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A B S T R A C T

Species distribution models that only require presence data provide potentially inaccurate results due to sam-
pling bias and presence data scarcity. Methods have been proposed in the literature to minimize the effects of
sampling bias, but without explicitly considering the issue of sample size.

A new method developed to better take into account environmental biases in a context of data scarcity is
proposed here. It is compared to other sampling bias correction methods primarily used in the literature by
analyzing their absolute and relative impacts on model performances.

Results showed that the number of presence sites is critical for selecting the applicable method. The method
proposed was regularly placed in the first or second rank and tends to be more proficient than other methods in
the context of presence site scarcity (〈100). It tends to improve results regarding environment-based perfor-
mance indexes. Eventually, its parametrization, requiring background knowledge on species bio-ecology, ap-
pears to be more robust and convenient to perform than those based on geographical criteria.

1. Background

Species distribution models (SDMs) are widely used in ecology to
predict species habitat distribution in space and time from the geo-
graphical coordinates of species occurrences and environmental fea-
tures that characterize species habitats (Pearson et al., 2007). Each
environmental feature corresponds, in practice, to a raster layer, i.e., a
grid of cells (or pixels), and each cell being associated with a numerical
or categorical value. Species distribution models can predict future
changes in species distributions regarding climate or habitat change
scenarios (Alimi et al., 2015).

Numerous SDM approaches are proposed in the literature, e.g.,
generalized linear model (GLM, Guisan et al., 2002), generalized ad-
ditive model (GAM, Guisan et al., 2002), artificial neural networks
(Pearson et al., 2002), support vector machine (Guo et al., 2005),
HABITAT (Walker and Cocks, 1991), genetic algorithms for rule-set
production (GARP, Stockwell, 1999), and Maxent (Phillips et al., 2006).
Some of them require both presence and absence data, whereas others –
presence-only, presence-background, and presence-pseudoabsence

models – require only species presence information and offer a sig-
nificant advantage because of the difficulty to obtain reliable absence
information (Hirzel et al., 2002; Peterson et al., 2011).

Among models exploiting only presence data, it has been shown that
presence-background models were more discriminant (Peterson et al.,
2011). Background sites are supposed to reflect all the environmental
conditions present in the study area and are generally randomly se-
lected. Maxent is a popular and widely used presence-background SDM
(Elith et al., 2006). However, similar to all presence models, Maxent is
very sensitive to sampling bias, as a result of different sampling efforts
from one environmental context to another (Elith et al., 2011; Phillips
et al., 2009).

Sampling bias can be due to heterogeneous geographical sampling
by, notably, favoring easily accessible areas, and can induce a sig-
nificant environmental bias. Biased input data can lead to incorrect
model outputs. Indeed, a model built with biased data corresponds
more to a model of the survey effort than a model of the actual species
habitat distribution (Phillips et al., 2009). Theoretically, sampling bias
is minimized when both the presence and the background datasets are
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equally biased (Phillips et al., 2009). This is achieved by transforming
the model input data using four approaches which can be categorized
according to two criteria: i) the dataset concerned with the transfor-
mation (presence sites or background sites); and ii) the implementation
spaces of the transformation (geographical or environmental space).
When the presence dataset is considered, the authors aim at modifying
its distribution to tend toward a uniform distribution, and the back-
ground set is obtained via a uniform random selection. The im-
plementation space of such an approach is either the geographical space
(see for example Boria et al., 2014; Kramer-Schadt et al., 2013) or en-
vironmental feature space (see Fourcade et al., 2014; Varela et al.,
2014). This approach seems to be effective, but requires many presence
sites (Fourcade et al., 2014). When the background set is considered, it
is built according to a selection bias that reflects the same sampling bias
than that existing in the set of presence sites. This approach does not
require many presence sites, but it requires the estimation of the sam-
pling bias (Phillips et al., 2009), which is not trivial. In the same way,
such an approach can be considered in either the geographical space
(Elith et al., 2011; Fourcade et al., 2014) or environmental feature
space (Hill and Terblanche, 2014; Moua et al., 2017).

