trade-offs between allocation to grain production and vegetative growth [88]. Because

grains fell at maturity and a single teosinte individual produces hundreds of ears, we were

unable to provide a proxy for total grain production. The existence of fitness-related trade-offs

therefore still needs to be formally addressed.

Beyond trade-offs, our results more generally question the extent of correlations between

traits. In maize, for instance, we know that female and male flowering time are positively cor-

related and that their genetic control is in part determined by a common set of genes [89].
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They themselves further increase with yield-related traits [90]. Response to selection for late-

flowering also led to a correlated increase in leaf number in cultivated maize [91], and com-

mon genetic loci have been shown to determine these traits as well [92]. Here we found strong

positive correlations between traits: male and female flowering time, grain length and width,

plant height and height of the lowest or highest ear. Strong negative correlations were observed

instead between grain weight and both male and female flowering time. Trait correlations

were therefore partly consistent with previous observations in maize, suggesting that they were

inherited from wild ancestors [93].

Footprints of past adaptation are relevant to detect variants involved in

present phenotypic variation

The overall level of differentiation in our outcrossing system (FST�22%) fell close to the range

of previous estimates (23% [94] and 33% [55] for samples encompassing both teosinte subspe-

cies). It is relatively low compared to other systems such as the selfer Arabidopsis thaliana,

where association panels typically display maximum values of FST around 60% within 10kb-

windows genome-wide [95]. Nevertheless, correction for sample structure is key for statistical

associations between genotypes and phenotypes along environmental gradients. This is

because outliers that display lowland/highland differentiation co-vary with environmental fac-

tors, which themselves may affect traits [96]. Consistently, we found that 73.7% SNPs associ-

ated with phenotypic variation at K = 5, but only 13.5% of them did so when considering a

genetic structure with 11 populations. Except for one, the latter set of SNPs represented a sub-

set of the former. Because teosinte subspecies differentiation was fully accounted for at K = 5

(as shown by the clear distinction between mexicana populations and the rest of the samples,

Fig 4A), the inflation of significant associations at K = 5 is not due to subspecies differentiation,

but rather to residual stratification among populations within genetic groups. Likewise, recent

studies in humans, where global differentiation is comparatively low [97] have shown that

incomplete control for population structure within European samples strongly impacts associ-

ation results [61, 98]. Controlling for such structure may be even more critical in domesticated

plants, where genetic structure is inferred a posteriori from genetic data (rather than a priori
from population information) and pedigrees are often not well described. Below, we show that

considering more than one correction using minor peaks delivered by the Evanno statistic (S5

Fig) can be informative.

Considering a structure with 5 genetic groups, the number of SNPs associated per trait var-

ied from 1 to 55, with no association for leaf and grain coloration (S5 Table). False positives

likely represent a greater proportion of associations at K = 5 as illustrated by a slight excess of

small P-values when compared with a correction with 11 populations for most traits (S11 Fig).

Nevertheless, our analysis recovered credible candidate adaptive loci that were no longer asso-

ciated when a finer-grained population structure was included in the model. For instance, at

K = 5 we detected Sugary1 (Su1), a gene encoding a starch debranching enzyme that was

selected during maize domestication and subsequent breeding [99, 100]. We found that Su1
was associated with variation at six traits (male and female flowering time, tassel branching,

height of the highest ear, grain weight and stomata density) pointing to high pleiotropy. A pre-

vious study reported association of this gene to oil content in teosintes [101]. In maize, this

gene has a demonstrated role in kernel phenotypic differences between maize genetic groups

[102]. Su1 is therefore most probably a true-positive. That this gene was no longer recovered

with the 11-population structure correction indicated that divergent selection acted among

populations. Indeed, allelic frequency was highly contrasted among populations, with most

populations fixed for one or the other allele, and a single population with intermediate allelic
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frequency. With the 11-population correction, very low power is thus left to detect the effect of

Su1 on phenotypes.

Although the confounding population structure likely influenced the genetic associations,

experimental evidence indicates that an appreciable proportion of the variants recovered with

both K = 5 and 11 populations are true-positives (S5 Table). One SNP associated with female

and male flowering time, as well as with plant height and grain length (at K = 5 only for the

two latter traits) maps within the phytochrome B2 (SNP_210; phyB2) gene. Phytochromes are

involved in perceiving light signals and are essential for growth and development in plants.

The maize gene phyB2 regulates the photoperiod-dependent floral transition, with mutants

producing early flowering phenotypes and reduced plant height [103]. Genes from the

phosphatidylethanolamine-binding proteins (PEBPs) family–Zea mays CENTRORADIALIS
(ZCN) family in maize—are also well-known to act as promotor and repressor of the floral

transition in plants [104]. ZCN8 is the main floral activator of maize [105], and both ZCN8
and ZCN5 strongly associate with flowering time variation [102, 106]. Consistently, we found

associations of male and female flowering time with PEBP18 (SNP_15). It is interesting to note

that SNPs at two flowering time genes, phyB2 and PEBP18, influenced independently as well

as in combination both female and male flowering time variation (S5 Table).

The proportion of genic SNPs associated to phenotypic variation was not significantly

higher than that of non-genic SNPs (i.e, SNPs>1kb from a gene) (χ2
(df = 1) = 0.043, P-

value = 0.84 at K = 5 and χ2
(df = 1) = 1.623, P-value = 0.020 with 11 populations) stressing the

importance of considering both types of variants [107]. For instance, we discovered a non-

genic SNP (SNP_149) that displayed a strong association with leaf width variation as well as a

pattern of allele frequency shift with altitude among populations (Fig 6B).

