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Pollutants, and more generally, environmental stressors, are a neglected source of
behavioral and cognitive variations in wild populations. Based on recent literature in
fish, we highlight four interesting research perspectives to better understand the effects
of pollutants on the links between fish behavior, cognition and fitness. First, (1) we
review the neurotoxic effects of pollutants on fish behavior, personality, and cognition.
These behavioral and cognitive effects could in turn affect the level of exposure
to pollutants, potentially generating feedback loops that may amplify the effects of
pollutants on fish fitness. Second, we propose that (2) the effects of pollutants should be
studied in a multistress context, i.e., in realistic environmental conditions in combination
with other stressors, because some stressors could amplify the behavioral effects
of pollutants on fitness. Third (3), existing studies show that physiology, personality,
cognition, and fitness components are often linked in syndromes. Pollutants could lead
to syndrome disruption, which could affect the evolutionary trajectories of exposed
populations. Future studies should thus focus on the complex links between traits to
better understand the consequences of stressors on evolutionary trajectories. Fourth,
(4) exposure to chronic pollution could lead to local adaptation or maladaptation, which
could result into high intraspecific variability of sensitivity among wild populations. In
addition, evolutionary responses to pollution could constrain, or be constrained by
evolutionary responses to other stressors. We thus encourage future studies to use
integrative approaches to bridge the gap between ecotoxicology, cognitive ecology and
evolutionary ecology in a multistress framework to tackle these exciting questions and
improve our ability to predict the effects of anthropogenic stressors on wildlife.

Keywords: temperament, contamination, global change, stress response, multistress, evolutionary
ecotoxicology, local adaptation

INTRODUCTION

Human activities are the sources of many organic and inorganic contaminants such as plastics,
pharmaceuticals, pesticides, and metals that have alarming impacts on terrestrial and aquatic
ecosystems (Scott and Sloman, 2004; Zala and Penn, 2004; Saaristo et al., 2018). However, our
ability to accurately predict their effects on wildlife is limited by several scientific challenges. Direct
effects of pollutants on animal physiology and mortality have been included as part of routine
ecotoxicology studies (Butcher et al., 2006; Ashauer et al., 2013), but more complex behavioral
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effects on animal personality and cognition are less studied,
especially in wild species and in realistic multistress conditions
(Zala and Penn, 2004; Saaristo et al., 2018). In addition, the
links between behavioral changes, cognitive performances, and
individual fitness are rarely taken into account when studying
contaminant effects, which limits our ability to predict the
cascading long-term impacts of human activities on population
persistence and evolutionary trajectories.

Here, we review the existing literature focusing on fish to
investigate the behavioral effects of pollutants in a multistress
perspective. Fish have been widely used for behavioral and
cognitive assays (Brown et al., 2006), and are used as “sentinel”
animals in ecotoxicology (Giulio and Hinton, 2008; Braunbeck
et al., 2013). We thus summarized (non-extensively) the existing
literature on the behavioral effects of pollutants in wild fish
(Table 1). As shown in Table 1, most previous studies used
ecologically relevant pollution levels, but they tested the effects
of contamination alone, i.e., in a single stressor framework.
However, pollution effects are often modulated by a concomitant
exposure to other natural or human-induced stressors in the
wild (Schinegger et al., 2016), which could result into synergistic
interactions and/or amplified effects on fish fitness (e.g., Gandar
et al., 2015, 2017a). Nonetheless, empirical data on multistress
effects on fish behavior are still rare (Table 1). In addition, strong
correlations often exist between traits (Réale et al., 2007; Conrad
et al., 2011; Sih, 2011; Sih and Del Giudice, 2012), but most
studies have measured behavioral traits in isolation (Table 1), and
pollutant effects on syndrome structure are still unclear (Killen
et al., 2013; Montiglio and Royauté, 2014). Finally, most previous
studies used domestic species or a single population of wild
species, so that the interpopulation variability and the evolution
of behavioral responses to pollution are rarely taken into account
(Table 1). Exploring the effects of pollutants on fish fitness
through behavioral and cognitive alterations in wild populations
and their evolutionary implications is thus an exciting scientific
challenge for the next decades.

