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Background.  Innovative approaches are needed to limit antimalarial resistance evolution. Understanding the role of intermit-
tent preventive treatment in pregnancy (IPTp) on the selection for resistance and the impact such selection has on pregnancy out-
comes can guide future interventions.
Methods.  Plasmodium falciparum isolates (n = 914) from 2 randomized clinical trials were screened for pfmdr1 copy number 

variation and pfcrt, pfmdr1, pfdhfr, and pfdhps resistance markers. The trials were conducted between 2010 and 2013 in Benin, Gabon, 
Kenya, and Mozambique to establish the efficacy of IPTp-mefloquine (MQ) compared with IPTp-sulphadoxine-pyrimethamine (SP) 
in human immunodeficiency virus (HIV)-uninfected and to IPTp-placebo in HIV-infected women.
Results.  In HIV-uninfected women, the prevalence of pfcrt mutants, pfdhfr/pfdhps quintuple mutants, and pfmdr1 copy number 

was similar between women receiving IPT-SP and IPTp-MQ. However, prevalence of pfmdr1 polymorphism 86Y was lower in the 
IPTp-MQ group than in the IPTp-SP group, and within the IPTp-MQ group it was lower at delivery compared with recruitment. 
No effect of IPTp-MQ on resistance markers was observed among HIV-infected women. The carriage of resistance markers was not 
associated with pregnancy outcomes.
Conclusions.  Selection of wild-type pfmdr1 polymorphism N86 by IPTp-MQ highlights the strong selective pressure IPTp can 

exert and the opportunity for using negative cross-resistance in drug choice for clinical treatment and IPTp.
Keywords.   intermittent preventive therapy; malaria; mefloquine; pfmdr; pregnancy.

Drug-resistance evolution is considered one of the main chal-
lenges for malaria control and elimination and a particular chal-
lenge for special groups such as pregnant women [1–3] and human 
immunodeficiency virus (HIV)-infected individuals [4, 5]. Novel 
approaches to better manage resistance are greatly needed to avoid 

widespread resistance for newly introduced drugs [6, 7], partic-
ularly for prevalent interventions such as intermittent preventive 
therapy of malaria in pregnant women (IPTp). The antifolate drug 
sulphadoxine-pyrimethamine (SP), which initially replaced chlo-
roquine (CQ) as a first-line treatment in many places, has been 
used in IPTp and IPT in infants (IPTi). However, resistance evo-
lution is a threat to the continued success of the interventions [3, 
5]. Although IPTi-SP is barely being implemented, IPTp-SP is still 
being recommended for the majority of malaria-endemic African 
areas [8], despite widespread resistance.

Polymorphisms in various genes have been shown to confer 
resistance against antimalarials. For instance, mutations in the 
Plasmodium falciparum dihydrofolate reductase gene (pfdhfr) 
result in a dihydrofolate synthase enzyme that prevents the in-
hibition by pyrimethamine and cycloguanil, and mutations in 
the P falciparum dihydropteroate synthase gene (pfdhps) lead to 
resistance to sulphadoxine. Polymorphisms in the P falciparum 
CQ resistance transporter gene (pfcrt) result in a CQ resistance 
transporter protein that prevents CQ accumulation within the 
digestive vacuole. Mutations in the P falciparum multidrug 
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resistance 1 gene (pfmdr1) and its copy number variation have 
been implicated with CQ, mefloquine (MQ), and lumefantrine 
resistance and may compromise sensitivity to artemisinin-
based combination therapies [9].

