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The distributions of highly mobile marine species such as cetaceans are increasingly 
modeled at basin scale by combining data from multiple regions. However, these 
basin-wide models often overlook geographical variations in species habitat relation-
ships between regions. We tested for geographical variations in habitat relationships 
for a suite of cetacean taxa between the two sides of the North Atlantic basin. Using 
cetacean visual survey data and remote sensing data from the western and eastern basin 
in summer, we related the probability of presence of twelve cetacean taxa from three 
guilds to seafloor depth, sea surface temperature and primary productivity. In a gen-
eralized additive model framework, we fitted 1) basin-wide (BW) models, assuming a 
single global relationship, 2) region-specific intercepts (RI) models, assuming relation-
ships with the same shape in both regions, but allowing a region-specific intercept 
and 3) region-specific shape (RS) models, assuming relationships with different shapes 
between regions. RS models mostly yielded significantly better fits than BW models, 
indicating cetacean occurrences were better modeled with region-specific than with 
global relationships. The better fits of RS models over RI models further provided 
statistical evidence for differences in the shapes of region-specific relationships. Baleen 
whales showed striking differences in both the shapes of relationships and their mean 
presence probabilities between regions. Deep diving whales and delphinoids showed 
contrasting relationships between regions with few exceptions (e.g. non-statistically 
different shapes of region-specific relationships for harbor porpoise and beaked whales 
with depth). Our findings stress the need to account for geographical differences in 
habitat relationships between regions when modeling species distributions from com-
bined data at the basin scale. Our proposed hypotheses offer a roadmap for under-
standing why habitat relationships may geographically vary in cetaceans and other 
highly mobile marine species.
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Introduction

Species distribution models (SDMs) are the most widely 
used statistical tools to examine relationships between spe-
cies distributions and environmental predictors (Elith and 
Leathwick 2009). One of the core assumption of SDMs is 
that relationships between environmental predictors and 
species occurrences are invariant over the modeling region 
(Dormann et  al. 2012, Miller 2012). In terrestrial species 
such as birds and amphibians, large geographical varia-
tions in patterns of habitat associations have been found, 
with modeled relationships differing substantially in shape 
between regions (Whittingham  et  al. 2007, Zanini  et  al. 
2009, Schaub  et  al. 2011). However, geographical varia-
tions in habitat relationships have been less studied in highly 
mobile marine species characterized by extensive distribu-
tional ranges such as seabirds, sea turtles, sharks and ceta-
ceans. Such geographical variations in habitat relationships 
may be a reason for poor spatial transferability of SDMs 
in ecological and conservation applications (Sequeira et al. 
2018), as found in some seabirds (Torres et al. 2015) and 
cetaceans (Redfern et al. 2017).

Marine survey programs implemented over the last 
decades have allowed collecting occurrence and abundance 
data on highly mobile species, but their coverages greatly 
vary between regions (Kaschner et al. 2012). In response to 
pressing marine resources management and conservation 
needs, a growing number of basin-wide SDMs have been 
developed by combining survey data from multiple regions 
(Mannocci  et  al. 2015, Cañadas  et  al. 2018, Virgili  et  al. 
2019). In these basin-wide SDMs, global habitat relation-
ships are modeled and thus, geographical variations in habi-
tat relationships between regions are generally overlooked. 
In this study, we tested for geographical variations in habitat 
relationships for a suite of cetacean taxa using data from two 
separate regions of an ocean basin.