Based on the existing knowledge gaps, we highlight four
promising research perspectives to better understand the effects
of pollution on behavior, cognition and their consequences
for fish fitness and population persistence (Figure 1). First,
we propose that (1) pollution may alter several behavioral
traits, as well as learning and memory abilities, with potential
cascading effects on fish fitness. Pollution-induced behavioral
alterations could potentially further increase the level of exposure
to pollution in the wild, resulting in positive feedback loops that
could potentially amplify pollution effects on fitness. Second, we
propose that (2) exposure to multiple stressors might now be
the rule, so that pollutants should be studied in combination
with other stressors that often modify the effects of pollutants
on fish behavior and fitness. Third, (3) stressors such as
pollutants could affect the links between physiology and behavior,
leading to syndrome disruption or reinforcement, with important
consequences for evolutionary trajectories. Fourth, we discuss
how (4) chronic pollution could lead to local adaptation or
maladaptation, due to plastic and/or genetic changes caused by
pollutants. Behavioral and cognitive responses are central in
adaptive processes, because they are shaped by past evolution,

and can in turn facilitate or impede adaptive responses to
pollution and other stressors (Sih et al., 2011) (Figure 1). With
this study, we hope to encourage future studies to use integrative
approaches bridging the gap between behavioral, cognitive and
evolutionary ecology to tackle these challenging questions and to
better understand the impacts of current and future stressors on
wild fish populations.

EFFECTS OF POLLUTANTS ON FISH
BEHAVIOR AND FEEDBACK LOOPS

Many pollutants have direct and indirect effects on the behavior
of terrestrial and aquatic organisms (Clotfelter et al., 2004;
Zala and Penn, 2004; Saaristo et al., 2018), especially in fish
(Scott and Sloman, 2004; Robinson, 2009; Sloman and McNeil,
2012). Inorganic and organic pollutants affect a wide array
of behaviors such activity, exploration, avoidance, sociability,
aggressiveness, sexual and feeding behaviors (summarized
in Table 1). Some studies have also tested the effects of
contaminants on behavioral types, or personalities, i.e., on
consistent interindividual variations in behavior (Réale et al.,
2007, 2010; Montiglio and Royauté, 2014). In addition, many
contaminants affect fish cognitive performances (Table 1), with
potential cascading effects on fitness (e.g., de Castro et al., 2009).

Some of these changes are underpinned by alterations of
cholinesterase activity, neurotransmitter or hormone levels (Scott
and Sloman, 2004; Brodin et al., 2014; Vindas et al., 2017). For
instance, carbofuran pesticide alters neurofunction and activity in
sea bass Dicentrarchus labrax (Hernández-Moreno et al., 2011).
Fluoxetine antidepressant (Prozac) alters aggression, boldness
and learning in the Siamese fighting fish Betta splendens by
altering the serotonin system (Kohlert et al., 2012; Eisenreich and
Szalda-Petree, 2015; Dzieweczynski et al., 2016). Other behavioral
changes could be indirectly due to changes in energetic balance
(Montiglio and Royauté, 2014), due to the costs of detoxification
and stress responses (Sokolova et al., 2012; Sokolova, 2013).
For instance, low doses of pesticides decreased activity in
goldfish Carassius auratus, likely due to increased costs of
detoxication and physiological defenses (Gandar et al., 2015,
2017a,b). However, more work is needed to fully understand the
neuronal and physiological underpinnings of pollution-driven
alterations of behavior and cognition (Brodin et al., 2014).

Interestingly, pollution-induced changes in behaviors could
potentially increase further the level of exposure to pollution and
result into positive feedback loops amplifying the negative effects
of pollution on fish fitness. However, only indirect evidence exists
so far. Indeed, spatial behaviors such as activity, exploration,
and avoidance are key behavioral traits that are often affected
by pollution. For instance, individuals living in metal polluted
sites (lead and cadmium) and having higher levels of metal in
their blood displayed slower exploration tendencies in great tits
Parus major (Grunst et al., 2018, 2019). In another example,
Trinidadian guppies Poecilia reticulata exposed to crude-oil
had decreased exploration tendency in an experimental maze
(Jacquin et al., 2017). Such impaired exploration tendencies
could in turn affect fish ability to assess habitat quality,
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TABLE 1 | Non-extensive summary of the existing literature on the link between pollution and behavior in fish.