The spread of such resistant mutants depends on an in-
tricate balance between their level of resistance, fitness cost, 
and the likelihood that a parasite is exposed to treatment. In 
addition, the interaction between resistance alleles and dif-
ferent drugs may impact resistance evolution: increased selec-
tion in the case of positive cross-resistance (resistance to one 
drug increases resistance to another drug) or decreased selec-
tion in the case of negative cross-resistance (resistance to one 
drug leads to hypersensitivity to another drug). In particular, 
this latter effect may be important to incorporate in a resist-
ance management strategy for malaria control, because nega-
tive cross-resistance between artemether-lumefantrine (AL) 
and dihydroartemisinin-piperaquine (DP) have been observed 
[10–12]. Counter-selecting drugs are being used for resistance 
management in agriculture and antibiotics [13, 14], but less is 
known in the context of malaria. Beyond determining the level 
of positive and negative resistance between the different avail-
able drugs, the effect of the interactions of the drugs in the var-
ious operational uses—clinical therapy and preventive therapy 
such as IPTp and mass drug administration—are unknown.

When IPTp was newly introduced, increased selection of 
pfdhfr/pfdhps genes mutants compared with placebo groups 
was frequently observed [15–17]. In addition, higher SP levels 
in plasma of pregnant women have been associated with higher 
prevalence of resistance markers [18], and parasite isolates col-
lected in early pregnancy have been shown to have lower prev-
alence of SP resistance-related polymorphisms than at delivery 
[19, 20]. The use of SP for malaria control has been drastically 
reduced since the introduction of artemisinin-based combina-
tion therapies, and any continued selection for SP resistance 
is mostly coming from its use as IPTp and the mechanistically 
similar antibiotic co-trimoxazole (CTX) to prevent opportun-
istic infections in HIV-infected individuals [21]. However, the 
role of such intervention on resistance evolution at the popula-
tion level is not entirely clear. Resistance selection by IPTp has 
been shown to be of transient nature [4, 20]. Thus, the use of a 
drug such as SP or CTX solely in the context of preventive treat-
ment in a limited population such as pregnant women (corre-
sponding to approximately 5% of the population) may not be 
sufficient pressure for continued evolution of SP resistance [22].

Still, the impact resistance has on the effectiveness of IPTp 
has not been clearly established. Reduced effectiveness of 
IPTp-SP to clear peripheral parasites and prevent new infec-
tions during pregnancy has been observed in populations with 
over 90% prevalence of the pfdhps K540E polymorphism, yet, 
IPTp was still linked with increases in birth weight and ma-
ternal hemoglobin levels [23]. However, the pfdhps A581G pol-
ymorphism has been associated with reduced efficacy of IPTp 

in Uganda and Malawi [24, 25]. Most worryingly was a report 
that drug-resistant malaria parasites could lead to more virulent 
pregnancy-related infections due to a competitive facilitation 
effect (overgrowth of resistant parasites that out-compete sensi-
tive parasites under drug pressure) [2], an observation not con-
firmed in other studies [4, 20, 26, 27]. Since then, the presence 
of competitive facilitation has been the center of discussion on 
IPTp with SP and a source of major controversy [24, 28].

In this study, we aimed to determine whether (1) IPTp-SP 
and IPTp-MQ during pregnancy were associated with selection 
for resistance alleles, (2) resistance allele-drug interactions were 
detected between SP and/or MQ use, and (3) carriage of resist-
ance alleles during pregnancy was associated with adverse preg-
nancy outcomes.

METHODS

Study Area and Population

Plasmodium falciparum (Pf) isolates were obtained from (1) 
383 HIV-uninfected pregnant women enrolled in a clinical 
trial aimed at assessing the efficacy of IPTp-MQ compared 
with IPTp-SP in Benin, Gabon, and Mozambique and (2) 83 
HIV-infected women enrolled in a trial to compare the effi-
cacy IPTp-MQ with placebo-IPTp in Kenya and Mozambique. 
Methods and main results of the trials conducted between 2010 
and 2013 have been described elsewhere [29, 30] (trial registra-
tion number: ClinicalTrials.gov NCT00811421). The study was 
approved by the national and the Hospital Clínic of Barcelona 
ethics review committees. In brief, pregnant women attending 
the antenatal clinics at gestational age ≤28 weeks were recruited 
into the study and received long-lasting insecticide-treated 
bed nets. Hemoglobin levels were measured on finger prick-
collected capillary blood, gestational age was determined from 
symphysis fundal height palpation, and HIV status was volun-
tarily assessed with an HIV rapid test. Among HIV-infected 
women, CD4+ T-cell counts were measured by flow cytometry, 
and viral load was determined using the COBAS AMPLICOR 
or AmpliPrep (Roche Diagnostics) device. Human immunode-
ficiency virus-uninfected pregnant women (gestational age  ≥13 
weeks) were randomized to receive either 2 doses of 500/15 mg 
SP or 2 doses of 15  mg/kg MQ. Human immunodeficiency 
virus-infected pregnant women (gestational age  ≥13 weeks) 
received daily CTX (800/160 mg trimethroprim/sulfamethox-
azole) and were randomized to receive either 3 doses of 15 mg/
kg MQ or 3 doses of placebo.