Satellite remote sensing generates environmental data over 
basin scales that are compatible with the extensive distribu-
tional ranges of cetaceans, providing readily available predic-
tors for modeling these species distributions. Environmental 
predictors may describe important characteristics of the phys-
ical marine environment (e.g. sea surface temperature), or 
proxies of dynamic processes that enhance resource availabil-
ity (e.g. primary productivity) (Redfern et al. 2006). While 
cetaceans are unlikely to respond to temperature or primary 
productivity directly, their prey, which are ectothermic and 
characterized by intermediate trophic levels, are expected to 
respond to these predictors more directly. Correlative SDMs 
based on statistical relationships between environmental pre-
dictors and cetacean occurrences still provide little insight on 
the mechanisms underlying cetacean interactions with their 
environment (Dormann  et  al. 2012, Palacios  et  al. 2013). 
Nevertheless, these relationships effectively describe ceta-
cean habitats and underlie spatial predictions that are cru-
cial for management and conservation applications given 
ever-increasing risks to these species from human activities 

and global change (Becker et al. 2012, Roberts et al. 2016, 
Mannocci et al. 2017, Redfern et al. 2017).

Using visual survey data collected in two regions located 
on either side of the North Atlantic basin, we tested for geo-
graphical variations in relationships between the probability 
of presence of twelve cetacean taxa and three broadly available 
environmental covariates (primary productivity, sea surface 
temperature and seafloor depth). Our statistical approach 
based on hierarchical generalized additive models effectively 
accounts for region-specific differences when developing 
SDMs of highly mobile marine species over basin scales.

Material and methods

Cetacean visual survey data

We relied on visual sightings of cetaceans from systematic  
aerial and shipboard line transect survey programs conducted 
in two regions of the western North Atlantic (WNA) and 
the eastern North Atlantic (ENA) in summer between 2004 
and 2007 (Supplementary material Appendix 1). Surveys 
represented comparable effort on both sides of the basin (20 
763 km in the WNA and 19 823 km in the ENA). All visual 
survey data were collected following a standard distance sam-
pling methodology (Buckland et al. 2001). For each cetacean 
sighting, observers recorded identification to the closest possi-
ble taxonomic level (species, genus or family), group size, per-
pendicular distance and detectability covariates (e.g. sea state).

Twelve cetacean taxa (including ten species, one genus 
and one family) that were sighted on both sides of the North 
Atlantic basin were retained for the analysis. Taxa were 
grouped into three guilds (baleen whales: 340 sightings; deep 
diving whales: 445 sightings; delphinoids: 960 sightings) 
(Supplementary material Appendix 1 Table A1-3). Sighting 
distributions in both regions are shown for the three guilds 
in Fig. 1 and for individual taxa in Supplementary material 
Appendix 2.

For each taxon, effective strip half widths (ESHWs), giving 
the distances effectively surveyed on either side of the tran-
sects, were estimated by fitting detection functions to sight-
ings recorded by observers using conventional and multiple 
covariate distance sampling (Buckland et al. 2001), and then 
ranking these functions according to Akaike’s information 
criterion (AIC). To obtain sufficient sightings for detection 
function fitting, survey programs with similar observa-
tion protocols (e.g. using binoculars versus naked eye) were 
pooled (Roberts et al. 2016). All detection functions were fit-
ted using R mrds package ver. 2.1.10 (Laake et al. 2014) and 
documented by Roberts et al. (2016) (results are reported in 
Supplementary material Appendix 1 Table A1-4).

Survey transects were projected to an Albers equal area 
map projection, and then divided into segments approxi-
mately 10 km long (Roberts et al. 2016). The effective area 
surveyed for each segment was calculated as twice the ESHW 
multiplied by the segment’s length.
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Environmental covariates