Contaminant Ecological
relevance

Fish species Behavioral traits Multi-stress Syndrome Variability Source

Plastics

Microplastics Yes Bathygobius krefftii Boldness, exploration No No No Tosetto et al. (2017)

Microplastics Yes Acanthochromis
polyacanthus

Activity, feeding,
aggression

No No Yes Critchell and
Hoogenboom (2018)

Nanoplastics Yes Carassius carassius Activity, feeding,
exploration

No No No Mattsson et al. (2017)

Pharmaceuticals

Oxazepam Yes Perca fluviatilis Activity, boldness,
sociality, feeding rate

No Yes No Brodin et al. (2013)

Vinclozolin, flutamide
(chemotherapy)

Yes Betta splendens Activity, shoaling,
exploration, boldness

No Yes No Dzieweczynski et al.
(2018)

Ethinylestradiol Yes Betta splendens Boldness, activity No Yes No Dzieweczynski et al.
(2014)

Ethinylestradiol Yes Poecilia reticulata Sexual behaviors No No No Bayley et al. (1999);
Kristensen et al. (2005)

Fluoxetine Yes Several species Antipredator behavior,
boldness, aggression,
associative learning

Yes Yes No Eisenreich and
Szalda-Petree (2015);
Dzieweczynski et al.
(2016); Eisenreich et al.
(2017); Martin et al.
(2017); Saaristo et al.
(2017)

Various psychiatric
drugs

Yes Several species Boldness, aggression,
activity, feeding, anxiety

No No No Brodin et al. (2014)

Oxazepam Yes Salmo salar Migration Yes No No Hellström et al. (2016);
Klaminder et al. (2019)

Mixture Yes Neogobius
melanostomus

Aggression No No Yes McCallum et al. (2017)

Pesticides

Cocktail of French
pesticides (atrazine,
metolachlor,
isoproturon, linuron. . .)

Yes Carassius auratus Activity, foraging Yes No No Gandar et al. (2015,
2017a); Jacquin et al.
(2019)

Vinclozolin (fungicide),
DDE (DDT metabolite)

NA Poecilia reticulata Sexual behaviors No No No Baatrup and Junge
(2001)

Carbaryl, chlordane,
2,4 DMA, DEF, methyl
parathion,
pentachlorophenol

Yes Oncorhynchus mykiss Activity, feeding Yes No No Little et al. (1990)

Chlorpyryfos Danio rerio Spatial learning No No No Levin et al. (2003)

Glyphosate Yes Piaractus
mesopotamicus

Feeding No No No Giaquinto et al. (2017)

Glyphosate Yes Danio rerio Exploration,
locomotion,
aggression, memory

No No No Bridi et al. (2017)

Atrazine, linuron,
metolachlor

Yes Oncorhynchus mykiss Aggression, locomotion No No No Shinn et al. (2015)

Ethoprofos Yes Astyanax aeneus Avoidance, escape
behavior

Yes No No Sandoval-Herrera et al.
(2019)

Carbofuran Yes Dicentrarchus labrax Swimming activity No No No Hernández-Moreno
et al. (2011)

Carbaryl, diazinon,
malathion

Yes Oncorhynchus mykiss Swimming activity No Yes No Beauvais et al. (2001)

Other Organic Pollutants

PCB, PeBDE Yes Fundulus heteroclitus Activity, feeding No No No Timme-Laragy et al.
(2006); Couillard et al.
(2011)

(Continued)
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TABLE 1 | Continued

Contaminant Ecological
relevance

Fish species Behavioral traits Multi-stress Syndrome Variability Source

Nonylphenol (industrial
surfactant)