At delivery, peripheral and placental blood smears and 50 μL 
blood spots on filter paper were collected, and a placental biopsy 
was made and examined. Newborns were weighed, and their 
gestational age at birth was evaluated using the Ballard's score. 
One month after delivery, a capillary blood spot was taken. 
In addition, blood spots were collected at recruitment from a 
subset of women in Gabon, and at recruitment, second, and 
third antenatal visit from a subset of women in Mozambique. 
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Blood spots were also taken at unscheduled sick visits at the an-
tenatal care clinic in both trials, with the exception of the sites in 
Benin. Uncomplicated malaria episodes were treated with oral 
quinine in the first trimester and AL in the second and third 
trimesters, and severe malaria was treated with parenteral qui-
nine. National treatment guidelines in the respective countries 
was AL as first-line treatment of Pf infection in Benin, Kenya, 
and Mozambique and artesunate-amodiaquine in Gabon [31].

Sample Selection

Deoxyribonucleic acid (DNA) was extracted from half the blood 
spot using the QIAamp DNA Mini Kit (QIAGEN), and Pf para-
site density was assessed using real-time polymerase chain reac-
tion PCR as described elsewhere [32]. All delivery blood spots 
(peripheral and placental blood) of the HIV-infected women 
were analyzed by quantitative (qPCR). For HIV-uninfected 
women, qPCR was performed on (1) a random subset of 30% of 
paired peripheral and placental blood samples at delivery, (2) all 
smear-positive samples, and (3) samples taken within 2 months 
of a qPCR-positive sample, with the exception of samples from 
Benin where all blood samples were analyzed.

Molecular Genotyping

All Pf isolates were tested on multiplicity of infection (MOI) by 
PCR genotyping of Pf merozoite surface proteins 1 (msp1) and 2 
(msp2) genes as described in [32]. Resistance marker testing was 
performed using Ligase Detection Reaction-fluorescent micro-
sphere (LDR-fm) following the methods decribed in [33]. The 
polymorphisms evaluated were as follows: pfdhfr codons 51, 59, 
108, and 164; pfdhps codons 436, 437, 540, 581, and 613; pfmdr1 
codons 86, 184, 1034, 1042, and 1246; and pfcrt codons 72–76. 
Sanger sequencing was performed on pfcrt and pfdhps haplotypes, 
to detect missing nontargeted haplotypes by LDR-fm [34]. Finally, 
pfmdr1 copy number was determined relative to the single-copy 
β-tubulin gene by real-time PCR pfmdr1 [35]. Full details on the 
methods are provided in the Supplementary Information.

Definitions and Statistical Analysis

Isolates with resistance-associated polymorphisms either 
alone or mixed were defined as resistant. We focused on 3 
polymorphic haplotypes for analysis: quintuple pfdhfr/pfdhps 
(polymorphisms at each of codons pfdhfr 51, 59 and 108, and 
pfdhps 437 and 540), pfmdr1 polymorphism 86Y, and pfcrt co-
dons 72–76. Multiple pfmdr1 copies were considered when raw 
estimates of pfmdr1 copy number were ≥1.5. Recent IPTp treat-
ment was defined as less than 75 days between last IPTp dose 
and sample date, clinical malaria episode was defined as pres-
ence of Pf parasites in blood smear plus at least 1 of the symp-
toms suggestive of malaria [29]. Differences between sites were 
tested by analysis of variance for continuous data and Kruskal-
Wallis for malaria episodes.