We considered three environmental covariates that are read-
ily available over basin scales and known to affect the dis-
tribution of cetaceans or the distribution of their main prey 
species. These covariates are classical predictor variables in 
cetacean distribution modeling studies (Roberts et al. 2016, 
Tobeña et al. 2016, Lambert et al. 2017, Mannocci et al. 2017, 
Pennino et al. 2017, Rogan et al. 2017, Fiedler et al. 2018, 
Becker et al. 2019, Chavez-Rosales et al. 2019, Virgili et al. 
2019). Seafloor depth, a static covariate, strongly affects the 
distribution of cetaceans (Cañadas et al. 2002, Yen et al. 2004). 
It was derived from SRTM30_PLUS global bathymetry avail-
able at a 30 arc second resolution (< https://topex.ucsd.edu/
WWW_html/srtm30_plus.html >). Sea surface temperature 
(SST) shapes the distribution of ectothermic prey via physi-
ological processes (Dolomatov  et  al. 2013). It was derived 
from the GHRSST Level 4 CMC 0.2deg Global Foundation 
Sea Surface Temperature Analysis (< https://podaac.jpl.nasa.
gov/dataset/CMC0.2deg-CMC-L4-GLOB-v2.0 >) at 1 day 
(d), 0.2° resolution. Primary productivity (PP) influences 
mid-trophic level prey of cetaceans (including zooplankton, 
fish and squid) via trophic coupling (Croll et al. 2005). PP 
was derived from the vertically generalized production model 
(Behrenfeld and Falkowski 1997) (< www.science.oregon-
state.edu/ocean.productivity/ >) at 8 d, 9 km resolution and 
was log-transformed to reduce skewness.

After obtaining the original covariate grids, we pro-
jected them to the 10 × 10 km resolution Albers equal area 
grid used for the analysis, then sampled them at the survey 

segment centroids. We used bilinear interpolation for depth 
and trilinear interpolation with the date of the segment as 
the time dimension for dynamic covariates. While the range 
of sampled depth values was similar between regions, the 
sampled ranges of SST and PP were broader in the WNA 
(which included some warmer and less productive waters 
not present in the ENA) (Supplementary material Appendix 
3). We performed all geoprocessing using ArcGIS 10.2.2 
and the Marine Geospatial Ecology Tools software (Roberts  
et al. 2010).

Statistical modeling

Nonlinear smooth relationships were estimated between each 
environmental covariate and the probability of presence of each 
cetacean taxon using three types of models in a generalized addi-
tive model (GAM) framework (Wood 2017): 1) basin-wide 
(BW) models that assumed a single global habitat relationship 
(one per covariate) in the combined regions, 2) region-specific 
intercept (RI) models that assumed habitat relationships with 
the same shape in both regions, but allowed the intercept to 
vary to account for differing mean presence probabilities, and 3) 
region-specific shape (RS) models that assumed habitat relation-
ships with different shapes between regions.

In order to estimate relationships free from confounding 
statistical effects of potentially collinear covariates included 
the same model (Zuur et al. 2010), we only considered sin-
gle-covariate binomial GAMs.

To account for varying cetacean detectability between seg-
ments, we used a complementary log–log link function and 

Figure 1. Maps of sightings of the three cetacean guilds from line transect surveys in the WNA (a) and ENA (b). The 200 m isobath in light 
grey represents the continental shelf break. The 2000 m isobath in dark grey represents the outer continental slope. Maps of sightings for 
individual taxa are shown in Supplementary material Appendix 2.
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the logarithm of the effective area surveyed as an offset (Kery 
and Royle 2015). We used the restricted maximum likeli-
hood method for automated selection of smoothing param-
eters (Wood 2011). We set the basis dimension to 20 for the 
smoother in each model to allow for potentially complex 
nonlinear relationships. All models were fitted using R mgcv 
package ver. 1.8-26 (Wood 2018).

BW models, defined as follows, included a single global 
smoother with a thin plate regression spline basis with shrink-
age, allowing covariates with non-significant relationships to 
be identified:

Pj j∼ Binomial m( ) 	  

log log- -( )( ) = + ( ) + ( )log 1 0m j j jb A f x 	  

where:

Pj is the observed presence/absence in each segment j, 
assumed to be binomially distributed
µj is the estimated probability of presence for segment j
b0 is the intercept term
Aj is the effective segment area for j (model offset)
f is the smooth function of environmental covariate x
RI models were defined as BW models, but included region-
specific intercepts:

log log- -( )( ) = + + ( ) + ( )´log 1 0m j r j j jb b r A f x 	  

where r is a factor variable representing the region (WNA or 
ENA) and br is the region-specific intercept.