Yes Fundulus diaphanus Shoaling, recognition No No No Ward et al. (2008)

Metals

Mercury Danio rerio Activity, escape Yes No No Weber (2006)

Methylmercury MeHg Danio rerio Anxiety, locomotion No No No Maximino et al. (2011)

MeHg Yes Fundulus heteroclitus Activity, feeding No No Yes Zhou and Weis (1998);
Weis et al. (1999, 2001)

Metal mixture Yes Pimephales promelas Swimming performance No No No Kolok et al. (1998)

MeHg Yes Fundulus heteroclitus Sociality No No Yes Ososkov and Weis
(1996)

MeHg No Danio rerio Spatial learning No No No Smith et al. (2010)

Several metals (Cu,
Zn,. . .)

No Several species Avoidance, activity No No No Atchison et al. (1987)

Ag Yes Danio rerio Avoidance, swimming,
spatial learning

No No No Powers et al. (2011)

Cd Yes Oncorhynchus mykiss Sociality No No No Sloman et al. (2003)

PCBs and PAHs Yes Ameiurus nebulosus Aggression, activity,
escape response

No No Yes Breckels and Neff
(2010)

Trenbolone (agricultural
pollution)

Yes Poecilia reticulata Reproductive behaviors No No No Bertram et al. (2015);
Tomkins et al. (2018)

PAHs Polycyclic
aromatic hydrocarbons

NA Poecilia reticulata Exploration, activity,
sociality

No No Yes Jacquin et al. (2017)

Benzo[a]pyrene NA Oncorhynchus kisutch Territoriality No No No Ostrander et al. (1988)

PAHs Yes Neogobius
melanostomus

Competition No No Yes Sopinka et al. (2010)

The ecological relevance of the contamination level is indicated. Potential gaps regarding the testing of multistress effects, syndrome structure and population variability
are also reported.

because exploration is a key trait enabling individual to gather
information and cues about their environment (Reader, 2015).
Social interactions are also often altered by contamination (e.g.,
Ward et al., 2008), which could decrease social learning and
the acquisition of information from conspecifics (Laland and
Williams, 1997; Brown and Laland, 2003).

Spatial cognitive abilities such as spatial memory and
spatial learning ability are also often deeply impacted by
contaminants. For instance, aluminum contamination impaired
learning performance in a maze task in Atlantic salmon Salmo
salar, which could decrease their ability to process information
and cope with new environments (Grassie et al., 2013). Organic
pollutants such as pesticides also disturbed activity and spatial
memory in zebrafish Danio rerio and rare minnow Gobiocypris
rarus (Hong and Zha, 2019). Such adverse cognitive effects are
expected to have severe consequences for fish ability to learn
and memorize information to escape predators, find food and
mates, and to avoid polluted areas and food items. Contaminated
fish could thus have difficulties to collect, process and memorize
information about habitat and food quality, which might further
affect their exposure to pollution and result into positive
feedback loops. In addition, many pollutants affect dispersal
and migration, which could affect the exposure of animals to
pollution. For instance, pesticides and pharmaceuticals alter
downward migration and homing behaviors in salmonid fish
(e.g., Scholz et al., 2000; Hellström et al., 2016; McCallum et al.,

2019), which could potentially expose them to higher levels
of pollution if they cannot return to their clean home river.
However, furher work is needed to test these hypotheses.

Pollution also affects fish boldness, appetite, foraging patterns,
which could affect their level of dietary contamination (Montiglio
and Royauté, 2014). For instance, perch (Perca fluviatilis) exposed
to psychiatric drugs were more active and bolder than control
fish and had a lower latency to feed (Brodin et al., 2013). These
pollution-induced behavioral changes increased their foraging
rate on zooplankton in the water column, which is a prey
item potentially carrying a high dose of accumulated drugs
(Brodin et al., 2013, 2014). In addition, organisms exposed to
pollutants generally have higher metabolic rates and greater
energetic needs, because detoxifying and repair processes are
costly (e.g., McKenzie et al., 2007), which could increase their
activity and foraging, and hence their exposure to dietary-
transmitted pollutants (Montiglio and Royauté, 2014). For
instance, crucian carp Carassius carassius exposed to dietary
polystyrene nanoparticles through the food chain had altered
activity and higher feeding time, likely due to increased energetic
needs and/or altered brain structure (Mattsson et al., 2015, 2017).
This could thus increase their exposure to further pollution
in the wild, but empirical approaches are now needed to test
this assumption.