Prevalence of Pf isolates with resistance markers and pfmdr1 
copy numbers were compared between IPTp groups using 

logistic and linear generalized mixed-effect models (GLMM; 
“glmer” function of the “lme4” package in statistical program 
R [36]) including repeated measurements analysis, respectively. 
Study participant was included as repeated measure unit and 
gravidity (primigravidae/multigravidae) as covariate. Due to 
low sample size, repeated measures were not included in the 
model for HIV-infected women and General Linear Modeling 
was performed instead. Dependent variable was presence/ab-
sence of resistant genotype, and fixed factors were IPTp drug 
(MQ/SP or MQ/placebo), treatment time (early/recent), and 
country (Benin/Gabon/Mozambique or Kenya/Mozambique). 
The maximal model with all fixed effects and their interactions 
was fitted first, with insignificant interaction terms removed 
by backward elimination using F-statistics for model compar-
ison. In a subanalysis stratified by IPTp-drug, resistance prev-
alence was assessed by time of sample collection (recruitment/
peripheral blood delivery/postpartum) and country (Gabon/
Mozambique only).

The association between resistance markers during preg-
nancy and pregnancy outcomes was tested using (1) resist-
ance markers as fixed factors and (2) country, treatment, and 
gravidity as covariates. Models were fitted with Gaussian distri-
bution for continuous data (birth weight, hemoglobin level, ges-
tational age, and log-transformed parasite densities), Poisson 
distribution for counts (malaria episodes), and binomial dis-
tribution for events (presence/absence placental inflammation, 
defined by presentation of >5 inflammatory cells by histological 
examination). All analyses were adjusted for multiple compari-
sons by Bonferroni correction and adjusted P values are pre-
sented. Models were performed in R version 3.3.3 [37].

RESULTS

A total of 914 samples, from 466 women, were identified as 
qPCR positive for Pf: 326, 301, 77, and 210 from Benin, Gabon, 
Kenya, and Mozambique, respectively. Among these samples, 
133 were collected at recruitment, 238 were collected at delivery 
from peripheral blood, 262 were collected at delivery from 
placental blood, 155 were collected at 1  month postpartum, 
118 were collected at sick visits, and 8 were collected from 
antenatal visits between recruitment and delivery. Of these 
914 samples, 843 isolates (92%) were genotyped on at least 1 
locus (Supplementary Table S3). Sixty-five percent of the iso-
lates were from HIV-uninfected women treated with IPTp-MQ 
(compared with 67% of IPTp-MQ in the overall clinical trial; 
χ 2 = 0.2; P = .63) and 34% in the HIV-infected women (com-
pared with 50% IPTp-MQ in the clinical trial; χ 2 = 10; P = .001). 
Baseline characteristics of the study participants are shown in 
Supplementary Table S4.

No differences in birth weight, placental parasite density, 
and maternal hemoglobin levels at delivery were observed be-
tween the different study sites in the trial in HIV-uninfected 
women, but differences in peripheral parasite densities, 
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gestational age of newborn, and number of malaria episodes 
were seen between the sites. Pregnancy outcomes amongst 
the HIV-infected women were similar between women from 
Kenya and Mozambique, with the exception of higher ma-
ternal hemoglobin concentration levels at delivery in Kenya 
compared with Mozambique. Multiclonal infections were 
common at all sites, although average MOI was low, ranging 
from 2.2 to 2.7 (Table 1).

