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A B S T R A C T

This study aims reporting on 23 gridded precipitation datasets (P-datasets) reliability across West Africa through
direct comparisons with rain gauges measurement at the daily and monthly time scales over a 4 years period
(2000–2003). All P-datasets reliability vary in space and time. The most efficient P-dataset in term of
Kling–Gupta Efficiency (KGE) changes at the local scale and the P-dataset performance is sensitive to seasonal
effects. Satellite-based P-datasets performed better during the wet than the dry season whereas the opposite is
observed for reanalysis P-datasets. The best overall performance was obtained for MSWEP v.2.2 and CHIRPS v.2
for daily and monthly time-step, respectively. Part of the differences in P-dataset performance at daily and
monthly time step comes from the time step used to proceed the gauges adjustment (i.e day or month) and from a
mismatch between gauge and satellite reporting times. In comparison to the others P-datasets, TMPA-Adj v.7
reliability is stable and reach the second highest KGE value at both daily and monthly time step. Reanalysis P-
datasets (WFDEI, MERRA-2, JRA-55, ERA-Interim) present among the lowest statistical scores at the daily time
step, which drastically increased at the monthly time step for WFDEI and MERRA-2. The non-adjusted P-datasets
were the less efficient, but, their near-real time availability should be helpful for risk forecast studies (i.e.
GSMaP-RT v.6). The results of this study give important elements to select the most adapted P-dataset for specific
application across West Africa.

1. Introduction

1.1. Precipitation: A key factor subject to uncertainty

Water resources are facing unprecedented changes related to re-
distribution of seasonal precipitation (Saeed et al., 2018) and intensity
(Fischer and Knutti, 2015; Giorgi et al., 2018) owing to climate varia-
bility. With a six-fold increase of water extraction during the 20th
century in response to increases in the world population (Cosgrove and
Risberman, 2000), food requirements and the economy may be parti-
cularly affected by these changes. Accurate spatiotemporal precipita-
tion monitoring is therefore crucial for detect and quantifying ongoing
changes in optimising water resource management. Traditionally, the
precipitation amount is measured at the point scale from gauge mea-
surements. However, access difficulty, political instability, and eco-
nomic issues have often resulted in sparse and unevenly distributed rain
gauge networks that incorrectly capture the spatial precipitation
variability (Lebel et al., 1997; Li and Heap, 2014). Alternatively,
weather radar stations enable precipitation monitoring with spatial

distribution over larger and even remote areas. However, radar stations
are expensive, and only a few are available worldwide. In addition,
large amounts of radar signal interference prevent accurate estimation
of precipitation over complex terrains (Tang et al., 2016; Zeng et al.,
2018). Several authors have recently reported on the potential of using
cellular phone signal attenuation during precipitation events to retrieve
precipitation measurements (Doumounia et al., 2014; Messer et al.,
2006; Overeem et al., 2011; Zinevich et al., 2008). Although these es-
timations are accurate, they are limited to regions with high antenna
density (e.g. urban areas). Moreover, this technique faces the problem
of accessing data owned by private cellular phone companies.

Regardless of the technique employed, precipitation data collection
at the regional scale usually includes potential conflicts of interest in
water resource management between neighbouring countries. In this
context, gridded precipitation datasets (P-dataset) at an almost global
scale offer an unprecedented alternative. Over remote regions, P-data-
sets have already shown promising perspective for water resource
management by enhancing our understanding of drought (e.g. Agutu
et al., 2017; Guo et al., 2017; Satgé et al., 2017a; Toté et al., 2015) and
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flood (e.g. Gao et al., 2017; Nikolopoulos et al., 2013; Toté et al., 2015)
events, precipitation variability (e.g. Arvor et al., 2017; Carvalho et al.,
2012), streamflow (e.g. Collischonn et al., 2008; De Paiva et al., 2013;
Satgé et al., 2019; Sun et al., 2018b; Zhang et al., 2018) and snow cover
dynamics (e.g. Satgé et al., 2019), and agriculture productivity (e.g.
Thaler et al., 2018; De Wit et al., 2010).

1.2. State of the art for P-datasets

Three groups of gridded P-dataset can be defined depending on the
input and technique used to retrieve the precipitation amounts: (1)
those based on the spatial information of available gauges, (2) those
based on reanalysis data derived from physical and dynamical models,
and (3) those based on satellite information using passive-microwave
(PMW) and infrared (IR) information. It is worth mentioning that most
of the P-datasets merge aspects of these three inputs and techniques to
ensure the best accuracy possible. Recently, 30 global-scale P-datasets
with variable space–time coverage and resolution have been listed (Sun
et al., 2018a) which present precipitation estimates discrepancy in
space and time according to their different bases such as data capture,
integration, and algorithms. For example, gauge-based P-dataset relia-
bility varies in space and time according to changes in the number of
available gauges used for the interpolation process (Sun et al., 2015).
Similarly, satellite-based P-dataset reliability varies in space and time
because the PMW and IR algorithms present limits over complex
mountainous (Hussain et al., 2017; Satgé et al., 2017b) and snow-
covered regions (Ferraro et al., 1998; Levizzani et al., 2002) and during
short-term and slight precipitation events (Gebregiorgis and Hossain,
2013; Tian et al., 2009). Finally, reanalysis data-based P-datasets pre-
sent variable reliability in space and time owing to the limited ability of
the models used to represent small-scale convective cells (Beck et al.,
2019). In this context, many studies assess P-dataset space–time un-
certainties to evaluate their reliability (Maggioni et al., 2016; Maggioni
and Massari, 2018).

A recurrent drawback of assessment studies on P-dataset reliability
is the consideration of a limited number of P-datasets. A comprehensive
reliability overview of available P-datasets, as listed in Table 1, can be
achieved only by backcrossing the results from different P-dataset as-
sessment studies. However, the studies are conducted over distinct re-
gions and are based on different statistical indices, spatial and temporal
scales, and periods, thus creating difficulties in intercomparing P-da-
taset reliability assessments. For example, when comparing TMPA,
CMORPH, and PERSIANN P-datasets with reference gauge estimates,
CMORPH was shown to have the most reliable P-datasets in Pakistan,
China, Bali, and Indonesia (Hussain et al., 2017; Rahmawati and
Lubczynski, 2017; Su et al., 2017; Zeng et al., 2018). However, TMPA
was the most reliable in India, Guyana, Chile, and the South American
Andean plateau (Prakash et al., 2014a; Ringard et al., 2015; Satgé et al.,
2016; Zambrano-Bigiarini et al., 2017). Hence, P-dataset reliability for
a given region should not be determined from results reported for other
regions. In this context, it is decisive to consider the most representative
P-dataset sample to insure a consistent report on P-dataset reliability
across the considered region.