Physically-linked and independent SNPs both contribute to the

establishment of adaptive genetic correlations

We found limited LD among our outlier SNPs (S12 Fig) corroborating previous reports (LD

decay within <100bp, [58, 94]). However, the subset of phenotypically-associated SNPs dis-

played greater LD, a pattern likely exacerbated by three Mb-scale inversions located on chro-

mosomes 1 (Inv1n), 4 (Inv4m) and 9 (Inv9e) that, taken together, were enriched for SNPs

associated with environmental variables related to altitude and/or SNPs associated with phe-

notypic variation. Previous work [55, 56] has shown that Inv1n and Inv4m segregate within

both parviglumis and mexicana, while two inversions on chromosome 9, Inv9d and Inv9e, are

present only in some of the highestmexicana populations; such that all four inversions also fol-

low an altitudinal pattern. Our findings confirmed that three of these inversions possessed an

excess of SNPs with high FST between subspecies and between low- and high-mexicana popu-

lations for Inv9e [57]. Noteworthy Inv9d contains a large ear leaf width quantitative trait locus

in maize [107]. Corroborating these results, we found consistent association between the only

SNP located within this inversion and leaf width variation in teosinte populations (S5 Table).

Overall, our results further strengthen the role of chromosomal inversions in teosinte altitudi-

nal adaptation.

Because inversions suppress recombination between inverted and non-inverted genotypes,

their spread has likely contributed to the emergence and maintenance of locally adaptive allelic

combinations in the face of gene flow, as reported in a growing number of other models

(reviewed in [108]) including insects [109], fish [110], birds [111] and plants [26, 112]. But we

also found three cases of multi-SNP determinism of traits (male and female flowering time

and height of the highest ear, S5 Table) supporting selection on genetically independent loci.

Consistently with Weber et al. [101], we found that individual SNPs account for small
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proportions of the phenotypic variance (S7 Table). Altogether, these observations are consis-

tent with joint selection of complex traits determined by several alleles of small effects, some of

which being maintained in linkage through selection of chromosomal rearrangements.

Conclusion

Elevation gradients provide an exceptional opportunity for investigating variation of func-

tional traits in response to continuous environmental factors at short geographical scales. Here

we documented patterns indicating that local adaptation, likely facilitated by the existence of

chromosomal inversions, allows teosintes to cope with specific environmental conditions in

spite of gene flow. We detected an altitudinal syndrome in teosintes composed of sets of inde-

pendent traits evolving under spatially-varying selection. Because traits co-varied with envi-

ronmental differences along gradients, however, statistical associations between genotypes and

phenotypes largely depended on control of population stratification. Yet, several of the variants

we uncovered seem to underlie adaptive trait variation in teosintes. Adaptive teosinte trait var-

iation may be relevant for maize evolution and breeding. Whether the underlying SNPs

detected in teosintes bear similar effects in maize or whether their effects differ in domesticated

backgrounds will have to be further investigated.

Material and methods

Ethics statement

All the field work has been done in Mexico in collaboration with Instituto Nacional de Investi-

gacionesForestales, Agrı́colas y Pecuarias, Celaya in Celaya.

Description of teosinte populations and sampling

We used 37 teosinte populations ofmexicana (16) and parviglumis (21) subspecies from two

previous collections [57, 58, 113] to design our sampling. These populations (S1 Table) are dis-

tributed along two altitudinal gradients (Fig 1). We plotted their altitudinal profiles using R

‘raster’ package [114] (S1 Fig). We further obtained 19 environmental variable layers from

http://idrisi.uaemex.mx/distribucion/superficies-climaticas-para-mexico. These high-resolu-

tion layers comprised monthly values from 1910 to 2009 estimated via interpolation methods

[115]. We extracted values of the 19 climatic variables for each population (S1 Table). Note

that high throughput sequencing (HTS) data were obtained in a previous study for six popula-

tions out of the 37 (M6a, P1a, M7b, P2b, M1b and P8b; Fig 1, S1 Table) to detect candidate

genomic regions for local adaptation [58]. The four highest and lowest of these populations

were included in the association panel described below.

We defined an association panel of 11 populations on which to perform a genotype-pheno-

type association study (S1 Table). Our choice was guided by grain availability as well as the

coverage of the whole climatic and altitudinal ranges. Hence, we computed Principal Compo-

nent Analyses (PCA) from environmental variables using the FactoMineR package in R [116]

and added altitude to the PCA graphs as a supplementary variable. Our association panel com-

prised five populations from a first gradient (a)–two mexicana and three parviglumis, and six

populations from a second gradient (b)–one mexicana and five parviglumis (Fig 1).

Finally, we extracted available SNP genotypes generated with the MaizeSNP50 Genotyping

BeadChipfor 28 populations out of our 37 populations [57] (S1 Table). From this available

SNP dataset, we randomly sampled 1000 SNPs found to display no selection footprint [57],

hereafter neutral SNPs. Data for neutral SNPs (S1 Data) are available at: https://doi.org/10.

6084/m9.figshare.9901472. We used this panel of 28 populations to investigate correlation
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with environmental variation. Note that 10 out of the 28 populations were common to our

association panel, and genotypes were available for 24 to 34 individuals per population, albeit

different from the ones of our association mapping panel.

Common garden experiments

We used two common gardens for phenotypic evaluation of the association panel (11 popula-

tions). Common gardens were located at INIFAP (Instituto Nacional de Investigaciones Fore-

stales, Agrı́colas y Pecuarias) experimental field stations in the state of Guanajuato in Mexico,

one in Celaya municipality at the Campo Experimental Bajı́o (CEBAJ) (20˚31’20” N, 100˚

48’44”W) at 1750 meters of elevation, and one in San Luis de la Paz municipality at the Sitio

Experimental Norte de Guanajuato (SENGUA) (21˚17’55”N, 100˚30’59”W) at 2017 meters of

elevation. These locations were selected because they present intermediate altitudes (S1 Fig).

The two common gardens were replicated in 2013 and 2014.

The original sampling contained 15 to 22 mother plants per population. Eight to 12 grains

per mother plant were sown each year in individual pots. After one month, seedlings were

transplanted to the field. Each of the four fields (2 locations, 2 years) was divided into four

blocks encompassing 10 rows and 20 columns. We evaluated one offspring of ~15 mother

plants from each of the 11 teosinte populations in each block, using a semi-randomized design,

i.e. each row containing one or two individuals from each population, and individuals being

randomized within row, leading to a total of 2,640 individual teosinte plants evaluated.