Prevalence of Molecular Markers of Antimalarial Resistance

Genotyping was successful for all 19 polymorphisms of in-
terest in 69% of samples (Supplementary Table S3). pfmdr1 
copy number estimation was successful in 50% of samples 
(Supplementary Tables S3 and S5). Prevalence of wild-type 
pfdhfr/pfdhps haplotype NCSAKA (dhfr 51N-59C-108S and 
dhps 437A-540K) parasites was low. Quadruple mutant IRNGK 
was most common in Benin and Gabon (95% and 80%, re-
spectively), and quintuple mutant genotype IRNGE was most 
common in Kenya and Mozambique (99% and 88%) (Figure 
1). The pfdhps polymorphism A581G was only observed in 
Benin at very low prevalence (3%) on a background of quad-
ruple IRNGK genotypes (3%). The prevalence of all geno-
typed polymorphisms are presented in Figure 1, Tables 2, and 
Supplementary Table S6. The majority of the Pf infections in 
this study were of single pfmdr1 copy (94%, 93%, 93%, and 84% 
in Benin, Gabon, Kenya, and Mozamique, respectively).

IPTp Selective Pressure on Resistance Markers During Pregnancy

In HIV-uninfected women, no statistically significant associ-
ation was found between the carriage of pfdhfr/pfdhps quin-
tuple mutants or pfcrt72-76 mutants and the type of IPTp drug 
(Padj > .99 in both cases), nor time since last IPTp administra-
tion (Padj > .99 in both cases) (Figure 2). However, women re-
ceiving IPTp-SP were more likely to carry the resistant pfmdr1 

polymorphism 86Y during pregnancy than women receiving 
IPTp-MQ (59% vs 29%, Padj = .002) without a significant asso-
ciation with time since administration (Padj  =  .15) (Figure 2). 
This trend was most strongly observed in Benin and Gabon 
(Supplementary Figure S1). The association between the IPTp 
drug and each polymorphism is shown in Supplementary Table 
S7. There was no distinct association between prevalence of 
multiple pfmdr1 copies and the type of IPTp drug (P = .80), al-
though Gabonese women taking IPTp-MQ had a slightly higher 
copy number than those taking IPTp-SP (P = .003), a trend that 
was not observed in the other countries (Supplementary Figure 
S2). In HIV-infected women, no differences were observed 
in the carriage of molecular markers of resistance between 
IPTp-MQ and IPTp-placebo (Padj  >  .05 in all 3 comparisons) 
(Figure 2B) nor in pfmdr1 copy numbers (IPTp-drug; P > .05) 
(Supplementary Figure S2).

For the subset of women of whom we had samples also at re-
cruitment, prevalence of pfmdr1 polymorphism 86Y was lower at 
delivery (31%) than at recruitment (63%) in the IPTp-MQ group in 
Gabon and Mozambique combined (HIV-uninfected; Padj = .015), 
whereas no significant difference was seen in the IPTp-SP arm 
(35% vs 72%; Padj = .16) (Figure 3). This trend was consistent in 
both sites but most distinctly observed in Gabon (Supplementary 
Figure S3). No statistically significant difference was observed 
with quintuple pfdhfr/pfdhps and pfcrt72-76 mutants (Padj > .05 in 
all comparisons) (Figure 3). No longitudinal analyses were per-
formed among the HIV-infected women due to small sample size, 
but raw data are shown in Supplementary Figure S4.

Associations Between Pregnancy-Related Outcomes and Resistance 

Markers

No associations were observed between the carriage of pfcrt, 
pfmdr1 86Y, and/or quintuple pfdhfr/pfdhps resistance markers 
at any point during pregnancy with either parasitological 

Table 1.  Clinical and Parasitological Data of Women Included in Study (at Least One Polymorphism Successfully Analyzed)a

HIV Uninfected HIV Infected

Health Parameter Benin n = 186 Gabon n = 120 
Mozambique 

n = 77 P Value Kenya n = 51
Mozambique 

n = 32 P Value

Gestational age (weeks) 39.8 (1.5) 37.4 (4.7) 37.8 (2.4) P < .001 (aov) - 38.7 (2.2) -

Newborn birth weight (gram) 3013 (416) 2899 (520) 3001 (425) P = .34 (aov) 3023 (509) 3079 (410) P = .60 (aov)