1.3. The need for assessing P-datasets over West Africa

Africa is particularly affected by climate changes threatening
rainfed agriculture, which represents its main agricultural and eco-
nomic activity (Sultan et al., 2013). However, owing to the socio-eco-
nomic context, the available gauge network is limited by many spatial
and temporal gaps which prevent efficient water management. Ac-
cording to the World Meteorological Organisation (WMO), the African
continent requires uniform distribution of at least 3000 stations (ideally
10,000); however, only 744 stations are present. Moreover, only one
quarter of the 744 stations conform to international standards.

Because they provide precipitation information on a regular grid at

the global scale, P-datasets offer a unique opportunity for com-
plementing traditional precipitation measurements and optimising po-
pulation adaption to the ongoing changes. However, as previously
mentioned, P-dataset estimates are indirect measurements with spatial
and temporal uncertainties which need to be reported to evaluate their
reliability. Some authors have already initiated this effort over West
Africa. In 2012, seven P-datasets were tested over the basin of la Volta
including CMORPH, GPROF-v6, GSMaP-MVK v5, RFE-2.0, TMPA-v6,
PERSIANN, and ERA-Interim (Thiemig et al., 2012). In 2013, nine P-
datasets including CMORPH, EPSAT-SG, GPCP, GSMaP-MVK, GSMaP-
RT, RFE-2, TMPA-v6, TMPA-RT v6, and PERSIANN and seven P-data-
sets including PERSIANN, CMORPH, TMPA-RT v.6, TMPA-Adj v.6,
GSMaP-MVK, GCPC-1dd, and RFE-2 were tested in Benin and Niger for
hydrological (Gosset et al., 2013) and agriculture applications
(Ramarohetra et al., 2013), respectively. Both studies found that their
use could introduce large biases in crop or hydrological modelling
framework. More recently, six P-datasets including ARC-2, CMORPH,
GSMaP-MVK, PERSIANN, TAMSAT, and TMPA-v.6 were compared with
gauge measurements data over the entire African continent (Awange
et al., 2016).

All of the aforementioned studies focus mainly on P-datasets reg-
ularly updated by their developers to enhance the precipitation esti-
mates. Since then, updated versions of the considered products have
been made available with more accurate precipitation estimates. For
example, the benefits brought by the new TMPA-v.7 in comparison to
its previous version (TMPA-v.6) has been reported in many regions (e.g.
Anjum et al., 2016; Prakash et al., 2014b; Satgé et al., 2016). Ad-
ditionally, most of the tested P-datasets originate from the TRMM-era
constellation which has limited temporal coverage from 1998 to the
present. In this context, new studies have reported on recently released
P-dataset versions with larger temporal coverage. For example, in 2016
over Burkina, seven P-datasets including ARC-2, CHIRPS v.2, PERSI-
ANN-CDR, RFE v.2, TAMSAT v.2, TMPA v.7, and TMPA RT v.7 were
assessed at the daily, decadal, and monthly timescales (Dembélé and
Zwart, 2016). In 2017, TAMSAT v.3 was introduced and compared with
its previous version (TAMSAT v.2) and with six P-datasets including
ARC v.2, CHIRP v.2, CHIRPS v.2, CMORPH v.1, RFE and TMPA v.7 over
West Africa, specifically Nigeria and Niger; Uganda; Zambia; and Mo-
zambique (Maidment et al., 2017). In 2017, 10 P-datasets including
CFSR, CHIRPS, CMORPH v.1 RAW and CRT, PERSIANN-CDR, RFE-2,
TAMSAT v.2, TMPA v.7, TMPA-RT v.7, and GPCC were assessed over
six watersheds located in Burkina, Nigeria, and Ghana (Poméon et al.,
2017). Nonetheless, the reported studies indicate that the results are
mostly limited in space (country or basin scale) and in terms of con-
sidered P-datasets sample. To our knowledge, only one study has re-
ported on P-datasets at the regional West African scale with a limited
sample of P-datasets including TMPA v.7, UDEL v.3.1, CRU v.3, and
ARC v.2 (Akinsanola et al., 2016).

1.4. Objectives

According to the previously described context, the present study
aims to compare the accuracy of 23 P-datasets in reproducing the
characteristics of rain gauge measurements across West Africa, which is
an unprecedented comparison. The consideration of a P-dataset sample,
as large as possible, aims to provide a robust overview of P-dataset
performance over West Africa. The analysis is conducted at both daily
and monthly time steps. This study provides important feedback to P-
dataset developers for enhancing the algorithms for next-generation P-
datasets and to potential users to support their P-datasets selection.

2. Materials methods

2.1. Study area

The study area, hereafter referred to as West Africa, extends from
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the Atlantic coast of Senegal to eastern Chad and the Gulf of Guinea to
north of the Sahel (18° W–25° E, 4° N–25° N) (Fig. 1). The region is
characterised by a marked south–north gradient of rainfall amount
ranging from 5000mm.year−1 in Cameroon to less than
200mm.year−1 in the northern Sahel. The West Africa region can be
divided into three main climatic zones: (i) the Guinea Coast (4°–8° N),
(ii) the Savannah (8°–11° N), and (iii) the Sahel (11°–16° N) (Abiodun
et al., 2012; Akinsanola et al., 2016) (Fig. 1). For all zones, the year is
characterised by a dry season in winter and a rainy season in summer
linked to the West African Monsoon. This concentrates most of the
annual rainfall amount from April to October for the Guinea Coast zone
and from June to September for both the Savanah and Sahel zones
(Fig. 1). The rainfall interannual temporality is great with the occur-
rence of drought phases (dry spell) during the rainy season and in in-
terannual rainfall with very dry and very wet years in the 1970 s and
1950 s, respectively.