SSR genotyping and genetic structuring analyses on the association panel

In order to quantify the population structure and individual kinship in our association panel,

we genotyped 46 SSRs (microsatellites, S4 Table). Primers sequences are available from the

maize database project [117] and genotyping protocol were previously published [118]. Geno-

typing was done at the GENTYANE platform (UMR INRA 1095, Clermont-Ferrand, France).

Allele calling was performed on electropherograms with GeneMapper Software Applied Bio-

systems. Allele binning was carried out using Autobin software [119], and further checked

manually.

We employed STRUCTURE Bayesian classification software to compute a genetic structure

matrix on individual genotypes. Individuals with over 40% missing data were excluded from

analysis. We applied the same criterion on SSRs success rate and restricted all analyses to a

subset of 38 SSRs (S4 Table). For each number of clusters (K from 2 to 13), we performed 10

independent runs of 500,000 iterations after a burn-in period of 50,000 iterations, and com-

bined these 10 replicates using the LargeKGreedy algorithm from the CLUMPP program

[120]. We plotted the resulting clusters using DISTRUCT software. We then used the Evanno

method [121] to choose the optimal K value.

We inferred a kinship matrix K from the same SSRs using SPAGeDI [122]. Kinship coeffi-

cients were calculated for each pair of individuals as the correlation between allelic states

[123]. Since teosintes are outcrossers and expected to exhibit an elevated level of heterozygos-

ity, we estimated intra-individual kinship to fill in the diagonal. We calculated ten kinship

matrices, each excluding the SSRs from one out of the 10 chromosomes. Microsatellite data

(S2 Data) are available at: https://doi.org/10.6084/m9.figshare.9901472.

In order to gain insights into population history of divergence and admixture, we used

1000 neutral SNPs (i.e. SNPs genotyped by Aguirre-Liguori and collaborators [57] and that

displayed patterns consistent with neutrality among 49 teosinte populations) genotyped on 10

out of the 11 populations of the association panel to run a TreeMix analysis (TreeMix version

1.13 [124]). TreeMix models genetic drift to infer populations’ splits from an outgroup as well
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as migration edges along a bifurcating tree. We oriented the SNPs using the previously pub-

lished MaizeSNP50 Genotyping BeadChip data from the outgroup species Tripsacumdacty-
loides [55]. We tested from 0 to 10 migration edges. We fitted both a simple exponential and a

non-linear least square model (threshold of 1%) to select the optimal number of migration

edges as implemented in the OptM R package [125]. We further verified that the proportion of

variance did not substantially increase beyond the optimal selected value.

Phenotypic trait measurements

We evaluated a total of 18 phenotypic traits on the association panel (S2 Table). We measured

six traits related to plant architecture (PL: Plant Height, HLE: Height of the Lowest Ear, HHE:

Height of the Highest Ear, Til: number of Tillers, LBr: number of Lateral Branches, NoE: num-

ber of Nodes with Ears), three traits related to leave morphologies (LeL: Leaf Length, LeW:

Leaf Width, LeC: Leaf Color), three traits related to reproduction (MFT: Male Flowering

Time, FFT: Female Flowering Time, TBr: Tassel Branching), five traits related to grains (Gr:

number of Grains per ear, GrL: Grain Length, GrWi: Grain Width, GrWe: Grain Weight,

GrC: Grain Color), and one trait related to Stomata (StD: Stomata Density). These traits were

chosen because we suspected they could contribute to differences among teosinte populations

based on a previous report of morphological characterization of 112 teosintes grown in five

localities [126].

We measured the traits related to plant architecture and leaves after silk emergence. Grain

traits were measured at maturity. Leaf and grain coloration were evaluated on a qualitative

scale. For stomata density, we sampled three leaves per plant and conserved them in humid

paper in plastic bags. Analyses were undertaken at the Institute for Evolution and Biodiversity

(University of Münster) as follows: 5mm blade discs were cut out from the mid length of one

of the leaves and microscopic images were taken after excitation with a 488nm laser. Nine loca-

tions (0.15mm2) per disc were captured with 10 images per location along the z-axis (vertically

along the tissue). We automatically filtered images based on quality and estimated leaf stomata

density using custom image analysis algorithms implemented in Matlab. For each sample, we

calculated the median stomata density over the (up to) nine locations. To verify detection

accuracy, manual counts were undertaken for 54 random samples. Automatic and manual

counts were highly correlated (R2 = 0.82), indicating reliable detection (see S1 Annex Stomata

Detection, Dittberner and de Meaux, for a detailed description). The filtered data set of pheno-

typic measurements (S3 Data) is available at: https://doi.org/10.6084/m9.figshare.9901472.

Statistical analyses of phenotypic variation

In order to test for genetic effects on teosinte phenotypic variation, we decomposed pheno-

typic values of each trait considering a fixed population effect plus a random mother-plant

effect (model 1):

Yijklm ¼ mþ ai þ bj þ yij þ gk=ij þ dl þ wil þ cjlþPm=l þ εijklm ð1Þ

where the response variable Y is the observed phenotypic value, μ is the total mean, αi is the

fixed year effect (i = 2013, 2014), βj the fixed field effect (j = field station: SENGUA, CEBAJ), θij
is the year-by-field interaction, γk/ij is the fixed block effect (k = 1, 2, 3, 4) nested within the

year-by-field combination, δl is the fixed effect of the population of origin (l = 1 to 11),χil is the

year-by-population interaction, ψjl is the field-by-population interaction, Pm/l is the random

effect of mother plant (m = 1 to 15) nested within population, and εijklm is the individual resi-

due. Identical notations were used in all following models. For the distribution of the effects,

the same variance was estimated within all populations. Mixed models were run using
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ASRemlv.3.0 [127] and MM4LMM v2.0.1 [https://rdrr.io/cran/MM4LMM/man/MM4LMM-

package.html, update by F. Laporte] R packages, which both gave very similar results, and

fixed effects were tested through Wald tests.

For each trait, we represented variation among populations using box-plots on mean values

per mother plant adjusted for the experimental design following model 2:

Yijklm ¼ mþ ai þ bj þ yij þ gk=ijþpm=l þ εijklm ð2Þ

where mother plant within population is considered as a fixed effect. We used the function pre-
dict to obtain least-square means (ls-means) of each mother plant, and looked at the tendencies

between population’s values. All fixed models were computed using lm package in R, and we

visually checked the assumptions of residues independence and normal distribution.