Hemoglobin level (g/dL) 10.9 (1.6) 10.5 (1.4) 10.6 (1.7) P = .056 (aov) 11.3 (2.4) 10.3 (1.7) P = .026 (aov)

Peripheral parasite density (pars/µL 
blood)

2056 (5737) 498 (1968) 594 (1967) P = .02 (aov) 1112 (2883) 8018 (20 305) P = .11 (aov)

Placental parasites density (pars/µL 
blood)

2290 (9209) 1768 (6630) 6048 (25 750) P = .40 (aov) 2395 (6502) 7110 (18 472) P = .41 (aov)

Clinical malaria episode during 
pregnancy (%women)

19.3 44.5 30.8 P < .001 (chi2) 24.7 29.8 P = .68 (kw)

Number of malaria episodes 0.23 (0.5) 0.48 (0.6) 0.31 (0.5) P < .001 (kw) 0.25 (0.43) 0.36 (0.61) P = .42 (kw)

Multiplicity of infection 2.2 (1.4) 2.4 (1.5) 2.6 (1.6) P = .028 (aov) 2.3 (1.4) 2.7 (1.7) P = .16 (aov)

Abbreviations: aov, analysis of variance; chi2, χ 2 test; HIV, human immunodeficiency virus; kw, Kruskal-Wallis test; qPCR, quantitative polymerase chain reaction.
aPeripheral and placental parasite density = geometric mean parasite density as measured by qPCR; clinical malaria episodes = percentage of women with at least 1 smear-positive clinical 
malaria episode; number of malaria episodes = overall mean number of episodes of all participants. Means plus standard deviation are given, standard deviation of parasite density includes 
Taylor's expansion. 
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(peripheral and placental parasitemia) or clinical (birth weight, 
hemoglobin, gestational age, and number of malaria episodes) 
outcomes in HIV-uninfected (Padj  >  .05 in all comparisons 
[Figure 4], trends by location in Supplementary Figure S5) nor 
HIV-infected women (all Padj  >  .99) (Supplementary Figure 
S6). The carriage of pfdhps polymorphism A581G in pregnant 
women from Benin was not associated with any adverse preg-
nancy outcome (all Padj > .99).

DISCUSSION

Wild-type pfmdr1 polymorphism N86 appeared to be mark-
edly selected for by MQ treatment in HIV-uninfected pregnant 
women. No significant associations were observed in the HIV-
infected cohort; however, the study lacks the statistical power 
due to a low sample size. The IPTp treatment with SP did not 

lead to increases in existing pfdhfr/pfdhps polymorphisms de-
spite reported associations [4, 15, 16, 18–20]. It is possible that 
the short time scale (duration of pregnancy) was insufficient to 
observe these changes because allelic diversity at each site was 
very low. No association was found with increased pfmdr1 copy 
number and MQ use; although a significant 3-way interaction 
is suggestive of selection in women having received IPTp-MQ 
recently in Gabon. Increased pfmdr1 copy number has been 
shown to be associated with MQ treatment [35], but minimal 
variation in pfmdr1 copy numbers in the study areas may have 
limited the likelihood of identifying signs of selection.

Strong negative selection against pfmdr 86Y locus by 
IPTp-MQ was observed. Increased susceptibility to MQ of 86Y 
genotypes has been shown in vitro [38, 39] but to our knowl-
edge not after clinical treatment or IPTp with MQ. Decreased 

pfdhfr/phdhps pfmdr86 pfcrt72–76
Wildtype
Mutant
Mixture

Figure 1.  Geographical distribution of resistance markers in study. Prevalence of polymorphisms of resistance markers pooled throughout the study at the different African 
sites (Benin, Gabon, Kenya, and Mozambique): quintuple IRNGE pfdhfr/pfdhps (left plot), pfmdr1 polymorphism 86Y (middle plot), and pfcrt codons 72–76 haplotype CVIET 
(right plot). Green denotes prevalence of wild type, red denotes resistant, and orange denotes prevalence of mixtures at any single-nucleotide polymorphism in the genotype.