2.2. Selected P-datasets

A sample of 23 gridded P-datasets including 13 long-term P-datasets
with more than 35 years of continuous observation and 10 P-datasets
spanning more than 15 years was selected. Table 1 provides an over-
view of these P-datasets and relevant references for further information
on their respective productions.

2.2.1. Comments on the selected P-datasets
Some P-datasets use gauge-based information in their respective

algorithms (Table 1). Three types of gauge-based information are used:
(1) punctual precipitation estimates derived from gauge records, (2)
gridded precipitation estimates based on interpolation of punctual
gauge records, and (3) gauge precipitation estimates (punctual or
gridded) merged with different satellite datasets of precipitation,

brightness, or land surface temperature.
Punctual precipitation estimates from the world meteorological

organisation (WMO) Global Telecommunication System (GTS) (Novella
and Thiaw, 2012) and numerous African national meteorological and
hydrological centres (Maidment et al., 2014) are used for ARC-2 and
TAMSAT v.3, respectively. In both cases, the gauge network is very
sparse. For example, the GTS gauge network has a 1:23 000 km2 gauge-
to-area ratio across the African continent (Novella and Thiaw, 2012).

The gridded precipitation estimates are (i) the GPCC with a 1°
spatial resolution (Becker et al., 2013; Schneider et al., 2014) and (ii)
the daily CPC with 0.5° spatial resolution (Chen et al., 2008; Xie et al.,
2007). JRA-55 Adj, TMPA-Adj v.7, and WFDEI use GPCC monthly data,
whereas CMORPH-CRT v.1, CMORPH-BLD v.1, GSMaP-Adj v.6, and
MERRA-2 use CPC daily data.

The gridded precipitation estimates merged with satellite pre-
cipitation estimates are (i) the CHPclim dataset with a 0.05° grid-cell
size (Funk et al., 2015) (ii) the GPCP dataset with a 2.5° grid-cell size
(Adler et al., 2003, 2012) and (iii) the WorldClim 2 dataset with a 1 km
grid-cell size (Fick and Hijmans, 2017). CHPclim and WorldClim 2 use
satellite observations as predictors to improve the interpolation from
point gauge records, whereas GPCP uses the gauge record to adjust the
precipitation fields derived from satellite observations. Further details
are reported elsewhere (Adler et al., 2003; Funk et al., 2015). Among
the considered P-datasets, CHIRPS v.2 use the CHPclim dataset, MSWEP
v.2.2 use the WorldClim 2 dataset and PERSIANN-CDR uses the GPCP
dataset.

CHIRPS v.2 also includes punctual precipitation estimates from
various public data streams, private archives, and national meteor-
ological agencies, while MSWEP v.2.2 incorporates monthly GPCC and
daily gauge observations compiled from several sources (Beck et al.,
2018).

Another difference between the P-datasets is the time latency for

Fig. 1. Study area with the considered 0.1° grid-cell locations and the mean monthly precipitation amount given for the three climatic regions based on gauge records
of 2000–2003.
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their availability. The P-datasets are generally available in (i) a few
days or (ii) a few months after the observation (Table 1). Some are in
near real time (NRT) latency of one to three days and are more adapted
for flood or landslides forecasting, water resource management, and
agriculture, while the others are more adapted for retrospective cli-
matic studies.

Fig. 2 shows the mean annual precipitation patterns retrieved from
all P-datasets. Except for CPC v.1 and the P-datasets, which use CPC v.1
for post adjustment processing (ARC-2, CMORPH-CRT v.1, CMORPH-
BLD v.1, GSMaP-Adj v.6 and MERRA-2), all P-datasets represent the
typical south–north precipitation gradient with two precipitation hot-
spots located over the southwest and south region. It should be noted
that SM2Rain-CCI v.2 estimates are based on soil moisture estimates,

which are strongly attenuated by the vegetation canopy; this results in
significant gaps over areas with moderate to dense vegetation, as ob-
served over the southern region (Fig. 2) (Dorigo et al., 2015). Ad-
ditionally, a sensor failure in the ERS-2 gyroscope from January 2001 to
June 2003 accentuated these gaps and explains the gaps observed over
the central and northern regions (Fig. 2) (Dorigo et al., 2015).

2.2.2. P-dataset pre-processing
The P-datasets available at a sub-daily time step (Table 1) were

aggregated to obtain daily time step records matching the local gauge
observations (8 h to 8 h local time). It is worth mentioning that P-da-
tasets delivered at daily time scales (Table 1) use time-windows dif-
ferent from those of the gauge, which can compromise the comparison

Fig. 2. Mean annual precipitation for 2000–2003 retrieved from all P-datasets at their original grid sizes. For each P-dataset, only the grid-cells with more than 80%
of available daily data were retained. Blue and black colours are used to highlight P-datasets using and not using gauge-based information, respectively, and italic
font is used for P-datasets available in NRT latency of one–three days. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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at the daily scale. This point is further discussed in Section 4.1. More-
over, the P-datasets differ in terms of grid-cell size, ranging from
0.0375° for TAMSAT v.3 to 1° for GPCC v.7. To enable consistent
comparison, all P-datasets were resampled to the 0.1° grid-cell size.

Bilinear averaging (interpolation) are used for P-datasets with grid-
cell size < 0.1° (> 0.1°) (Beck et al., 2019).

3. Reference precipitation dataset

A database of 1,440 gauges were made available by several African
national meteorological and hydrological centres. The stations are
distributed onto 952 0.1° grid-cells. For each grid-cell, a reference daily
precipitation series was obtained averaging the gauges included in the
grid-cell. To ensure consistent analysis, only grid-cells with more than
80% of daily records were considered. The four-year period of
2000–2003 was finally retained to consider the largest number of 0.1°
grid-cells (187).

3.1. Monthly P-dataset estimate assessment

The monthly amounts were computed for only months with more
than 80% of common daily records for all datasets (reference and P-
datasets). The accuracy of monthly P-dataset estimates was assessed
using a quantitative statistical analysis based on the modified
Kling–Gupta Efficiency (KGE), an objective function combining corre-
lation (r), bias ( ), and variability ( ) components (Gupta et al., 2009;
Kling et al., 2012) (Eq. (1)). We used KGE because water resource
management requires reliable representation of precipitation temporal
dynamics (measured by r) and volume (measured by and ):

KGE r1 ( 1) ( 1) ( 1)2 2 2= + + (1)

where r represents the Pearson coefficient (Eq. (2)), is the ratio be-
tween the mean observed and predicted precipitation (Eq. (2)), and is
the ratio of the estimated and observed coefficients of variation (eq.
(3)):
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where µ and are the distribution mean and standard deviation, re-
spectively; and s and o indicate the estimate and reference, respectively.
KGE, , , and r have their optimum at unity.