We performed a principal component analysis (PCA) on phenotypic values corrected for

the experimental design, using FactoMineR package in R [116] from the residues of model 3

computed using the lm package in R:

Yijklm ¼ mþ ai þ bj þ yij þ gk=ijþεijklm ð3Þ

Finally, we tested for altitudinal effects on traits by considering the altitude of the sampled

population (l) as a covariate (ALT) and its interaction with year and field in model 4:

Yijklm ¼ mþ ai þ bj þ yij þ gk=ij þ c:ALTlþai:ALTl þ bj:ALTl þ Pm=l þ εijklm ð4Þ

where all terms are equal to those in model 1 except that the fixed effect of the population of

origin was replaced by a regression on the population altitude (ALTl).

Detection of selection acting on phenotypic traits

We aimed at detecting traits evolving under spatially varying selection by comparing pheno-

typic to neutral genotypic differentiation. QST is a statistic analogous to FST but for quantitative

traits, which can be described as the proportion of phenotypic variation explained by differ-

ences among populations [19, 128]. Significant differences between QST and FST can be inter-

preted as evidence for spatially-varying selection when QST>FST [128]. We used the R package

QSTFSTComp[129] that is adequate for experimental designs with randomized half-sibs in out-

crossing species. We used individuals that were both genotyped and phenotyped on the associ-

ation panel to establish the distribution of the difference between statistics (QST-FST) under the

neutral hypothesis of evolution by drift—using the half-sib dam breeding design and 1000

resamples. We next compared it to the observed difference with 95% threshold cutoff value in

order to detect traits under spatially-varying selection.

In addition toQST-FSTanalyses, we employed the DRIFTSEL R package [130] to test for signal

of selection of traits while accounting for drift-driven population divergence and genetic relat-

edness among individuals (half-sib design). DRIFTSEL is a Bayesian method that compares the

probability distribution of predicted and observed mean additive genetic values. It provides

the S statistic as output, which measures the posterior probability that the observed population

divergence arose under divergent selection (S~1), stabilizing selection (S~0) or genetic drift

(intermediate S values) [59]. It is particularly powerful for small datasets, and can distinguish

between drift and selection even whenQST-FST are equal [59]. We first applied RAFM to estimate

the FST value across populations, and the population-by-population coancestry coefficient

matrix. We next fitted both the RAFM and DRIFTSEL models with 15,000 MCMC iterations, dis-

carded the first 5,000 iterations as transient, and thinned the remaining by 10 to provide 1000

samples from the posterior distribution. Note that DRIFTSEL was slightly modified because we

had information only about the dams, but not the sires, of the phenotyped individuals. We

Altitudinal syndrome in teosintes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008512 December 20, 2019 21 / 34

https://rdrr.io/cran/MM4LMM/man/MM4LMM-package.html
https://rdrr.io/cran/MM4LMM/man/MM4LMM-package.html
https://doi.org/10.1371/journal.pgen.1008512


thus modified DRIFTSEL with the conservative assumption of all sires being unrelated. Because

DRIFTSEL does not require that the same individuals were both genotyped and phenotyped, we

used SSRs and phenotype data of the association panel as well as the set of neutral SNPs and

phenotype data on 10 out of the 11 populations. For the SNP analyses, we selected out of the

1000 neutral SNPs the 465 most informative SNPs based on the following criteria: frequency

of the less common variant at least 10%, and proportion of missing data at most 1%. Finally,

we estimated from DRIFTSEL the posterior probability of the ancestral population mean for each

trait as well as deviations of each population from these values.

Both QST-FST and DRIFTSEL rely on the assumption that the observed phenotypic variation

was determined by additive genotypic variation. We thus estimated narrow-sense heritability

for each trait in each population to estimate the proportion of additive variance in perfor-

mance. We calculated per population narrow-sense heritabilites as the ratio of the estimated

additive genetic variance over the total phenotypic variance on our common garden measure-

ments using the MCMCglmm R package [131] where half sib family is the single random fac-

tor, and the design (block nested within year and field) is corrected as fixed factor. For three

grain-related traits, we also ran the same model but including mother plants phenotypic values

calculated from the remaining grains not sown. We ran 100,000 iterations with 10,000 burn-

in, inverse gamma (0.001; 0.001) as priors. We then calculated the mean and standard devia-

tion of the 11 per population h2 estimates.

Pairwise correlations between traits

We evaluated pairwise-correlations between traits by correlating the residues obtained from

model 5, that corrects the experiment design (year, field and blocks) as well as the underlying

genetic structure estimated from SSRs:

Yijklm ¼ mþ ai þ bj þ yij þ gk=ij þ
X4

n¼1

bn:C
n
ijklm þ εijklm ð5Þ

where bn is the slope of the regression of Y on the nth structure covariate Cn. Structure covari-

ate values (Cn covariates, from STRUCTURE output) were calculated at the individual level,

i.e. for each offspring of mother plant m from population l, grown in the year i field j and

block k. Cn are thus declared with ijklm indices, although they are purely genetic covariates.

Genotyping of outlier SNPs on 28 populations

We extracted total DNA from each individual plant of the association panel as well as 20 indi-

viduals from each of the 18 remaining populations that were not included in the association

panel (Table 1). Extractions were performed from 30 mg of lyophilized adult leaf material fol-

lowing recommendations of DNeasy 96 Plant Kit manufacturer (QIAGEN, Valencia, CA,

USA). We genotyped outlier SNPs using Kompetitive Allele Specific PCR technology (KASPar,

LGC Group) [132]. Data for outlier SNPs (S4 and S5 Data) are available at: https://doi.org/10.

6084/m9.figshare.9901472.