Moreover, the number of presence sites used to build the SDM is
often limited because of the scarcity of the species or the inadequate
number of species records. Thus, many datasets suffer not only from
sampling bias, but also from a low number of presence sites.

Some authors have performed comparative studies of the methods
intended to correct the sampling bias effects (Fourcade et al., 2014,
Kramer-Schadt et al., 2013, Varela et al., 2014). The study by Fourcade
et al. (2014) compared and evaluated correction method performances
with different bias types and intensities. However, these studies have
not compared presence sites filtering and biased background ap-
proaches in the case of a small number of presence sites. As mentioned
above, a background-based correction method appears to be adapted to
a small number of presence sites more. Theoretically, the background-
based correction method implemented in the environmental space, as
proposed by Moua et al. (2017), handles environmental bias and is less
sensitive to a low number of presence sites. This study aims to em-
pirically compare this proposed correction method with other existing
ones – covering the four main categories previously described – in the
specific context of presence site scarcity.

2. Materials and methods

2.1. Correction methods

Four correction methods were considered to represent the four main
approaches described in the introduction. Only the method proposed by
Moua et al. (2017) is fully described hereafter since it has not yet been
described in detail in the literature. The three other methods are briefly
described; the reader is invited to consult related references for more
details.

Two methods consisting of estimating the sampling effort to adapt
the background set were implemented.

(1) The method initially proposed by Moua et al. (2017) (referred to as
BGenv hereafter) is based on the estimation of the sampling effort
within the environmental space. The principle, the implementation
of which is detailed below, is as follow: the sampling effort asso-
ciated with a given pixel i of the study area corresponds to the ratio
of the number of sampled pixels over the total number of pixels,
within the environmental neighborhood of i defined by using a
Gaussian-like membership function.

Firstly, all pixels of the study area are represented in the environ-
mental variable space. This is accomplished by performing a Principal
Component Analysis (PCA), a Multiple Correspondence Analysis (MCA)
or a Factor Analysis of Mixed Data (FAMD) (Pages, 2004) depending on

the fact that the set of environmental variables is, respectively, ex-
clusively numerical, exclusively categorical or a mix of both variables.
The factor analysis allows the representation of the pixels within a
Euclidean, orthonormal space defined from the whole set of environ-
mental variables.

The membership degree of a pixel j to the neighborhood of pixel i,
denoted wij, is defined by a Gaussian-like membership function:

=w d D0.5^( / )ij ij min
2 (1)

where dij is the Euclidean distance between i and j in the factorial space,
and Dmin the threshold distance over which j does not significantly
belong to the environmental neighborhood of i, i.e., over which
wij < 0.5. The membership degree wij has the following properties:

• wij ∈]0, 1];

• wij = 1 if dij = 0;

• wij < 0.5 if dij > Dmin

The parameter Dmin is set from a priori knowledge of the species bio-
ecology. Particularly, given P, the set of pixels where the species was
observed and U, the set of pixels where the species is known to be
absent, Dmin can be defined as follows:

= ∊ ∊D dmin ( )min p P u U pu, (2)

The general concepts of environmental space and environmental
neighborhood are schematically represented in Fig. 1.

Given X, the set of pixels of the study area, and S the set of sampled
pixels, the related sampling effort for pixel i, denoted zi, is defined as:

= ∊ ∊z w wsum /sumi j S ij k X ik (3)

When using a species target group (Phillips et al., 2009), the sets P
and S will be different. However, P and S will be the same if only the
target species is used to estimate the sampling effort. The relative
sampling effort is computed for each pixel of the study area and cor-
responds to the sampling bias within the environmental space. The
resulting map is then used to bias the random selection of background
points. The higher the sampling effort of a cell, the greater is the like-
lihood to select a background site in it. The algorithm for the con-
struction of the biased background set is shown in pseudo-code in a
supplementary file.

Hereafter, the set of background sites selected with this method is
denoted as bg_Cenv.