In summary, pollution-induced alterations of exploration,
sociability, memory, learning, appetite, boldness, and
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FIGURE 1 | Potential links between pollution, behavior and cognition, and proposed research perspectives (in red).

foraging could potentially in turn amplify fish exposure to
environmentally or dietary contamination, and generate positive
feedback loops (Montiglio and Royauté, 2014), with important
implications for fish fitness. However, only indirect evidence
exists so far, and further experimental studies are now needed to
test this hypothesis.

MULTIPLE STRESSOR EFFECTS ON
BEHAVIOR AND FITNESS

In addition, many behavioral disruptions caused by pollutants
are amplified in the presence of additional abiotic and biotic
stressors such as predators, parasites, or climate change. For
instance, pollutants are likely to affect how efficiently individuals
escape predators by altering activity, boldness, olfaction ability,
and learning abilities (Weis et al., 1999, 2001; Lürling and
Scheffer, 2007). Accordingly, copper impairs olfactory neurons in
fathead minnow Pimephales promelas, which alters their ability to
perceive alarm cues and increases their vulnerability to predation
(Dew et al., 2014). In another study, banded tetra Astyanax
aeneus exposed to an organophosphate pesticide had altered
avoidance behavior and a lower ability to escape a predator
attack (Sandoval-Herrera et al., 2019). As a result, the presence
of predators can reveal the ecological effects of pollution on fish

fitness through neuro-behavioral effects, resulting in lower fitness
for individuals exposed to both pollution and predators.

Other biotic stressors such as parasites could also modulate
the physiological and behavioral effects of pollutants. Indeed,
resistance to pollutants and parasites are often based on shared
neural and physiological pathways, which could result into
significant interactions between these stressors (Thilakaratne
et al., 2007; Blanar et al., 2009; Marcogliese and Pietrock, 2011).
For instance, contaminants and parasites both involve important
energetic, oxidative, and immune costs (e.g., Marcogliese et al.,
2005), potentially leading to synergic or antagonistic effects
depending on the metabolic strategy displayed (Sokolova et al.,
2012; Sokolova, 2013; Petitjean et al., 2019). Pollution-exposed
individuals generally invest more energy in costly detoxification
processes (Du et al., 2018, 2019) at the expense of immunity
(Dunier and Siwicki, 1993; Dunier, 1996), with potential
consequences for parasite resistance (Arkoosh et al., 1991, 2001;
Jansen et al., 2011; Rohr et al., 2013). For instance, three-spined
stickleback Gasterosteus aculeatus exposed to a polymetallic stress
were more susceptible to an immune challenge through changes
in oxidative responses (Le Guernic et al., 2016). Parasites and
their associated immune challenges could thus act as important
biotic constraints altering the effects of pollution on fish behavior
and fitness, but few studies experimentally tested this hypothesis,
especially in fish.
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Other stressors such as climate change and water warming
could also modulate the effects of pollutants, either through direct
effects on the chemical properties of pollutants, and/or through
complex interactive effects on neurophysiological pathways
(Schiedek et al., 2007; Noyes et al., 2009). For instance, exposure
to pesticides and water warming in goldfish had complex
interactive effects on goldfish Carassius auratus proteome and cell
integrity (Gandar et al., 2017b; Jacquin et al., 2019), and resulted
in antagonistic effects on fish foraging activity in fish exposed to
multiple stressors compared to fish exposed to single stressors
(Gandar et al., 2015). To conclude, pollution effects often depend
on the concomitant exposure to other biotic and abiotic stressors
(Dinh Van et al., 2013, 2014; Tüzün et al., 2015, 2017; Debecker
and Stoks, 2019; Saaristo et al., 2019), underlining the need for
multistress approaches to better predict the cognitive and fitness
consequences of pollution on wildlife.