Among SNPs identified as potentially involved in local adaptation, 270 were designed for

KASPar assays, among which 218 delivered accurate quality data. Of the 218 SNPs, 141 were

detected as outliers in two previous studies using a combination of statistical methods—

including FST-scans [133], Bayescan [32] and Bayenv2 [35, 134], Bayescenv [135]–applied to

either six of our teosinte populations [58] or to a broader set of 49 populations genotyped by

the Illumina MaizeSNP50 BeadChip [57]. The remaining outlier SNPs (77) were detected by

FST-scans from six populations (S9 Fig, S5 Table), following a simplified version of the
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rationale in [58] by considering only differentiation statistics: SNPs were selected if they dis-

played both a high differentiation (5% highest FST values) between highland and lowland pop-

ulations in at least one of the two gradients, and a high differentiation (5% highest FST values)

between highland and lowland populations either within parviglumis (P2b and P8b) or within

mexicana (M7b and M1b) or both in gradient b (Fig 1). We thereby avoided SNPs fixed

between the two subspecies.

Association mapping

We tested the association of phenotypic measurements with outlier SNPs on a subset of indi-

viduals for which (1) phenotypic measurements were available, (2) at least 60% of outlier SNPs

were adequately genotyped, and (3) kinship and cluster membership values were available

from SSR genotyping. For association, we removed SNPs with minor allele frequency lower

than 5%.

In order to detect statistical associations between outlier SNPs and phenotypic variation, we

used the following mixed model derived from [136]:

Yijklm ¼ mþ ai þ bj þ yij þ gk=ij þ
X4

n¼1

bn:C
n
ijklm þ zoþuijklm þ εijklm ð6Þ

where z is the fixed bi-allelic SNP factor with one level for each of the three genotypes (o = 0, 1,

2; with o = 1 for heterozygous individuals), and uijklm is the random genetic effect of the indi-

vidual. We assumed that the vector of uijklm effects followed a N(0,K σ2u) distribution, where K

is the kinship matrix computed as described above.

A variant of model 6 was employed to test for SNP association to traits, while correcting for

structure as the effect of population membership (δl), δ being a factor with 11 levels (popula-

tions):

Yijklm ¼ mþ ai þ bj þ yij þ gk=ij þ dl þ zoþuijklm þ εijklm ð7Þ

In order to avoid overcorrection of neutral genetic structure and improve power, we ran

the two models independently for each chromosome using a kinship matrix K estimated from

all SSRs except those contained in the chromosome of the tested SNP [137]. We tested SNP

effects through the Wald statistics, and applied a 10% False Discovery Rate (FDR) threshold

for each phenotype separately. In order to validate the correction for genetic structure, the 38

multiallelic SSR genotypes were transformed into biallelic genotypes, filtered for MAF > 5%,

and used to run associations with the complete 6 and 7 models, as well as 6-type models

excluding either kinship or both structure and kinship. For each trait, we generated QQplots

of P-values for each of these models.

Multiple SNP models were built by successively adding at each step the most significant

SNP, as long as its FDR was lower than 0.10. We controlled for population structure consider-

ing 11 populations and used the kinship matrix that excluded the SSRs on the same chromo-

some as the last tested SNP.

Environmental correlation of outlier SNPs

We tested associations between allelic frequency at 171 outlier SNPs and environmental vari-

ables across 28 populations, using Bayenv 2.0 [40]. Because environmental variables are highly

correlated, we used the first two principal component axes from the environmental PCA anal-

ysis (PCenv1 and PCenv2) to run Bayenv 2.0. This software requires a neutral covariance

matrix, that we computed from the available dataset of 1000 neutral SNPs (S1 Table). We
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performed 100,000 iterations, saving the matrix every 500 iterations. We then tested the corre-

lation of these to the last matrix obtained, as well as to an FST matrix calculated with BEDAS-

SLE [138], as described in [57].

For each outlier SNP, we compared the posterior probability of a model that included an

environmental factor (PCenv1 or PCenv2) to a null model. We determined a 5% threshold for

significance of environmental association by running 100,000 iterations on neutral SNPs. We

carried out five independent runs for each outlier SNP and evaluated their consistency from

the coefficient of variation of the Bayes factors calculated among runs.

In order to test whether environmental distance was a better predictor of allele frequencies

at candidate SNPs than geography, we used multiple regression on distance matrices (MRM,

[139]) implemented in the ecodist R package [140] for each outlier SNP. We used pairwise FST
values as the response distance matrix and the geographic and environmental distance matri-

ces as explanatory matrices. We evaluated the significance of regression coefficients by 1000

permutations and iterations of the MRM. We determined the total number of environmentally

and geographically associated SNPs (P-value<0.05) among outliers. We employed the same

methodology for our set of 1000 neutral SNPs.

Supporting information

S1 Fig. Altitudinal profiles along gradients a and b. Sampled populations are plotted on par-

allel altitudinal profiles for gradients a and b. Darker gray lines indicate lower latitude for gra-

dient a and lower longitude for gradient b. Sampled populations are plotted by green circles

(parviglumis) or red triangles (mexicana). The altitude of the two experimental fields (CEBAJ:

1750m and SENGUA: 2017m) are marked with asterisks on the y-axes.

(TIF)

S2 Fig. Principal component analysis of 19 climate variables for 37 teosinte populations.

A: Projection of parviglumis (in green) and mexicana (in red) populations on the first PCA

plane with gradients a and b indicated by triangles and circles, respectively. The 11 populations

evaluated in common gardens are surrounded by a purple outline. Populations that were pre-

viously sequenced to detect selection footprints are shown in bold (S1 Table). B: Correlation

circle of the 19 climatic variables on the first PCA plane. Climatic variables indicated as Tn (n

from 1 to 11) and Pn (n from 12 to 19) are related to temperature and precipitation, respec-

tively. Altitude, Latitude and Longitude (in blue) were added as supplementary variables, and

CEBAJ and SENGUA field locations were added as supplementary individuals.

(TIF)

S3 Fig. Box-plots of means adjusted by field, year and block, for all traits. Populations are

ranked by altitude. parviglumis populations are shown in green andmexicana in red. Lighter

colors are used for gradient ‘a’ and darker colors for gradient ‘b’. Units of measurement corre-

spond to those defined in S2 Table. For male and female flowering time, we report values for

all 11 populations although very few individuals from the two most lowland populations (P1a

and P2b) flowered. Covariation with altitude was significant for all traits except for the number

of nodes with ears on the main tiller (S3 Table).