(2) For each pixel, Elith et al. (2011) proposed to estimate the sampling
effort, for any pixel i, by the ratio of the number of presence sites
and the number of terrestrial cells, in the geographical neighborhood
of i defined by a Gaussian-like membership function (method de-
noted as BGgeo). This sampling estimate based on geographical
criteria assumes that the habitat characteristics are similar within
the geographical neighborhood. Background sites are selected by
using a weighted random selection, and the weight distribution is
defined by the estimated sampling effort.

Hereafter, the resulting background set is denoted as bg_Cgeo.
The two methods chosen to implement the approach consisting of

manipulating presence sites, in order to make uniform the presence
data distribution in the study area, are:

(3) the method applied by Boria et al. (2014) (denoted Fgeo hereafter),
based on a geographical filter ensuring a more uniform distribution
of presence points within the geographical space, by reducing the
spatial aggregation of the samples. It consists of removing capture
sites located below a given distance from the others. This distance is
defined according to the home range of the species (Boria et al.,
2014).
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Hereafter, the set of the remaining presence sites, defining the
model input dataset, is referred to as pres_Cfgeo.

(4) The method proposed by Fourcade et al. (2014) (referred as to

Fenv), corresponding to a filter method based on environmental
criteria. This involves performing a principal component analysis
(PCA) on the environmental data associated with presence sites.
Subsequently, a cluster analysis is performed within the resulting

Fig. 1. Neighborhood of a pixel i in the environmental space represented by the first and second axes of the factorial analysis. The environmental neighborhood of
point i is represented by the Gaussian function. The blue lines define the limit of the neighborhood of i. Only point j is located above these lines. Thus j is in the
neighborhood of i in the first factorial plane (Adapted from Moua et al., 2017). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. Overall processing chain for data simulation, bias application, and the subsequent application, evaluation, and comparison of the correction methods in the
framework of Maxent modeling.
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PCA space, with the number of clusters set to half of the presence
site number. Subsequently, only one occurrence is randomly chosen
per cluster.

The set of selected presence sites is denoted as pres_Cfenv hereafter.
Table S1 (Supplementary file) summarizes the four approaches

previously described.

2.2. Simulation scheme for method evaluation

Virtual species data were simulated using the R software environ-
ment (R Development Core Team, 2018) and the R package virtual-
species (Leroy et al., 2015) to obtain baseline data and evaluate the
different methods in both absolute and relative ways. The simulated
datasets were generated building on: i) knowledge on the bioecology of

Fig. 3. Simulated response curves of the habitat descriptors of Anopheles darlingi.
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an actual species: Anopheles (Nyssorhynchus) darlingi Root (Diptera:
Culicidae), the primary malaria vector in the Amazonian region; ii) the
environmental data related to French Guiana, a French overseas region
located in South America between Suriname and Brazil, where malaria
is endemic-epidemic. Knowledge and data used to produce the simu-
lated datasets were retrieved mostly from the study by Moua et al.
(2017). They are briefly described here, but readers are invited to refer
to Moua et al. (2017) for details on how they were generated.

The general simulation methodology was inspired by Fourcade et al.
(2014). It comprised five steps that can be summarized as follows
(please see Fig. 2 and following paragraphs for implementation details):

1. A simulated presence-absence map was produced;
2. n presence sites were simulated through a uniform random selection

within the presence area of the presence-absence map. Among them,
we randomly selected, on the one hand, k presence sites called un-
biased presence sites and, on the other hand, k biased presence sites,
where k ∈ {20,50,100,150,200};

3. The four correction methods described above were applied to each
set of biased presence sites. The methods were parameterized as per
the current knowledge of the bioecology and behavior of the species
of interest, mainly in order to be placed in the application conditions
met by any user of these correction methods, and also because the
simulation of the effects of the parameterization would have made
the results too complex to be interpreted;

4. Maxent was applied to the unbiased data, biased data, and biased-
corrected data, and allowed building, respectively, an unbiased
model, a biased model, and a corrected model, the outputs of which
were habitat suitability maps. A reference presence-absence map
was also produced from the unbiased model. Thus, all items com-
pared in the evaluation phase are outputs of the Maxent algorithm,
ensuring that only the effects of sampling bias correction methods –
and not those specific to the Maxent algorithm – are evaluated;

5. Produced maps from the biased and biased-corrected data were
compared with maps obtained from the unbiased data.

This method was replicated 100 times for each value of k.
Thus, 500 unbiased models, 500 biased models, and 2000 biased-

corrected models (four correction methods × 500 biased models) were
built.