POLLUTION AS A REVEALING OR
MASKING FACTOR OF BEHAVIORAL
SYNDROMES

Rather than being one-dimensional, animal personalities often
consist of a suites of interrelated traits, referred to as behavioral
syndromes (Sih et al., 2004; Réale et al., 2007; Conrad et al.,
2011; Sih, 2011; Sih and Del Giudice, 2012). In fish, several
consistent behavioral traits such as boldness, activity exploration,
and sociability are linked together in syndromes, with important
implications for fitness and evolutionary trajectories (Conrad
et al., 2011; Dochtermann and Dingemanse, 2013). For instance,
three-spined sticklebacks Gasterosteus aculeatus that are bolder
and more aggressive are more likely to escape predator attacks
and survive, resulting in higher fitness compared to other trait
combinations (Bell and Sih, 2007; Dingemanse et al., 2007).
Behavioral syndromes are also important for information use and
learning. For instance, sticklebacks that are more prone to explore
a maze have also a higher tendency to follow trained conspecifics,
with potential advantages for social learning (Nomakuchi et al.,
2009). It is thus important to take these syndromes into account
because they could help predict the effects of stressors on fish
fitness and cognition.

Various mechanisms could explain the links between
traits, such as genetic linkage, correlational selection, resource
allocation trade-offs, genetic or physiological pleiotropy
(Houston and McNamara, 1999; Aubin-Horth et al., 2012; Killen
et al., 2013). In fish, physiological traits and personality traits
are tightly linked. For instance, lineages of trout selected for
low stress responses have a lower production of cortisol and
higher metabolic rate, but are also bolder, more aggressive,
with a lower ability of reversal learning, compared to lineages
selected for high stress responses (Overli et al., 2002; Höglund
et al., 2017; Vindas et al., 2017). Stress responses and energetic
adjustments linked to metabolism thus seem central constraints
in determining syndrome structure and the links between stable
behaviors in fish.

Because pollutants often trigger important stress responses
and changes in metabolism, they have the potential to affect

the structure of behavioral syndromes, with consequences for
cognitive abilities and responses to environmental cues (Killen
et al., 2013). In particular, pollution can trigger a stress response
(cortisol production) that strongly affects energy status, energy
acquisition and metabolism (Schreck et al., 2016). By triggering
stress responses and enhancing the energetic demand, pollution
could thus alter the energy allocation between traits, creating the
potential for divergence in correlated physiology-behavior nexus
(Killen et al., 2013).

On one hand, stressors could have revealing effects on
syndromes by strengthening the links between traits (Killen
et al., 2013). Accordingly, the anxiolytic oxazepam drug
induced a correlation between boldness and activity in perch
Perca fluviatilis, which was only present after exposure to
the drug (Brodin et al., 2013). On the other hand, the
adverse neurophysiological effects of stressors could limit the
capacity of fish to express the full range of behaviors, and
reduce the phenotypic variations observed, thereby masking any
relationship between traits that was apparent under mild or single
stressor exposure (Killen et al., 2013). In this case, stressors
could have masking effects on syndromes by weakening any link
between traits. For instance, fluoxetine decreased the behavioral
correlations across contexts in Siamese fighting fish Betta
splendens (Dzieweczynski et al., 2016). In other cases, stressors
had no effects on behavioral nor physiological correlations, such
as in damselflies Ischnura elegans exposed to zinc (Debecker and
Stoks, 2019). The effects of pollution on syndromes are thus
not clear yet and deserve further investigations. The existing
literature suggest that pollutants indeed affect the structure
of syndromes (i.e., the links between traits) by affecting the
physiological-behavior nexus, but their specific effects seem to
depend on the nature/dose/duration of stressors.