The analysis was performed considering all months of 2000–2003
and the wet and dry seasons months separately. For each grid-cell, the
wet and dry seasons were selected according to their corresponding
climatic zone (Fig. 1). The Sahel seasonality was applied for the grid-
cells located up to latitude 16° N.

The values of KGE, r , , and were computed at each grid-cell lo-
cation to observe the P-dataset reliability over space, and their median
values was used to observe that at the regional scale.

Considering the important gaps over space and time for SM2Rain-
CCI v.2 (Fig. 2), its performance analysis was based on a reduced

number of 0.1° grid-cells (79). Finally, GPCC v.7 is only available at the
monthly time step (Table 1). Consistent comparison between GPCC v.7
and the reference was possible only for grid-cells and months with
complete daily observation series for a total of 183 grid-cells.

3.2. Daily P-dataset estimate assessment

The daily precipitation estimates were assessed on the basis of both
quantitative and categorical statistical metrics. The quantitative ana-
lysis relied on the median KGE, r , , and obtained from the 187
considered grid-cells for all days and the wet and dry seasons days,
separately, and from the 79 (183) grid-cells for SM2Rain-CCI v.2 (GPCC
v.7).

The categorical statistics were used to measure the P-dataset capa-
city for detecting the daily precipitation events. Daily precipitation
events are considered as discrete values with only two observable cases:
rainy or not rainy days. A rainy day was considered when the pre-
cipitation amount was greater than or equal to a prescribed threshold
(mm.day−1). Four cases were possible (Table 2). Based on this char-
acterisation, the Heidke Skill Score (HSS) (Eq. (4)) evaluates the P-
dataset ability for detecting precipitation events in comparison with a
random based prediction.

HSS a d b c
a c c d a b b d

2 ( )
[( ) ( ) ( ) ( )]

=
+ + + + + (5)

The HSS values range from −∞ to 1 with a perfect score of 1 and
negative values indicating that random based prediction outperforms
the P-dataset one.

The mean HSS value was computed from those obtained for all of
the considered grid-cells for threshold values ranging from 0 to
25mm.day−1 with a 1mm.day−1 increment. This consideration was
used to assess the P-dataset performance based on light to heavy daily
precipitation events. Finally, using a 1mm.day−1, the HSS value was
computed at each grid-cell location to observe the P-dataset reliability
over space.

4. Results

4.1. P-dataset assessment at the monthly time step

With negative KGE values, three P-datasets (CMORPH-Raw v.1,
TMPA-RT v.7, and PERSIANN-RT), were unable to represent the re-
gional monthly precipitation (Fig. 3). Interestingly, their adjusted ver-
sions, CMORPH-BLD v.1, TMPA-Adj v.7, and PERSIANN-CDR, respec-
tively, performed much better with KGE greater than 0.8, correlation
better than 0.9, and bias and variability close to the optimum values
(1). The same results were shown for CHIRP v.2, GSMaP-RT v.6, and
JRA-55, which were systematically outperformed by their corre-
sponding adjusted versions (CHIRPS v.2, GSMaP-Adj v.6, and JRA-55
Adj, respectively). In a general way, all P-datasets using gauges-based
information present higher KGE than the others. The P-datasets devel-
oped for the African continent, TAMSAT v.3 and ARC-2, did not out-
perform the global scale P-datasets. However, the TAMSAT v.3 relia-
bility was very close to that of the other P-datasets (KGE=0.8).

The P-dataset performance expressed as KGE varied seasonally.
TAMSAT v.3, JRA-55 Adj, PERSIANN-Adj, ARC-2, GSMaP-RT v.6, and
GPCC v.7 were more effective during the wet season, and CMORPH-
BLD v.1, MERRA-2, GSMaP-Adj v.6, CPC v.1, and ERA-Interim had
better performance during the dry season. However, the most effective
P-datasets, CHIRPS v.2, TMPA-Adj v.7, WFDEI, PERSIANN-CDR, and
MSWEP v.2.2, performed similarly for both wet and dry seasons.
Interestingly, all P-datasets presented higher correlation coefficient and
bias values during the dry season. With respect to the variability ratio,
no clear seasonal trend was observed for the different P-datasets.

Adjustment of CHIRP v.2, JRA-55, PERSIANN-RT, TMPA-RT v.7,
GSMaP-RT v.6, and CMORPH-Raw v.1 increased the KGE values

Table 2
Contingency table used to define HSS.

Rain gauges

Precipitation No precipitation

P-datasets Precipitation a b
No precipitation c d
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considerably at most of the grid-cell locations. The adjustment applied
to GSMaP-Adj v.6 was not effective over the western region, where KGE
values decreased in comparison to GSMaP-RT v.6, its non-adjusted
version. Similarly, the CMORPH adjusted versions (CMORPH-CRT v.1
and BLD v.1) presented the lowest registered KGE values over the
western region. CPC v.1, MERRA-2, and ARC-2 also presented the
lowest KGE value over this region. Regarding the most effective P-da-
tasets, CHIRPS v.2, GPCC v.7, WFDEI, and TMPA-Adj v.7 presented
similar KGE distributions.

Most of the P-datasets were well correlated to the reference, with
correlation better than 0.8 (Fig. 5). The adjusted version systematically
presented higher correlation values, with MSWEP v.2.2 presenting the
highest number of grid-cells with correlation better than 0.9 and only
one grid-cell with correlation worse than 0.7. Interestingly, CHIRPS

presented the lowest correlation score over the northern very arid re-
gion, with correlation worse than 0.7 (Fig. 5).

The P-datasets without gauge-based information presented higher
bias (Fig. 6). PERSIANN-RT highly overestimate precipitation
throughout the region (bias greater than 1.55). The bias decreased in
the post-adjusted version (PERSIANN-Adj) with acceptable bias esti-
mates (1.15 < bias < 1.35) over many grid-cells.