2.3. Simulated presence-absence map

The most contributive habitat descriptors to the habitat suitability
of An. darlingi in Moua et al. (2017), and those whose influence has
been demonstrated in the literature were chosen to build a presence-
absence map of the species at a 1 km spatial resolution. Selected habitat
descriptors were the urbanization percentage in the neighboring pixels
(derived from Human Footprint, de Thoisy et al., 2010), the density of
roads in m/km2 (derived from the BD TOPO®, a database on roads and
tracks of the French National Institute of Geographic and Forestry In-
formation, IGN), human presence and activities that non-permanently
alter natural environment (derived from Human Footprint, de Thoisy
et al., 2010), and the land use classes woodland savanna, swamps, mixed
high and open forest, and open forest from the land use map (Gond et al.,
2011). The response curves associated with these habitat descriptors
were rebuilt (see Fig. 3).

A normalized habitat suitability index map was obtained by com-
bining these response curves with an additive function to obtain a less
restrictive definition than a multiplicative one and obtain a habitat
suitability map as similar as possible to the one obtained by Moua et al.
(2017) (see Fig. 4). A logistic function deriving the presence probability
from the habitat suitability was used (see Leroy et al., 2015) to convert
this map into a presence-absence map, and thereafter, a prevalence rate
of 0.2 (20%) was applied (see Fig. 4).

2.4. Simulated unbiased and biased presence sites

Different steps were required to obtain unbiased and biased sets of
presence sites named pres_UNB and pres_B, respectively.

First, a set of n unbiased presence sites named pres_UNB_init was
generated by uniformly and randomly selecting the sites in the species
presence area provided by the presence-absence map. Subsequently, k
unbiased and k biased capture sites (constituting, respectively, the sets
pres_UNB and pres_B) were selected from the set pres_UNB_init. n was
chosen for each k so that pres_UNB and pres_B have a significant number
of sites in common. In practice, k was set to 0.7n, allowing pres_UNB and
pres_B to have at least 40% of the initial pres_UNB_init set in common.

pres_UNB was selected randomly and uniformly among
pres_UNB_init, whereas the random selection of the pres_B sites was
weighted by a simulated sampling bias inversely proportional to the
distance to the administrative capital (Cayenne) and the main road of
French Guiana (see Fig. 4). In fact, in French Guiana, the sampling was
generally performed near urban areas, and in villages where access was
facilitated by proximity to the main road located along the coastline
(Moua et al., 2017). An example of pres_UNB and pres_B sites, for
k = 20, were mapped in Fig. 4.

One hundred replicates were generated for each set pres_UNB and
pres_B and for each value of k.

2.5. Parameterization of the correction methods

The knowledge found in the literature and provided by experts of
the ecology of the An. darlingi species were used to parameterize the
correction methods described in paragraph 2.1 (Table S1 summarizes
the key aspects of such parameterizations).

2.5.1. BGenv
In this study, as in Moua et al. (2017), Dmin was calculated with

respect to the knowledge that highly urbanized areas are known to be
not suitable for An. darlingi (see, for example, De Castro et al., 2006;
Stefani et al., 2013). Consequently, we stated that a pixel associated
with An. darlingi presence cannot belong to the environmental neigh-
borhood of a highly urbanized pixel and, reciprocally, that a pixel
considered to be highly urbanized cannot belong to the environmental
neighborhood of a pixel where An. darlingi was observed. The distance
Dmin was consequently set as the minimum distance between the pixels
where An. darlingi was observed and the highly urbanized pixels, within
the environmental feature space. A pixel was considered to be highly
urbanized if it belonged to the Landscape type Urban and if its eight
neighboring pixels showed a mean urbanization percentage higher than
or equal to 50% (see hereafter and Moua et al., 2017, for details on the
environmental layers and their construction).