In addition, syndrome structure can be shaped by past natural
selection, and have important implications for evolutionary
trajectories. Indeed, natural selection could select for particular
combinations of physiological, behavioral and cognitive traits
(Conrad et al., 2011; Sih et al., 2012). For instance, predation
favors the correlation between boldness and aggressiveness in
Gasterosteus aculeatus populations coexisting with predators,
because fish that are bolder and more aggressive are more
likely to escape predators and survive (Bell and Sih, 2007;
Dingemanse et al., 2007). It is also possible that pollution could
select for particular trait combinations, but few studies tested
this hypothesis (see Table 1). In addition, behavioral syndromes
could have different evolutionary implications depending on
the underlying mechanisms such as genetic correlations or
physiological trade-offs (Bell and Aubin-Horth, 2010; Conrad
et al., 2011; Dochtermann and Dingemanse, 2013). For instance,
genetic correlations resulting from gene pleiotropy could
potentially constrain the evolution of behavioral responses
to pollutants. In this case, behavioral correlations would be
relatively stable across environments, because such correlations
will be difficult to break apart via selection (Dochtermann and
Dingemanse, 2013). On the other hand, syndromes resulting
from physiological trade-offs resulting from resource allocation
could potentially change across environments, so that different
trait combinations could be found in natural populations
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depending on levels of pollution, resource availability and/or
other stressors (Bell and Aubin-Horth, 2010; Killen et al.,
2013). However, there is currently a lack of knowledge on the
underpinnings of behavioral correlations and syndromes in wild
fish exposed to pollution and their implications for evolutionary
trajectories (Conrad et al., 2011) (Table 1). Because syndrome
structure could facilitate or impede opportunity for adaptive
evolution (Sih et al., 2012; Dochtermann and Dingemanse, 2013),
further studies testing the effects of pollution on behavioral
syndromes are now necessary to refine our ability to predict the
evolutionary effects of pollution on behavior.

EVOLUTIONARY DIVERGENCE IN
BEHAVIOR UNDER POLLUTION

Interestingly, the burgeoning literature in evolutionary
ecotoxicology has shown that some fish populations having
evolved under chronic pollution have divergent response to
an experimental contamination, suggesting local adaptation to
pollutants (Bélanger-Deschênes et al., 2013; Oziolor et al., 2016;
Brady et al., 2017). For instance, killifish Fundulus heteroclitus
from highly contaminated environments have evolved genetic-
based physiological ability to cope with organic pollutants
(Reid et al., 2016; Whitehead et al., 2017). Some studies also
investigated the divergence in behavior caused by pollution, but
empirical evidence of behavioral local adaptation to pollution
through genetic evolution and/or plasticity is still scarce. For
instance, brown bullhead fish Ameiurus nebulosus from a
polluted river had a higher aggressiveness than fish from an
unpolluted river, but only F0 fish collected in the field were
tested (Breckels and Neff, 2010). In this case, it is difficult to
disentangle the genetic and plastic components of the observed
behavioral divergence in F0 generation, which limits our ability
to predict the consequences of pollution across generations.
In another study, guppies Poecilia reticulata having evolved in
Trinidadian rivers polluted by polycyclic aromatic hydrocarbons
(PAHs) had a lower exploratory tendency compared to fish
from unpolluted rivers after several generations raised in
common garden conditions (F1 to F3 generations), suggesting
genetic-based behavioral divergence among populations (Jacquin
et al., 2017). However, other studies on the same model species
showed little evidence of adaptive plasticity that would limit
the deleterious effects of pollutants on fitness, especially in
unpolluted environments (Rolshausen et al., 2015; Hamilton
et al., 2017). This suggests that adaptation to pollution might
be maladaptive in unpolluted environments, but more studies
are now needed to disentangle the relative role of plasticity
and genetic-based evolution in this potential maladaptation
(Rolshausen et al., 2015; Hamilton et al., 2017; Brady et al., 2019).