(TIF)

S4 Fig. Pairwise correlations between phenotypic traits. Pearson coefficient sign and magni-

tude for significant correlations between phenotypic traits after correction for experiment

design (Model 2). X: correlations that are not significant.

(TIF)
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S5 Fig. Evanno method calculations for population number ΔK in the association panel

genotyped for 38 SSRs.

(TIF)

S6 Fig. Genetic clustering of ancestry proportions in the association panel genotyped for

38 SSRs. Genetic clustering was computed for K = 2 to K = 11. Vertical lines (individuals) are

partitioned into coloured segments whose length represents the admixture proportions from

the K clusters.

(TIF)

S7 Fig. Determination of the migration edge number in the TreeMix model. Observed Log

likelihood values are plotted against the number of migration edges tested from 0 to 10, and

two models are fitted to the data (A). Both the simple exponential and the non-linear least

squares delivered an optimal value of 3 for the number of migration edges (change points).

The model with 3 migration edges explained 98.75% of the variance, a substantial increase

from the null model with no migration edge which is 95.7% (B).

(TIF)

S8 Fig. Significance of QST-FST difference for each trait. The dotted blue line indicates the

95% threshold of the simulated distributions and the red line refers to the observed difference.

In this analysis, we considered as spatially-varying traits those for which the observed differ-

ence fell outside the 95% threshold. Note that Plant height was borderline significant. �: Set of

traits detected by DRIFTSEL.

(TIF)

S9 Fig. Genomic FST-scans on 6 teosinte populations. We computed 4 pairwise-FST values

from 6 populations previously sequenced (S1 Table). Those include FST between lowland and

highland populations of each gradient (P1a-M6a, P2b-M7b) as well as within subspecies on

gradient b (P2b-P8b, M1b-M7b). FST values are averaged across sliding windows of 20 SNPs

with a step of five SNPs (from top to bottom, chromosome 1 to 10) and normalized by sub-

tracting the FST mean and dividing by the standard deviation across pairwise comparisons.

Only the top 1% values are represented. The 1‰ thresholds for each pairwise comparisons are

indicated by colored horizontal lines. Horizontal black bars indicate location of inversions on

chromosome 1 (Inv1n), chromosome 4 (Inv4m) and chromosome 9 (Inv9d). The subset of 171

outlier SNPs analyzed in the present study is indicated with black diamond marks along the X

axes.

(TIF)

S10 Fig. QQ-plots of observed P-values and expected P-values generated from 38 SSRs. We

employed three versions of the model 6 with correction for neither structure nor kinship, with

correction for genetic structure (at K = 5), with correction for genetic structure (at K = 5 and

with 11 populations) and kinship.

(TIF)

S11 Fig. Manhattan plots of associations between 171 outlier SNPs and 12 phenotypic

traits. X-axis indicates the positions of outlier SNPs on chromosomes 1 to 10, black and gray

colors alternating per chromosome. Plotted on the Y-axis are the negative Log10-transformed

P values obtained for the K = 5 model. Significant associations (10% FDR) are indicated con-

sidering either a structure matrix at K = 5 (pink dots), for 11 populations (blue dots), or for

both K = 5 and 11 populations models (purple dots).

(TIF)
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22. Roschanski AM, Csilléry K, Liepelt S, Oddou-Muratorio S, Ziegenhagen B, Huard Fdr, et al. Evidence

of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba Mill.

in the French Mediterranean Alps. Molecular Ecology. 2016; 25:776–94. https://doi.org/10.1111/mec.

13516 PMID: 26676992

23. Kawakami T, Morgan TJ, Nippert JB, Ocheltree TW, Keith R, Dhakal P, et al. Natural selection drives

clinal life history patterns in the perennial sunflower species, Helianthus maximiliani. Molecular Ecol-

ogy. 2011; 20:2318–28. https://doi.org/10.1111/j.1365-294X.2011.05105.x PMID: 21521394

24. Moyers BT, Rieseberg LH. Remarkable life history polymorphism may be evolving under divergent

selection in the silverleaf sunflower. Molecular Ecology. 2016; 25:3817–30. https://doi.org/10.1111/

mec.13723 PMID: 27288664

25. Kirkpatrick M, Barton N. Chromosome inversions, local adaptation and speciation. Genetics. 2006.

https://doi.org/10.1534/genetics.105.047985 PMID: 16204214

26. Lowry DB, Willis JH. A widespread chromosomal inversion polymorphism contributes to a major life-

history transition, local adaptation, and reproductive isolation. PLoS Biology. 2010; 8. https://doi.org/

10.1371/journal.pbio.1000500 PMID: 20927411

27. Legrand D, Larranaga N, Bertrand R, Ducatez S, Calvez O, Stevens VM, et al. Evolution of a butterfly

dispersal syndrome. Proceedings of the Royal Society B. 2016; 283(1839): 20161533 https://doi.org/

10.1098/rspb.2016.1533 PMID: 27683371

Altitudinal syndrome in teosintes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008512 December 20, 2019 28 / 34