It is worth noting that in Moua et al. (2017), a species target group
(Phillips et al., 2009) was considered to define the set of sampled pixels
S and estimate the relative sampling effort with Eq. (3). Here, only the
(simulated) presence sites of the species of interest (P) were used to
estimate the relative sampling effort.

2.5.2. BGgeo
In this study, the standard deviation of the Gaussian function de-

fining the geographical neighborhood was set at 7000 m, which is the
maximum distance moved of An. darlingi found in the literature
(Charlwood and Alectrim, 1989).

2.5.3. Fgeo
The distance r, used to filter the presence sites and thus make the

presence site distribution uniform in the geographical space, was set at
7000 m for the same reason as for the previous method.

2.5.4. Fenv
In this study, a factorial analysis of mixed data (FAMD) (Pages,
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2004) was applied, instead of the PCA applied by Fourcade et al.
(2014), because of the presence of categorical and continuous en-
vironmental predictors. A hierarchical ascendant classification was
used, and the number of selected clusters was set to half of the presence
site number as in Fourcade et al. (2014). Subsequently, one capture site
was randomly selected from each cluster.

2.6. Environmental predictors and species distribution modeling

The seven environmental predictors used in Moua et al., 2017 were
considered to build models with Maxent (see complementary details on
the environmental variables in Supplementary file, Table S2):

− Geomorphological landscapes (Guitet et al., 2013);
− Geomorphological landforms (Guitet et al., 2013);
− Landscape types (Gond et al., 2011);
− Minimum altitude (from the STRM, NASA);

− Length of roads and tracks outside of urban areas (from the topo-
graphic database BD TOPO®, IGN);

− Percentage of urbanization of neighboring pixels (derived from
Human Footprint, de Thoisy et al., 2010);

− Human activities that non-permanently alter the natural environ-
ment (derived from Human Footprint, de Thoisy et al., 2010).

All raster layers had a resolution of 1 km2.
Maxent aims to estimate the habitat suitability of a given species by

determining the probability distribution of maximum entropy while
adhering to the constraints derived from occurrences data (see Phillips
et al., 2006, Elith et al., 2011, and Moua et al., 2017 for details).
Maxent version 3.3.3 k was used within the R environment.

Unbiased models were built from unbiased data (pres_UNB). These
models allowed to obtain the “reference” habitat suitability maps in
experimental conditions, HS_REC. Reference presence-absence maps
(PA_REC) were obtained by defining a prevalence rate of 0.2 from these

Fig. 4. Map of unbiased and biased presence sites, for k = 20. Cayenne city and the main road, which were used to weight biased presence sites selection, are
represented.
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maps.
Biased models were built from biased data (pres_B). These models

achieved the “biased” habitat suitability maps named HS_B.
Corrected models were built from biased data (pres_B) corrected

with the four correction methods. These models allowed to produce the
“corrected” habitat suitability maps, named HS_Cx, where x∈ {Fgeo,
Fenv, Bggeo, Bgenv}.

2.7. Metrics for evaluation of sampling bias correction methods

Three metrics were used to evaluate the ability of each model to
correct the effect of sampling bias:

− The area under the receiver operating characteristic curve (AUC). It
represents the overall probability of correctly separating the pre-
sence and absence sites. The AUC values were computed by com-
paring the resulting habitat suitability maps, to which a set of
thresholds was applied to obtain presence-absence maps, with the
presence-absence map PA_REC used as a reference. Thus, in this
study, the AUC is the capability of the model to distinguish presence
from absence and not presence from random as implemented in
Maxent (Phillips et al., 2006).