In addition, the evolutionary effects of pollutants remain
difficult to disentangle from other environmental stressors in the
wild, maybe because multiple stressors might exert conflicting
selective pressures (Jansen et al., 2011; Saaristo et al., 2018).
Adaptation to a particular stressor (e.g., contamination) might
for instance impede the adaptation to another stressor (e.g.,
parasite). Thus, adaptation to pollution might come at a cost,

depending on additional stressors (e.g., Dutilleul et al., 2017).
For instance, tolerance to pesticides is associated with increased
susceptibility to diseases in some amphibians and crustaceans
(e.g., Hua et al., 2017; Jansen et al., 2011). In the same
vein, European flounder Platichthys flesus populations living in
contaminated rivers display a lower tolerance to thermal stress,
although the underlying mechanisms remain to be determined
(Lavergne et al., 2015). On the other hand, some physiological
adaptations to one stressor could confer advantages against
additional stressors (co-tolerance, Vinebrooke et al., 2004). For
instance, some families of Atlantic salmon Salmo salar that are
tolerant to high-temperature are also more tolerant to hypoxia,
because of increased heart ventricle size and myoglobin levels,
although the evolutionary implications are still unclear (e.g.,
Anttila et al., 2013). In another study, some Daphnia magna
populations are co-adapted to warming and increased toxicity
(Zhang et al., 2018). However, most previous studies focused
on physiological and life-history traits, so that the evolution of
behavioral traits in a multiple stress framework remains unclear.
It is possible that some behavioral and cognitive responses to
pollution could bring fitness benefits in polluted environments,
but come at a cost in other environments. For instance, we could
hypothesize that decreased exploration caused by pollution (e.g.,
Jacquin et al., 2017; Grunst et al., 2018) could limit toxicant
uptake in polluted areas, but have detrimental effects when food
becomes scarce, because exploration brings benefits in terms of
foraging (Reader, 2015). In other words, pollution might change
the balance between costs and benefits of information processing
in animals, but the expected outcome for fish fitness and
evolutionary trajectories might depend on several environmental
and social factors that remain to be investigated.

Finally, plasticity (and hence behavioral plasticity)
generally plays an important role in evolutionary responses
to anthropogenic conditions (Price et al., 2003; Ghalambor et al.,
2007; Hendry et al., 2008; Sih et al., 2011). Behavioral changes
could drive evolutionary changes by exposing individuals to
new conditions (so-called “behavioral drive”) or in the contrary
limit evolutionary changes if plastic behavioral changes are
sufficient to mitigate the fitness effects of pollution (Huey et al.,
2003; Sol et al., 2005). Plastic behavioral responses to pollution
could thus promote or impede genetic selection depending on
environmental conditions, by facilitating or limiting the move
from one adaptive peak (e.g., past unpolluted environment)
to another adaptive peak (e.g., new polluted environment)
in the adaptive landscape (Price et al., 2003; West-Eberhard,
2003; Ghalambor et al., 2007; Sih et al., 2011). However, some
emerging pollutants such as new pesticides, pharmaceuticals,
plastics, and nanoparticles are new chemicals that fish have never
encountered in their environment in the past, so that polluted
environments might represent evolutionary novel conditions.
Past evolution is thus unlikely to generate suitable behavioral
responses to pollution that could enhance fitness, although this
might strongly depend on the species and on the type and dose of
stressor (Sih et al., 2011). Pollution-induced behavioral changes
could thus potentially generate maladaptive effects and generate
evolutionary traps (Sih et al., 2011; Brady et al., 2019), but this
hypothesis remains to be tested.
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CONCLUSION

To conclude, the existing literature underlines the need to take
into account pollution and their associated behavioral, cognitive
and fitness effects in a multistress context to better understand the
complex responses of wild fish to pollution and their potential
feedback loops. In addition, pollutants and multiple stressors
can affect the physiology-behavior nexus and modify syndrome
structure, which could generate interpopulation divergence in
behavior and personality. Future work should now determine
the evolutionary forces promoting such behavioral variability in
the face of increasing pollution, and their implication for the
evolutionary trajectories of wild populations. With this study,
we hope to encourage future studies to bridge the gap between
ecotoxicology, behavioral ecology and evolutionary ecology
to better anticipate the effects of pollutants on evolutionary
processes and population resilience in anthropized ecosystems.
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