https://doi.org/10.1111/j.1558-5646.2008.00491.x
https://doi.org/10.1111/j.1558-5646.2008.00491.x
http://www.ncbi.nlm.nih.gov/pubmed/18752618
https://doi.org/10.1111/j.1558-5646.1976.tb00911.x
http://www.ncbi.nlm.nih.gov/pubmed/28563044
https://doi.org/10.1016/S0169-5347(02)02497-7
http://www.ncbi.nlm.nih.gov/pubmed/4224
https://doi.org/10.1534/genetics.104.040089
http://www.ncbi.nlm.nih.gov/pubmed/16118199
https://doi.org/10.1111/j.1558-5646.2011.01277.x
http://www.ncbi.nlm.nih.gov/pubmed/21729066
https://doi.org/10.1111/j.1461-0248.2004.00715.x
https://doi.org/10.1111/j.1461-0248.2004.00715.x
https://doi.org/10.1111/j.1461-0248.2004.00684.x
https://doi.org/10.1086/597611
http://www.ncbi.nlm.nih.gov/pubmed/19272016
https://doi.org/10.1371/journal.pone.0004010
https://doi.org/10.1371/journal.pone.0004010
http://www.ncbi.nlm.nih.gov/pubmed/19104660
https://doi.org/10.1016/j.tree.2014.10.004
http://www.ncbi.nlm.nih.gov/pubmed/25454508
https://doi.org/10.1111/j.1558-5646.1997.tb02384.x
http://www.ncbi.nlm.nih.gov/pubmed/28568782
https://doi.org/10.1111/j.1558-5646.1985.tb04079.x
https://doi.org/10.1111/j.1558-5646.1985.tb04079.x
http://www.ncbi.nlm.nih.gov/pubmed/28563643
https://doi.org/10.1111/j.1558-5646.1992.tb02046.x
http://www.ncbi.nlm.nih.gov/pubmed/28564025
https://doi.org/10.1017/s0016672399004127
http://www.ncbi.nlm.nih.gov/pubmed/10689799
http://www.ncbi.nlm.nih.gov/pubmed/8244001
https://doi.org/10.1111/j.1469-1809.1949.tb02451.x
https://doi.org/10.1111/j.1469-1809.1949.tb02451.x
http://www.ncbi.nlm.nih.gov/pubmed/24540312
https://doi.org/10.1038/hdy.2014.71
https://doi.org/10.1038/hdy.2014.71
http://www.ncbi.nlm.nih.gov/pubmed/25074572
https://doi.org/10.1111/mec.13516
https://doi.org/10.1111/mec.13516
http://www.ncbi.nlm.nih.gov/pubmed/26676992
https://doi.org/10.1111/j.1365-294X.2011.05105.x
http://www.ncbi.nlm.nih.gov/pubmed/21521394
https://doi.org/10.1111/mec.13723
https://doi.org/10.1111/mec.13723
http://www.ncbi.nlm.nih.gov/pubmed/27288664
https://doi.org/10.1534/genetics.105.047985
http://www.ncbi.nlm.nih.gov/pubmed/16204214
https://doi.org/10.1371/journal.pbio.1000500
https://doi.org/10.1371/journal.pbio.1000500
http://www.ncbi.nlm.nih.gov/pubmed/20927411
https://doi.org/10.1098/rspb.2016.1533
https://doi.org/10.1098/rspb.2016.1533
http://www.ncbi.nlm.nih.gov/pubmed/27683371
https://doi.org/10.1371/journal.pgen.1008512


28. Bierne N, Welch J, Loire E, Bonhomme F, David P. The coupling hypothesis: Why genome scans may

fail to map local adaptation genes. Molecular Ecology. 2011; 20:2044–72. https://doi.org/10.1111/j.

1365-294X.2011.05080.x PMID: 21476991

29. Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutral-

ity of polymorphisms. Genetics. 1973; 74:175–95. https://doi.org/10.1186/1475-925X-13-94 PMID:

4711903

30. Beaumont MA, Nichols RA. Evaluating loci for use in the genetic analysis of population structure. Pro-

ceedings of the Royal Society B. 1996; 263:1619–26. https://doi.org/10.1098/rspb.1996.0237

31. Vitalis R, Dawson K, Boursot P. Interpretation of variation across marker loci as evidence of selection.

Genetics. 2001; 158:1811–23. https://doi.org/10.1017/S0016672398003462 PMID: 11514464

32. Foll M, Gaggiotti O. A genome scan method to identify selected loci appropriate for both dominant and

codominant markers: A Bayesian perspective. Genetics. 2008; 180:977–93. https://doi.org/10.1534/

genetics.108.092221 PMID: 18780740

33. Excoffier La H T and Foll Matthieu. Detecting loci under selection in a hierarchically structured popula-

tion. Heredity. 2009; 103:285–98. https://doi.org/10.1038/hdy.2009.74 PMID: 19623208

34. Bonhomme M, Chevalet C, Servin B, Boitard S, Abdallah J, Blott S, et al. Detecting selection in popu-

lation trees: The Lewontin and Krakauer test extended. Genetics. 2010; 186:241–62. https://doi.org/

10.1534/genetics.104.117275 PMID: 20855576

35. Günther T, Coop G. Robust identification of local adaptation from allele frequencies. Genetics. 2013;

195:205–20. https://doi.org/10.1534/genetics.113.152462 PMID: 23821598

36. Lotterhos KE, Whitlock MC. Evaluation of demographic history and neutral parameterization on the

performance of FST outlier tests. Molecular Ecology. 2014; 23:2178–92. https://doi.org/10.1111/mec.

12725 PMID: 24655127

37. Haasl RJ, Payseur BA. Fifteen years of genomewide scans for selection: trends, lessons and unad-

dressed genetic sources of complication. Molecular Ecology. 2016; 25:5–23. https://doi.org/10.1111/

mec.13339 PMID: 26224644

38. Le Corre V, Kremer A. The genetic differentiation at quantitative trait loci under local adaptation.

Molecular Ecology. 2012; 21:1548–66. https://doi.org/10.1111/j.1365-294X.2012.05479.x PMID:

22332667

39. Yi X, Liang Y, Huerta-Sanchez E, Jin X, Xi Ping Cuo Z, Pool JE, et al. Sequencing of fifty human

exomes reveals adaptations to high altitude. Science. 2010; 329:75–8. https://doi.org/10.1126/

science.1190371 PMID: 20595611

40. Coop G, Witonsky D, Di Rienzo A, Pritchard JK. Using environmental correlations to identify loci

underlying local adaptation. Genetics. 2010; 185:1411–23. https://doi.org/10.1534/genetics.110.

114819 PMID: 20516501

41. Guillot G, Renaud S, Ledevin R, Michaux J, Claude J. A unifying model for the analysis of phenotypic,

genetic, and geographic data. Systematic Biology. 2012; 61:897–911. https://doi.org/10.1093/sysbio/

sys038 PMID: 22398122

42. Frichot E, Schoville SD, Bouchard G, François O. Testing for associations between loci and environ-

mental gradients using latent factor mixed models. Molecular Biology and Evolution. 2013; 30:1687–

99. https://doi.org/10.1093/molbev/mst063 PMID: 23543094

43. Gautier M. Genome-wide scan for adaptive divergence and association with population-specific covar-

iates. Genetics. 2015; 201:1555–79. https://doi.org/10.1534/genetics.115.181453 PMID: 26482796

44. Joost S, Bonin A, Bruford MW, Després L, Conord C, Erhardt G, et al. A spatial analysis method

(SAM) to detect candidate loci for selection: Towards a landscape genomics approach to adaptation.