Similar results were observed for PERSIANN-CDR. CMORPH-Raw
v.1 and TMPA-RT v.7 presented similar bias distributions, from over-
estimation to underestimation in the northern arid and southern humid
regions, respectively. TMPA-RT gauge adjustment was highly suc-
cessful, with most of the TMPA-Adj v.7 grid-cells presenting acceptable
bias values at 0.85 < bias < 1.15. CPC v.1 strongly underestimates
precipitation over the western region. This bias spread for all P-datasets

Fig. 3. P-dataset reliability at the regional. The right and left edges of the boxes represent the 25th and 75th percentile values, respectively. The P-datasets are sorted
from the most (top) to the least (bottom) efficient in term of KGE. SM2Rain-CCI v.2 and GPCC v.7 are at the bottom because their analyses are based on a different
number of 0.1° grid-cells, at 79 and 183, respectively. Blue and black colours are used to highlight P-datasets using or not using gauge-based information, re-
spectively, and italic font is used for P-datasets available in NRT latency of one to three days. The graphics were inspired by Beck et al. (2019).
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using CPC v.1 for their adjustement process (CMORPH-CRT and BLD
v.1, ARC-2, GSMaP-Adj v.6 and MERRA-2).

Interestingly, the precipitation adjustment applied on GSMaP-RT
v.6 increased the bias on GSMaP-Adj v.6. WFDEI, TMPA-Adj v.7, and
CHIRPS v.2 presented less-biased precipitation estimates with reason-
able bias values of 0.85 < bias < 1.15 in most of the considered grid-
cells.

Regarding the variability ratio distribution, the efficiency of using
gauge-based information to retrieve the precipitation estimates was
obvious when comparing PERSIANN-RT, TMPA-RT v.7, and CMORPH-
Raw v.1 with their post-adjusted versions (Fig. 7). The non-adjusted
products CMORPH-RAW v.1, and TMPA-RT v.7 strongly overestimated
the precipitation variability in the majority of grid-cells with variability
ratios better than 1.25. To the contrary, PERSIANN-RT strongly un-
derestimated the precipitation variability in most grid-cells, with a
variability ratio worse than 0.85. However, when considering JRA-55

(JRA-55 Adj) and CHIRP v.2 (CHIRPS v.2), the use of gauge-based in-
formation did not significantly enhance the variability ratio. Finally,
the two African P-datasets underestimated the precipitation variability,
over most of the grid-cells (variability ratios < 0.90).

4.2. P-dataset assessment at the daily time step

At the regional scale, the ability of the P-datasets to quantify the
daily precipitation amount was relatively low, with most having
median KGE values worse than 0.4 (Fig. 8). Only MSWEP v.2.2, TMPA-
Adj v.7, CMORPH-BLD v.1, CMORPH-CRT v.1, GSMaP-RT v.6, and
PERSIANN-Adj had KGE scores superior to 0.4, with the best score
achieved by MSWEP v.2.2 (KGE=0.52). Generally, non-adjusted P-
datasets presented the lowest KGE values except for GSMaP v.6. The
KGE decreased from 0.44 (GSMaP-RT v.6) to 0.35 for (GSMaP-Adj v.6).
Interestingly, PERSIANN-RT presented a negative KGE value but one of

Fig. 4. P-dataset reliability at the grid-cell level expressed in the form of KGE considering all months in 2000–2003. Arrows are used to highlight the potential benefit
of using gauge-based information. Blue and black colours are used to highlight P-datasets using or not using gauge-based information, respectively, and italic font is
used for P-datasets available in NRT latency of one the three days. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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the highest correlation score, at 0.5. Therefore, its low KGE score ap-
pears to be influenced by its very high positive bias value of 2.5. This is
in line with observation made at the monthly time step and the domi-
nant influence of the bias values on the KGE score.

In term of KGE, the P-dataset accuracy was higher during the wet
than that in the dry season. Interestingly, MERRA-2, WFDEI, ERA-
Interim, and JRA-55 performed better during the dry season, which is
line with the results obtained over the Continental United States
(CONUS) (Beck et al., 2019). However, the performances of MERRA-2,
WFDEI, ERA-Interim, and JRA-55 were very low, with KGE < 0.2.

Most of the P-datasets presented the highest HSS scores using a
threshold value of 1mm.day−1 (Fig. 9). In particular, the HSS values of
CHIRP v.2 and MERRA-2 were close to 0 when considering a
0mm.day−1 threshold value; the values jumped to 0.3 and 0.36, re-
spectively, when considering a 1mm.day−1 threshold value. Actually,
the P-datasets detected many precipitation events with less than
1mm.day−1 which were not detected by the gauges. This can be ex-
plained by different factors: (1) The gauges are not sensitive enough to

such precipitation amounts; (2) difference in the spatial scale between
point (gauge) and average area (P-dataset grid-cell) measurements; (3)
the P-dataset algorithm is deficient. Because these precipitation events
are insignificant (< 1 mm.day-1), they should be considered as no-
precipitation events.

The highest HSS score was achieved by CMORPH-BLD v.1
(HSS=0.58) and MSWEP v.2.2 (HSS= 0.55). The P-dataset ability in
reproducing daily precipitation amounts decreased for increasing in-
tensity. Two P-dataset groups measured differently events of more than
15mm.day−1. The first group (CMORPH-CRT and BLD v.1, GSMaP-RT
and Adj v.6, MSWEP v.2.2, PERSIANN-RT and Adj, ARC-2, and CPC and
TMPA-Adj v.7) was much more suited for reproducing high-intensity
precipitation events than the second group (CHIRP v.2, CHIRPS v.2,
CMORPH-RAW v.1, JRA-55, JRA-55 Adj, PERSIANN-CDR, TAMSAT
v.3, TMPA-RT v.7, WFDEI, MERRA-2, ERA-Interim, and SM2Rain-CCI
v.2) (Fig. 9). It is worth mentioning that the first group includes (i) P-
datasets with gauge-based calibration using daily data and (ii) P-data-
sets available at the sub-daily time step. The second group includes (i)

Fig. 5. P-dataset reliability at the grid-cell scale expressed in the form of correlation considering all months in 2000–2003. Arrows are used to highlight the potential
benefit of using gauge-based information. Blue and black colours are used to highlight P-datasets using or not using gauge-based information, respectively, and italic
font is used for P-datasets available in NRT latency of one to three days.
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non-adjusted P-datasets or (ii) those adjusted with monthly gauges-
based data, (iii) P-datasets delivered at the daily time step, and (iv)
reanalysis P-datasets which generally have the largest discrepancies
when compared with other P-datasets (Sun et al., 2018a). Therefore,
the gauge-based information used for P-datasets and the delivered time
step (daily or sub-daily) considerably influence the P-dataset reliability
at the daily time scale. This point is further discussed in Section 4 in the
Discussion.