− The Schoener's index Dgeo, which was initially developed to quan-
tify the overlap of two species habitats in the geographical space
(Schoener, 1968). The index values range between 0 and 1, corre-
sponding to no and complete overlap between the two species, re-
spectively. Dgeo was defined as:

= ∙ ∣ ∣∊Dgeo p p p p( , ) 1–½ sumY Z i X Y i Z i, – , (4)

where pY and pZ are, respectively, the probability distributions of the
species Y and Z, obtained from the output of the model; pY,i and pZ,i are,
respectively, the probabilities of the presence of the two species as-
signed to the pixel i. In this study, pY,i and pZ,i are related to the same
species and are the probabilities of presence at i obtained, respectively,
using unbiased and corrected or biased data;

− The Schoener's index Denv initially developed for measuring the
overlap of habitat suitabilities of two species Y and Z, in the en-
vironmental space (Broennimann et al., 2012). Like Dgeo, Denv
ranges between 0 (no overlap) and 1 (complete overlap).

In this study, the environmental feature space was built by using a
FAMD. Subsequently, the first factorial plane was divided into m × m
cells, where m was arbitrarily set to 100. Each cell corresponds to a
specific and single environment vij, where i and j refer to the position of
the cell.

Denv was defined as:

= ∙ ∣ ∣∊Denv z z z z( , ) 1–½ sumY Z ij X Y ij Z ij, – , (5)

where zY,ij, and zZ,ij were, respectively, the densities of presence sites of
species Y and Z in the environment vij. In this study, zY,ij, and zZ,ij are the
densities of presence sites obtained at the environment vij, respectively,
with unbiased and corrected or biased data.

For a given experimental condition (unbiased, biased, or corrected),
the estimate of presence density was obtained by randomly selecting
the presence sites, with the corresponding habitat suitability map as
selection weighting. The number of present sites was arbitrarily set to
500 (see Broennimann et al., 2012 for details).

Three indexes were computed to quantify the relative impact of the
bias correction methods on model performances, as follows:

=AUC AUC AUC AUCΔ ( – )/(1– )Cx Cx B B (6)

=Denv Denv Denv DenvΔ ( – )/(1– )Cx Cx B B (7)

=Dgeo Dgeo Dgeo DgeoΔ ( – )/(1– )Cx Cx B B (8)

where x∈{Fgeo, Fenv, Bggeo, Bgenv}.
In the previous three equations, the value 1 stands for AUCUNB,

DenvUNB and DgeoUNB, i.e. the evaluation of the unbiased model output
compared with itself. In that sense, these indexes vary from−inf to 1. A
negative value indicates that the biased model outperformed the cor-
rected one, whereas a positive value indicates that the corrected model
outperformed the biased one; 1 shows that the corrected model was
perfectly corrected and was comparable to the unbiased one (Fourcade
et al., 2014).

3. Results

The distributions of AUC, Denv, and Dgeo values for the 100 re-
plicates are shown by boxplots in Fig. 5.

AUC ranged from 0.806 to 0.998, Dgeo from 0.504 to 0.829, and
Denv from 0.639 to 0.948.

The AUC and Dgeo results show that, for k ≤ 100, the higher the

Fig. 5. Boxplots of AUC, Dgeo, and Denv results as a function of the correction method and the number of presence sites.
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number of presence sites, the higher the AUC and Dgeo values. The
results were comparable for k > 100. No significant trend of Denv
values as a function of the number of sites was observed, regardless of
the correction method used. When considering the AUC, the method
BGgeo provided significantly better results than the other methods for
k ≥ 100.

Table 1 lists the percentages of positive values of the different re-
lative evaluation indexes as a function of the correction methods and
the number of presence sites. These values show the number of times
the corrected models yielded better results than the biased ones for each
experimental condition. These values show that, when the number of
presence sites was only 20 or 50, BGenv, on average, had achieved
better results than the other methods.

The mean relative rank of each method for each performance index
is shown in Fig. 6. The ranking varied by correction type and the
number of presence sites. Concerning ΔDenv, Fenv was the best method,
followed by BGenv when the amount of presences sites was 20. When

k = 50, BGenv appeared to provide the best results in terms of ΔDenv
and ΔDgeo, even if this result does not appear to be significant con-
sidering the dispersed values.