Molecular Ecology. 2007; 16:3955–69. https://doi.org/10.1111/j.1365-294X.2007.03442.x PMID:

17850556

45. Poncet BN, Herrmann D, Gugerli F, Taberlet P, Holderegger R, Gielly L, et al. Tracking genes of eco-

logical relevance using a genome scan in two independent regional population samples of Arabis

alpina. Molecular Ecology. 2010; 19:2896–907. https://doi.org/10.1111/j.1365-294X.2010.04696.x

PMID: 20609082

46. De Mita S, Thuillet AC, Gay L, Ahmadi N, Manel S, Ronfort J, et al. Detecting selection along environ-

mental gradients: Analysis of eight methods and their effectiveness for outbreeding and selfing popu-

lations. Molecular Ecology. 2013; 22:1383–99. https://doi.org/10.1111/mec.12182 PMID: 23294205

47. Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, et al. Finding the genomic

basis of local adaptation: pitfalls, practical solutions, and future directions. The American Naturalist.

2016; 188:379–97. https://doi.org/10.1086/688018 PMID: 27622873

48. Barton N, Hermisson J, Nordborg M. Why structure matters. eLife. 2019; 8.

Altitudinal syndrome in teosintes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008512 December 20, 2019 29 / 34

https://doi.org/10.1111/j.1365-294X.2011.05080.x
https://doi.org/10.1111/j.1365-294X.2011.05080.x
http://www.ncbi.nlm.nih.gov/pubmed/21476991
https://doi.org/10.1186/1475-925X-13-94
http://www.ncbi.nlm.nih.gov/pubmed/4711903
https://doi.org/10.1098/rspb.1996.0237
https://doi.org/10.1017/S0016672398003462
http://www.ncbi.nlm.nih.gov/pubmed/11514464
https://doi.org/10.1534/genetics.108.092221
https://doi.org/10.1534/genetics.108.092221
http://www.ncbi.nlm.nih.gov/pubmed/18780740
https://doi.org/10.1038/hdy.2009.74
http://www.ncbi.nlm.nih.gov/pubmed/19623208
https://doi.org/10.1534/genetics.104.117275
https://doi.org/10.1534/genetics.104.117275
http://www.ncbi.nlm.nih.gov/pubmed/20855576
https://doi.org/10.1534/genetics.113.152462
http://www.ncbi.nlm.nih.gov/pubmed/23821598
https://doi.org/10.1111/mec.12725
https://doi.org/10.1111/mec.12725
http://www.ncbi.nlm.nih.gov/pubmed/24655127
https://doi.org/10.1111/mec.13339
https://doi.org/10.1111/mec.13339
http://www.ncbi.nlm.nih.gov/pubmed/26224644
https://doi.org/10.1111/j.1365-294X.2012.05479.x
http://www.ncbi.nlm.nih.gov/pubmed/22332667
https://doi.org/10.1126/science.1190371
https://doi.org/10.1126/science.1190371
http://www.ncbi.nlm.nih.gov/pubmed/20595611
https://doi.org/10.1534/genetics.110.114819
https://doi.org/10.1534/genetics.110.114819
http://www.ncbi.nlm.nih.gov/pubmed/20516501
https://doi.org/10.1093/sysbio/sys038
https://doi.org/10.1093/sysbio/sys038
http://www.ncbi.nlm.nih.gov/pubmed/22398122
https://doi.org/10.1093/molbev/mst063
http://www.ncbi.nlm.nih.gov/pubmed/23543094
https://doi.org/10.1534/genetics.115.181453
http://www.ncbi.nlm.nih.gov/pubmed/26482796
https://doi.org/10.1111/j.1365-294X.2007.03442.x
http://www.ncbi.nlm.nih.gov/pubmed/17850556
https://doi.org/10.1111/j.1365-294X.2010.04696.x
http://www.ncbi.nlm.nih.gov/pubmed/20609082
https://doi.org/10.1111/mec.12182
http://www.ncbi.nlm.nih.gov/pubmed/23294205
https://doi.org/10.1086/688018
http://www.ncbi.nlm.nih.gov/pubmed/27622873
https://doi.org/10.1371/journal.pgen.1008512


49. Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM. A map of local adaptation

in Arabidopsis thaliana. Science. 2011; 334:86–9. https://doi.org/10.1126/science.1209271 PMID:

21980109

50. Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, et al. Adaptation to cli-

mate across the Arabidopsis thaliana genome. Science. 2011; 334:83–6. https://doi.org/10.1126/

science.1209244 PMID: 21980108

51. Ross-Ibarra J, Tenaillon M, Gaut BS. Historical divergence and gene flow in the genus Zea. Genetics.

2009; 181:1399–413. https://doi.org/10.1534/genetics.108.097238 PMID: 19153259

52. Hufford MB, Martı́nez-Meyer E, Gaut BS, Eguiarte LE, Tenaillon MI. Inferences from the historical dis-

tribution of wild and domesticated maize provide ecological and evolutionary insight. PLoS ONE.

2012; 7. https://doi.org/10.1371/journal.pone.0047659 PMID: 23155371

53. Bilinski P, Albert PS, Berg JJ, Birchler JA, Grote MN, Lorant A, et al. Parallel altitudinal clines reveal

trends in adaptive evolution of genome size in Zea mays. PLoS Genetics. 2018; 14. https://doi.org/10.

1371/journal.pgen.1007162 PMID: 29746459

54. Diez CM, Gaut BS, Meca E, Scheinvar E, Montes-Hernandez S, Eguiarte LE, et al. Genome size vari-

ation in wild and cultivated maize along altitudinal gradients. New Phytologist. 2013; 199:264–76.

https://doi.org/10.1111/nph.12247 PMID: 23550586
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