Using gauge-based information improved the HSS score over space.
For instance, TMPA-RT v.7, CMORPH-Raw v.1, CHIRP v.2 and PERSI-
ANN-RT adjusted versions provided much better HSS scores throughout
the region (Fig. 10). The adjusted versions of JRA-55, and GSMaP-RT
v.6 did not show significant enhancement. Overall, the first group
identified in Fig. 9 (CMORPH-CRT and BLD v.1, GSMaP-RT and Adj v.6,
MSWEP v.2.2, PERSIANN-RT and Adj, ARC-2, CPC and TMPA-Adj v.7)
presents the highest HSS all over West Africa (Fig. 10).

5. Discussion

5.1. Monthly versus daily P-dataset reliability

Interestingly, the P-dataset performance ranking differed at the
monthly and daily timescale (Fig. 11). We identified two main factors to
explain these discrepancies.

The first is related to the gauge-based information time step used to
adjust P-dataset estimates. Indeed, the five most efficient P-datasets at
the monthly time step, CHIRPS v.2, TMPA-Adj v.7, WFDEI, PERSI-
ANN-CDR, and MSWEP v2.2, were adjusted using monthly gauge-based
information, whereas three of the five most efficient P-datasets at the
daily time step, MSWEP v.2.2, CMORPH-BLD v.1, and CMORPH-CRT
v.1, were adjusted using daily gauge-based information (Fig. 11). Ad-
ditionally, the reliability of the gauge-based information can also in-
fluence the P-dataset accuracy. Accordingly, over the Sahel region, the

Fig. 6. P-dataset reliability at the grid-cell scale expressed in the form of bias considering all months for in 2000–2003. Arrows are used to highlight the potential
benefit of using gauge-based information. Blue and black colours are used to highlight P-datasets using or not using gauge-based information, respectively, and italic
font is used for P-datasets available in NRT latency of one to three days. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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CHPclim monthly dataset reliability was higher than that of GPCC
(Funk et al., 2015). Because most of the considered grid-cells used to
assess P-dataset reliability are in the Sahel region (Fig. 1), CHIRPS,
which uses CHPclim, provides more realistic monthly precipitation
estimates, at KGE=0.86, than WFDEI and PERSIANN-CDR, which uses
GPCC and GPCP, respectively (Fig. 3). This demonstrates the im-
portance of maintaining reliable gauge networks to insure accurate P-
dataset estimates.

The second factor is the P-datasets delivered time step. Some P-
datasets are delivered at the daily aggregation level (Table 1), which is
based on different time windows than those used for local records. For
example, PERSIANN-CDR daily estimates correspond to a given 0 h to
0 h UTC aggregation time period, whereas the gauges used in this study
register daily amount from 8 h to 8 h UTC. Such temporal inconsistency

can introduce large differences between the P-datasets and the gauge
measurements (Ashouri et al., 2015; Satgé et al., 2019). Therefore, only
one of the P-datasets, CMORPH-BLD v.1, delivered at the daily time
step ranked in the top five most efficient P-datasets. On the contrary,
four of the five most efficient P-datasets at the daily time step were
delivered at the sub-daily time step (3-hourly to hourly) (Table 1 and
Fig. 11). The sub-daily time step enables matching of the computed
daily estimates with the local record time windows to ensure consistent
comparison between gauges and P-dataset estimates.

Our results demonstrate the importance of considering both daily
and monthly time steps when assessing P-dataset reliability because the
latter is influenced by the gauge-based adjustment process and the
delivered time step.

Generally, P-datasets using gauge-based information achieved

Fig. 7. P-dataset reliability at the grid-cell scale expressed in the form of variability ratio considering all months for in 2000–2003. Arrows are used to highlight the
potential benefit of using gauge-based information. Blue and black colours are used to highlight P-datasets using or not using gauge-based information, respectively,
and italic font is used for P-datasets available in NRT latency of one to three days. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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highest KGE scores at both monthly and daily time step (Figs. 3 and 8),
which supports previous results obtained over West African regions
(Casse et al., 2015; Gosset et al., 2013; Poméon et al., 2017) and else-
where (Beck et al., 2019; Dinku et al., 2007; Satgé et al., 2016).
However, the use of gauge-based information for P-dataset adjustment
is not always as effective. Indeed, GSMaP-RT v.6 outperformed its ad-
justed version GSMaP-Adj v.6 at the daily time step. This result is
consistent with previous observation over the CONUS, (Beck et al.,
2019) and illustrates the potential P-dataset algorithm limit to consider
the best of gauge data. GSMaP-RT v.6 is the only P-dataset with no
gauge-based information of the top-five daily ranking. Therefore,
GSMaP-Adj v.6 should be highly effective if using the gauge-based in-
formation in the optimal form.

5.2. P-dataset reliability in space and time

CMORPH-BLD v.1, CMORPH-CRT v.1, GSMaP-Adj v.6, and MERRA-
2 presented weaker performance over the western region in comparison
with other P-datasets (Fig. 3). We identified one factor to explain this
spatial inconsistency.

Different from other P-datasets which use GPCC or GPCP data,
CMORPH-BLD v.1, GSMaP-Adj v.6, and MERRA-2 use CPC data. The
gauge number used to retrieve CPC is lower than that used to retrieve
GPCC (Fig. 12a). Over the Senegal, Gambia, Guinea-Bissau, and Guinea
regions only two CPC grid-cells counted with more than one gauge
against seven for GPCC (Fig. 12b and c). As a result, compared with
GPCC v.7, CPC v.1 presents the lowest efficiency over the western re-
gion (Fig. 4), which propagates into the use of CPC by the P-datasets to
adjust their estimates.