When the number of presence sites increased, BGgeo was ranked the
best in terms of ΔAUC, BGgeo, and Fenv in terms of ΔDenv, and Fgeo in
terms of ΔDgeo.

4. Discussion

This study aimed to present a new sampling bias effect correction
method in the framework of species distribution modeling and to
compare it with other representative approaches of the literature.

4.1. Absolute evaluation

The metrics AUC, Denv, and Dgeo allow the evaluation of corrected
models by comparing them with unbiased ones. Fig. 4 shows that, for
AUC and Dgeo, the higher the number of presence sites, the better the
performance of each corrected and biased model, and the lower the
variability of results.

Although Wisz et al. (2008) showed that Maxent is less sensitive to
the number of presence sites in comparison with other presence-back-
ground methods, this result shows that the performances were altered
when the number of presence sites was below 100. However, given the
variability of the results, it is difficult to declare the best correction
method using such an absolute evaluation approach.

4.2. Relative evaluation

Table 1 shows that, when the number of presence sites was 20 and
50, respectively 71% and 11% of models corrected with Fgeo provided
strictly identical results as the biased models, according to ΔAUC and
ΔDgeo. This is explained by the fact that all the presence sites were
located at a distance greater than r from one another, and that, con-
sequently, filtering had no effect. When the number of presence sites
was small (k 〈100), the percentages of ΔDgeo and ΔDenv strictly positive
values were higher for BGenv. Negatives indexes indicate that the cor-
rected models do not provide better results than the biased ones. It is
worth noting that Fourcade et al. (2014) also achieved results with
negative indexes, whereas they considered different biasing schemes

Table 1
Percentages of strictly positive values of ΔAUC, ΔDgeo, and ΔDenv.

Number of presence sites Fgeo Fenv BGgeo BGenv

ΔAUC 20 10 (71) 38 40 35
50 45 (11) 52 71 43
100 70 65 91 38
150 77 68 94 46
200 86 52 98 38

ΔDgeo 20 13 (71) 23 35 45
50 31 (11) 27 28 46
100 59 29 31 47
150 77 35 30 57
200 78 37 41 53

ΔDenv 20 53 61 52 68
50 58 66 58 69
100 67 82 71 67
150 69 84 70 67
200 66 79 72 65

A positive value shows that the corrected model performs better than the biased
one. The maximum of each evaluation index, for each value of k, is shown in
bold. The numbers in brackets represent the percentages of null values, i.e., the
percentage of cases where the corrected models and biased models were strictly
equivalent.

Fig. 6. Mean relative rank of the method according to the number of presence sites. The method that achieves the best results is ranked 1, and the method that
achieves the worst result is ranked 4. The black lines represent the standard deviation.
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and a high number of presence sites (2000). In this study, this may be
due to the simulation process of the sets of biased and unbiased data
(pres_B and pres_UNB). Indeed, these sets had a significant number of
presence sites in common with pres_UNB_init. The proportion of pre-
s_UNB_init selected to build pres_B and pres_UNB is 70%, which indicates
that at least 40% of pres_UNB_init were in both pres_B and pres_UNB
datasets, and that consequently, these two datasets share 60% of sites
(for example, for k = 20, pres_UNB and pres_B shared at least 11 pre-
sence sites). This proportion may have been too high, resulting in a
distribution of unbiased presence sites (pres_UNB) similar to the biased
ones (pres_B), and minimizing the effect of the different correction
methods. However, when very few sites are considered, it also appears
crucial to control the random component in the definition of pres_UNB
and pres_B, to ensure that the differences in performances between the
unbiased model and the corrected one arise more likely from the cor-
rection methods than from the random selection of the sites. Thus, the
chosen parameterization appeared the most appropriate by achieving a
good compromise.