Table 2.  Prevalence of Genotypes of Molecular Markers of Resistance by Country

HIV Uninfected HIV Infected

Genetic Locus Genotype Benin n/N (%) Gabon n/N (%) Mozambique n/N (%) Kenya n/N (%) Mozambique n/N (%)

pfdhfr 51/59/108
pfdhps
437/540

NCSAK* (wild type) 0/251 (0) 1/203 (0.5) 1/153 (0.7) 0/76 (0) 0/43 (0)

NCSGK (single437) 2/251 (0.8) 4/203 (2.0) 0/153 (0) 0/76 (0) 0/43 (0)

IRNAK (Triple) 3/251 (1.2) 22/203 (10.8) 9/153 (5.9) 0/76 (0) 4/43 (9.3) 

NRNGK (Triple437) 4/251 (1.6) 2/203 (1.0) 0/153 (0) 0/76 (0) 0/43 (0)

IRNGK (Quadruple) 239/251 (95.2) 163/203 (80.3) 1/153 (0.7) 0/76 (0) 0/43 (0)

IRNGE (Quintuple) 0/251 (0) 7/203 (3.4) 137/153 (89.5) 75/76 (98.7) 36/43 (83.7)

Othera 3/251 (1.2) 4/203 (2.0) 5/153 (3.3) 1/76 (1.3) 3/43 (7.0) 

pfmdr1
86/184/1246

NYD* 47/247 (19.0) 39/190 (20.5) 48/136 (35.3) 34/76 (44.7) 9/41 (22.0)

YYD 3/247 (1.2) 12/190 (6.3) 22/136 (16.2) 3/76 (3.9) 8/41 (19.5)

NFD 102/247 (41.3) 45/190 (23.7) 60/136 (44.1) 32/76 (42.1) 21/41 (51.2)

NYY 0/247 (0) 0/190 (0) 0/136 (0) 1/76 (1.3) 0/41 (0)

YFD 83/247 (33.6) 94/190 (49.5) 6/136 (4.4) 1/76 (1.3) 3/41 (7.3)

NFY 1/247 (0.4) 0/190 (0) 0/136 (0) 1/76 (1.3) 0/41 (0)

YYY 5/247 (2.0) 0/190 (0) 0/136 (0) 3/76 (3.9) 0/41 (0)

YFY 6/247 (2.4) 0/190 (0) 0/136 (0) 1/76 (1.3) 0/41 (0)

pfcrt
72-76

CVMNK* 15/271 (5.5) 31/237 (13.0) 81/151 (53.6) 59/76 (77.6) 26/42 (61.9)

CVIET 256/271 (94.5) 206/237 (86.9) 70/151 (46.4) 17/76 (22.4) 16/42 (38.1)

Abbreviations: HIV, human immunodeficiency virus.
aSee Supplementary Information (Supplementary Table S6) for full list. Wild-type genotypes are indicated with an asterisk, and polymorphisms are shown in bold lettering.
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susceptibility to AL, of which lumefantrine is structurally sim-
ilar to MQ, has been seen for pfmdr1 N86, pfmdr1 184F, pfmdr1 
D1246, and pfcrt K76 after clinical treatment [10, 11]. Thus, 
parasites carrying N86Y were likely more effectively elimin-
ated by the IPTp-MQ treatment than N86 parasites. In contrast, 
86Y has been associated with CQ resistance [40] and likely DP 
susceptibility [41]. Thus, our data further contribute to the ev-
idence of 86Y being involved in resistance to some drugs but 
leading to increased susceptibility to other drugs. Such so-called 
resistance-induced hypersensitivity has been shown for a variety 
of antimalarial drugs [10–12]. In this study, we demonstrate that 
this effect even has pronounced shifts in allele frequencies after 
IPTp. Although these observations are from 2010 to 2012 and 
on the antimalarial drug MQ that is not recommended for IPTp, 
they present proof of concept that negative cross-resistance by 
IPTp treatment could provide a future strategy for malaria re-
sistance management. For instance, CQ, recently shown to 
have renewed efficacy after its withdrawal for treatment [42], 
or frequently used AL, could be combined with an antagonistic 
drug such as MQ or DP, either in combination therapy or as 