The available gauge information for retrieving CPC and GPCC

Fig. 8. P-dataset reliability at the regional scale. The right and left edges of the box represent the 25th and 75th percentile values, respectively. The P-datasets are
sorted from the most (top) to the least (bottom) efficient in terms of KGE. SM2Rain-CCI v.2 and GPCC v.7 are at the bottom because their analyses are based on a
different number of 0.1° grid-cells, at 79 and 183, respectively. Blue and black colours are used to highlight P-datasets using or not using gauge-based information,
respectively, and italic font is used for P-datasets available in NRT latency of one to three days. The graphics were inspired by Beck et al. (2019).
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datasets also varies with time (Fig. 12a). Therefore, the P-dataset re-
liability could be better (worse) if considering a period with more
(fewer) available gauges for retrieving GPCC or CPC datasets. In this
context, TAMSAT v.3 uses consistent gauge-based information in space
and time rather than a continuously updated information to avoid
adding any space or time discrepancy (Maidment et al., 2017).

Actually, P-datasets present space and time inconsistencies which
cannot be reported by using single temporal windows (Satgé et al.,
2019). The authors assessed P-dataset reliability over three different
four years period and one twelve years period across the Lake Titicaca
region. Results show that the P-dataset reliability conclusion vary ac-
cording to the considered period. Therefore, the analysis should be
conducted over different temporal windows to adequately evaluate the
P-dataset space and time reliability. Such a consideration is challenging
over West Africa owing to the scarcity of gauge networks and the im-
portant temporal gaps present. To overcome this issue, an alternative
method could use satellite-based soil moisture estimates rather than
traditional rain gauges measurements as a reference benchmark
(Massari et al., 2017).

It is worth mentioning that GPCC and CPC share common gauges
with the reference network used in this study as highlighted by many
overlapping between both network (Fig. 12b and c). Similar observa-
tion should be done if considering the others gauges based datasets used
for P-dataset calibration and presented in Section 2.2.1. Therefore, the
gauges network used for the assessment is not totally independent of
the considered P-datasets and could influence P-dataset reliability
conclusions. The P-dataset reliability conclusion could have been less
optimist if only based on independent gauges network. In this context,
future studies should try to consider totally independent gauges net-
work to provide more consistent feedback on actual P-dataset relia-
bility. However, information on the shared information between na-
tional gauges networks and gauges based dataset (i.e. CPC and GPCC) is
hard to obtain and compromise this kind of consideration.

5.3. P-datasets sensitivity to seasonal variation

Reanalysis P-datasets, ERA-Interim, MERRA-2, JRA-55 and WFDEI,
performed better during the dry than during the wet season (Fig. 3).
This agrees with previous results obtained over the CONUS (Beck et al.,
2019). The authors explained that reanalysis P-datasets are better
adapted to detecting large-scale stratiform systems, which are typical in
the dry season, than unpredictable small-scale convective cells, which
are typical in the wet season. On the contrary, only satellite-based P-
datasets performed better during the wet than the dry season (Beck
et al., 2019; Salles et al., 2019; Satgé et al., 2017b). Actually, the ir-
regular sampling of the low earth orbiting satellites and the limited
number of overpasses hardly captures short precipitation events which
are typical during the dry season (Gebregiorgis and Hossain, 2013; Tian
et al., 2009). Therefore, GSMaP-RT v.6 presented a better KGE value
during the wet than that during the dry season (Fig. 3). The seasonality
sensitivity of the other P-datasets incorporating satellite, reanalysis, or
gauge-based information shows a greater contrast because they con-
sider the different inputs.

Despite the seasonal variation in KGE value, the P-datasets pre-
sented significantly higher coefficient correlation during the dry season
(Fig. 3). This difference could be related to the higher monthly pre-
cipitation variability during the dry season (Fig. 1) tending to increase
the correlation coefficient. Accordingly, all P-datasets presented higher
correlation coefficients considering the entire period because the pre-
cipitation variability is even more marked than at the seasonal scale. At
the contrary, the P-datasets were more biased during the dry season
(Fig. 3) except for CPC v.1, GSMaP-Adj v.6, and ERA-Interim. The P-
datasets with higher bias values during the dry season (TAMSAT v.3,
PERSIANN-Adj, ARC-2, GSMaP-RT v.6, SM2Rain-CCI v.2, JRA-55 Adj,
and GPCC v.7) or the wet season (CPC v.1, GSMaP-Adj v.6, and ERA-
Interim) presented lower KGE scores during this specific season
whereas the P-datasets with close bias values for both wet and dry
seasons (CHIRPS v.2, TMPA-Adj v.7, WFDEI, PERSIANN-CDR, MSWEP

Fig. 9. P-dataset ability in reproducing daily precipitation events of different intensities expressed in the form of HSS. Blue and black colours are used to highlight P-
datasets using or not using gauge-based information, respectively, and italic font is used for P-dataset available in NRT latency of one to three days.
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v2.2, CMORPH-CRT v.1, CHIRP v.2) presented similar KGE values for
both seasons. Considering the similar seasonal trend observed for both
KGE and bias values, the bias appears to have a dominant influence on
the KGE score.

Interestingly, if considering the P-dataset bias in millimetres, all P-
datasets had systematically higher bias values during the wet season
(Fig. 13). Because lower monthly precipitation occurred during the dry
season, the same volumetric error (millimetres) expressed in ratio (Eq.
2) corresponds to higher bias during the dry in comparison to that
during the wet season. For most of the P-datasets, the reported bias
value during the dry season was<5mm.month−1 (Fig. 13), which
should have an insignificant influence on the water budget.

Therefore, despite the low KGE value during the dry season, P-da-
tasets still provide valuable additional information to follow both
temporal and volume monthly precipitation dynamics over West Africa.

5.4. P-dataset time latency

Fig. 14 shows the KGE scores of the NRT P-datasets in comparison
with the most accurate P-dataset at the daily time step.

At the daily time step, GSMaP-RT v.6 was the most reliable NRT P-
dataset. With three days of time latency, the GSMaP-RT KGE, at 0.44,
was close to the most effective P-dataset (MSWEP v.2.2) with
KGE=0.52, which is available with a few months of latency.