The ranking results of the different methods showed a variation of
relative evaluation indexes according to the number of presence sites,
and no correction method appears to be the best one. However, when
we focus on a small number of presence sites, BGenv regularly achieved
the first or second rank regardless of the evaluation index used.

In this study, the rank difference as per the evaluation index could
be due to the random component in the selection of presence sites.
Indeed, for the assessment of AUC, the presence-absence map PA_REC

was used as a reference, whereas the assessment of Denv was based on a
weighted and random selection of 500 presence sites from the reference
habitat suitability map. Despite the weighting with the habitat suit-
ability, the random effect was significant. The assessment of Dgeo was
based on the probability distribution over the whole study area.
Notably, BGenv was ranked first or second when k ≤ 50, after Fgeo
according to ΔDgeo and after Fenv according to ΔDenv. This indicates
that BGenv allows a correction of the effect of sampling bias both in the
environmental and geographical spaces.

Thus, it is challenging to declare the best correction method re-
gardless of the number of presence sites, but the results show that
BGenv achieves significant correction effects when the number of pre-
sence sites is small.

4.3. Parameterization of correction methods

The methods Fgeo and BGgeo were parameterized by referring to
knowledge on the maximum distance moved of the species found in the
literature. The absolute evaluation shows that BGgeo achieved better
results than other methods when the number of presence sites increases.
This could be due to the relatively large distance (7000 m) chosen in
this study, supposed to be the maximum distance moved of An. darlingi.
Indeed, Barve et al. (2011) showed that the greater the surface of
background selection, the greater is the AUC.

However, the definition of r is not trivial, because the maximum
distance moved depends on the land use and land cover, variation of
environmental conditions in the area of study, and availability and
distribution of resources (resting and breeding sites, mammals – parti-
cularly humans for An. darlingi, a highly anthropophilic species – for
blood meals). Moreover, the flight range and habitat suitability are not
theoretically related. The assumption is that, if the species is present at
a specific location, according to its displacement distance r, it might as
well originate from any point within a radius of r. However, such a
definition is not directly based on assumptions on species habitat. A
more appropriate way to parameterize methods in the geographical
space would have been to consider the spatial autocorrelation of pre-
dictors (Naimi et al., 2011) in order to estimate the distance that makes
occurrences spatially independent, whatever the species. This approach
has not been implemented since we believe that it has not been applied
with such an objective in the literature, but also because it would

partially transpose in the geographical space, with an additional con-
straint of geographical contiguity, the notion of environmental proxi-
mity that has been implemented in this study through the Bgenv
method.

The parameterization of BGenv was based on the a priori knowledge
that An. darlingi cannot be present in a highly urban area. When re-
ferring to bioecological assumptions, the definition of Dmin in the en-
vironmental space is more robust than the definition of the geo-
graphical distance. For instance, in this study, it was based on
unambiguous and scientifically proven knowledge on the bioecology of
the species of interest (the fact that An. darlingi is not present in highly
urbanized areas), whereas the assumptions leading to the size of the
geographical buffer were highly questionable.

5. Conclusion

Since the 90's, SDM has been being increasingly used for various
objectives including invasive species expansion control, endangered
species track and reintroduction support, as well as health risk assess-
ment in the framework of zoonotic and vector-borne diseases, by
mapping the habitats of vectors and/or reservoirs of pathogens.
Consequently, important issues, ranging from safeguarding biodiversity
to public health, arise from SDM outputs and the capacity of correcting
sampling bias.

This study stresses that it is challenging to select the best correction
method, regardless of the number of presence data. However, when the
amount of presence sites is small (〈100), it shows that, besides produ-
cing relevant results validated by ecologists in a real study case (Moua
et al., 2017), the definition of a biased background defined in the en-
vironmental feature space appears to be the approach the most likely to
improve the model results, in comparison with other methods. Even if
this method was applied with the Maxent algorithm only, it could be
used in association with other presence-background modeling ap-
proaches, such as ecological niche factor analysis (ENFA) or GLM and
GAM. Eventually, it can contribute to the improvement of SDM relia-
bility in contexts of presence data scarcity.
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