part of a rotation or multiple first-line treatment regime. The 
resulting effect would be opposing selective pressures on resist-
ance alleles and thus a slower rate of resistance fixation in the 
population. The exploitation of such negative cross-resistance, 
previously used in agriculture [43], has also been proposed to 
be used in insecticide treatment of bed nets to tackle resistance 
in mosquitoes [44] or as antibiotic resistance management [13]. 
Although this approach is not evolution-proof—pathogens may 
eventually evolve resistance against both drugs contemporane-
ously if general resistance mechanisms evolve [14]—it has the 
potential to slow the spread of resistance significantly. Of note, 
however, the selection observed in this study was transient in 
nature: the effect of IPTp treatment on selection for wild-type 
parasites had already disappeared 1 month after delivery. Thus, 
the effect of negative cross-resistance may only be evident 
when the mother has sufficient drug plasma levels after IPTp. 
Therefore, the role of selection from intermittent interventions 
such as IPTp on the overall parasite population may be limited. 
In all of the above, it is important to consider the limitation 
of relying on polymorphisms as resistance markers. Parasite 
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isolates with pfcrt and pfmdr1 polymorphism can still display 
diverse phenotypes in terms of resistance [45]. Ultimately, in 
vivo susceptibilities should be linked to these polymorphisms 
to support their role in resistance as well as the increase in MQ 
susceptibility of 86Y.

We did not observe an association between quintuple 
pfdhfr/pfdhps resistance carriage and adverse pregnancy out-
comes as one might expect in the face of competitive facilita-
tion shown in a previous study [2], although not confirmed in a 
recent meta-analysis [27]. However, although our study has the 
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advantage of 2 perfectly randomized treatment groups, which 
was a major limitation of the study by Harrington et al [2], the 
conditions in our study were not suitable to test the hypothesis 
of competitive facilitation appropriately. For the facilitative ef-
fect to occur, sufficient intrahost competition and, thus, high 

levels of MOI must be observed, possibly in the presence of the 
pfdhps polymorphism 581G. In addition, an untreated control 
group would allow for direct comparison between treated and 
untreated women. These conditions are rare, and therefore the 
true significance of the facilitative effect is difficult to verify in 
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different settings [24–26, 28]. In our study, the prevalence of the 
quintuple folate genotype was very high in Mozambique and 
Kenya, but here the pfdhps polymorphism 581G was absent. 
Multiplicity of infection was relatively low in comparison to 
the site where competitive facilitation was observed, with mean 
MOI between our different sites being 2.4 (Table 1) compared 
with 7.4 in the study by Harrington et al [2]. In the clinical trial, 
pregnancy outcomes were similar between the IPTp-MQ and 
IPTp-SP, although MQ recipients had less clinical malaria than 
SP recipients [29].

CONCLUSIONS

The future of IPTp-SP has been a topic of heated debate in 
recent years. The potential development of resistance and loss 
of efficacy, although not well documented so far, have led to 
discussions of whether IPTp-SP should be endorsed and under 
which conditions. In our study, we have shown a strong nega-
tive selective pressure of IPTp-MQ on pfmdr1 86Y, a polymor-
phism associated with CQ resistance and MQ susceptibility, but 
no detectable selective pressure from IPTp-SP. Although MQ is 
an unlikely IPTp candidate [29, 30], other drugs such as DP and 
AL might have the same effect [10–12]. The finding that IPTp-
drugs could lead to strong observable negative cross-resistance 
with other drugs, even during the short time frame of a preg-
nancy, opens an area for drug discovery that could potentially 
limit the spread of antimalarial resistance if designed with such 
evolutionary dynamics in mind [6]. With IPTp-DP as a suitable 
alternative for IPTp-SP [46, 47] and AL a common antimalarial 
drug for clinical treatment, the combination could indeed have 
great potential to slow the spread of resistance alleles.
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