It is worth mentioning that the low score achieved by the P-datasets
at the daily time step is partly related to the difference between spa-
tially averaged (P-dataset grid-cell) and point (reference gauges) mea-
surements (Salles et al., 2019; Satgé et al., 2019; Tang et al., 2018). The
P-dataset reliability increased with the number of gauges used to re-
present the spatially average grid-cell measurement (Salles et al., 2019;
Tang et al., 2018). In this study, most of the considered 0.1° grid-cells

Fig. 10. Daily P-dataset reliability expressed in the form of HSS considering all days for 2000–2003 period. The HSS was obtained for a threshold value of 1mm/
month. Arrows are used to highlight the potential benefit of using gauge-based information. Blue and black colours are used to highlight P-datasets using or not using
gauge-based information, respectively, and italic font is used for P-datasets available in NRT latency of one to three days.
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were counted with only one gauge. Therefore, the presented KGE score
may underestimate the actual P-dataset reliability. Testing the sensi-
tivity of streamflow modelling to P-datasets at basin outlets overcome
the influence of scarce and unevenly distributed gauge networks. In-
deed, aggregation of precipitation at the basin scale eliminates the
difference in spatial representation between point (gauge) and areal (P-
datasets) measurements because both gauge and P-datasets represent
precipitation at the basin spatial scale. Therefore, the reliability of P-
datasets varies significantly when used to reproduce gauge precipita-
tion estimates or streamflow observations (Satgé et al. 2019).

In this context, NRT P-dataset coverage and latency can fit the needs
of an early warning system across sparsely gauged or ungauged regions.
Recent studies have successfully used NRT P-datasets to follow flood
events in terms of streamflow (Yuan et al., 2019) and flood extent
(Belabib et al., 2019) or for landslide occurrence estimations (Brunetti
et al., 2018). Future studies should assess NRT P-datasets in the scope of
early warning studies to consistently evaluate NRT dataset reliability in
this specific context.

5.5. Towards an enhanced P-dataset over West Africa

This study considers an unprecedented sample of 23 P-datasets over

the West African region to provide a consistent guideline for potential
users. The results suggest that during 2000–2003, CHIRPS v.2 and
MSWEP v.2.2 showed the best estimates of monthly and daily pre-
cipitation, respectively. The most reliable P-dataset can change at the
local scale. As an example, Fig. 15 shows the most suitable P-datasets
for representing both monthly and daily precipitation at the grid-cell
level. Interestingly, at the daily time step, MSWEP v.2.2 was more
consistent for the western region, whereas CMORPH P-datasets pro-
vided more accurate estimates over the central and southern regions
(Fig. 15). At the monthly time step, even if CHIRP(S) P-datasets are
counted with the highest number of grid-cells, large spatial hetero-
geneity is observed with many grid-cells where WFDEI, JRA-55 Adj,
CMORPH, and TMPA outperformed CHIRP(S) (Fig. 15). To take ad-
vantage of all available P-datasets, merging all P-datasets to produce an
enhanced P-dataset over the region is a good option. Previous studies
have reported on the benefit of such an approach to retrieve a more
realistic P-dataset over Pakistan (Muhammad et al., 2018; Rahman
et al., 2018), Tibet (Ma et al., 2018) and different tropical complex
terrain (Bhuiyan et al., 2019). These ensemble precipitation datasets
enhance the regional precipitation representation and should be used as
guideline over West Africa.

Fig. 11. P-dataset top-five ranking for the (a) monthly and (b) daily precipitation estimates based on their median KGE value.

Fig. 12. (a) Mean numbers of available gauges used to retrieve GPCC and CPC for 1985–2015 and their spatial distribution for the analysed period 2000–2003 (b, c).
The black points in (b) and (c) represent the centroid of the 0.1° grid-cell considered in this study to assess P-dataset reliability.
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6. Conclusions

The present study evaluates the accuracy of 23 gridded P-datasets
over the West African region at both monthly and daily time step for the
2000–2003 period. Despite the limited coverage and scarcity of the
ground reference points, some consistent features emerged from the
analysis:

• The P-dataset performance ranking differs at the monthly and daily
timescale. P-datasets using sub-daily (monthly) gauge information
perform better at the daily (monthly) time step. Additionally, for the
P-datasets released at the daily time step, the temporal mismatch
between gauge and satellite reporting times decrease their reliability
at the daily time step. In this line, MSWEP v.2.2 and CHIRPS v.2
provide the most reliable daily and monthly precipitation estimates,
respectively whereas TMPA-Adj v.7 performance is very good for
both daily and monthly estimates.

• The only satellite based P-datasets (CMORPH-RT v.1, TMPA-RT v.7,
PERSIANN-RT, GSMaP v.6-RT) performance is very low at both
monthly and daily time scale. Their reliability drastically increase
for their adjusted versions (CMORPH-CRT and BLD v.1, TMPA-Adj
v.7, PERSIANN-Adj) excepted for GSMaP v.6 at the daily time step.

• All the considered reanalysis P-datasets (WFDEI, JRA-55, JRA-55
Adj, ERA-Interim) are unreliable at the daily time step. The use of

monthly GPCC P-dataset to adjust their estimates considerably in-
crease their reliability at the monthly time step (WFDEI, JRA-55
Adj).

• The two African P-datasets (TAMSAT v.3 and ARC-2) present an
overall lower performance in comparison to the almost global scale
P-datasets at both daily and monthly time-step. Despite good per-
formance in some parts of the region, SM2Rain-CCI v.2 still suffers
too many gaps in space and time across West African.

• All P-datasets present spatial discrepancies in their statistical score
suggesting the use of a spatial P-datasets’ merging approach to take
advantage from all available P-datasets across West Africa.

It should be reminded that most of the considered 0.1° grid-cells
count with only one gauge to represent the observed precipitation.
Because of spatial inconsistency between point (gauges) and spatially
average (P-datasets) measurement, different conclusion regarding the
P-datasets reliability, could have been drawn if more gauges had been
available per grid-cells or if using P-datasets as forcing data for hy-
drological modelling. Additionally, the study is based on a single four
years temporal window. However, P-dataset reliability vary in time and
the results could have been different if considering another four years
temporal window or a larger one. Therefore, this study aims more at
compare the P-dataset reliability between them rather than to provide
definitive conclusion on their respective accuracy.
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