RS models included a factor–smooth interaction basis 
(Wood 2017) that allowed relationship shapes to vary between 
regions but assumed similar complexity (i.e. a hierarchical 
GAM; Pedersen et al. 2019). RS models were defined as:

log log- -( )( ) = + + ( ) + ( )´log ,1 0m j r j j j jb b r A f x r 	  

where f is the region-specific smooth of environmental covari-
ate x.

To test whether cetacean occurrences were best modeled 
with global or region-specific relationships, we compared the 
fit of BW and RS models to the combined cetacean survey 
data on the two sides of the North Atlantic, using a version 
of the Akaike information criteria (AIC) (Burnham and 
Anderson 2002) designed to account for the effect of smooth-
ing penalties on degrees of freedom (Wood et al. 2016). Then, 
to test whether the shape of relationships with the examined 
environmental covariates rather than just the mean cetacean 
presence probability differed between regions, we compared 
the fit of RS and RI models. A better fit of the RS model 
would indicate statistical evidence for differences in the shape 

of a given habitat relationship between regions. In contrast, 
a better fit of the RI model would indicate region-specific 
intercepts were sufficient to capture the difference in mean 
presence probabilities between regions. Finally, we visually 
assessed the differences in region-specific relationships esti-
mated from the RS models.

For two species (sei whale and harbor porpoise), the major-
ity of sightings occurred in a very limited range of environ-
mental covariates values. This resulted in ‘complete separation’ 
when fitting models, a known issue in binomial regression 
(Gelman and Hill 2006). Complete separation occurs where 
it is possible for multiple combinations of parameters in 
GAMs to lead to similarly shaped functions, thus resulting in 
very large confidence intervals for several domains of covari-
ate ranges (Supplementary material Appendix 4). The com-
plete separation issue was accounted for by replacing all zeros 
in the cetacean visual survey data with a very small but non-
zero value (set at 0.001). This was equivalent to assuming that 
even when the taxon was not observed in a given segment, 
it had a small but non-zero chance (0.1%) of being present. 
This approach stabilized confidence intervals without chang-
ing the average relationships between cetacean presence prob-
abilities and covariates (Supplementary material Appendix 4 
Fig. A4-1).

Results

Overall, RS models showed significantly better fits than BW 
models to cetacean survey data from the two sides of the 
North Atlantic (Table 1), indicating cetacean occurrences 
were best modeled with region-specific relationships. The RS 
model yielded significantly better fit (ΔAIC > 2) for 10 taxa 
with depth as the covariate and for 11 taxa with SST and with 
PP as the covariate (representing 32 of the 36 taxon-covariate 
instances, or 89%). Support for RS models over BW models 
was particularly strong for baleen whales, as indicated by the 
large ΔAIC.

RS models yielded significantly better fits than RI models 
in 23 of the 36 taxon-covariate instances (or 64%) (Table 1), 
indicating that for most taxa and covariates, the shapes of 
the relationships differed between regions, rather than just 
the mean probability of presence. RI models yielded signifi-
cantly better fits in only 14% of the instances (for beaked 
whales and harbor porpoise with depth, minke whale and 
bottlenose dolphin with PP, and pilot whales with SST). This 
indicated that in these instances, relationship shapes were 
not significantly different between regions, and differences in 
mean presence probabilities between regions were effectively 
captured by region-specific intercepts.

A visual comparison of region-specific relationships fur-
ther revealed ecologically important differences in habitat 
relationships of cetaceans between regions. Baleen whales 
showed striking differences in their relationships with all three 
environmental covariates between regions (Fig. 2), in accor-
dance with their distinct distributions in the WNA and the 
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ENA (found in on-shelf versus off-shelf waters, respectively; 
Fig. 1). For fin whale, both the shape of relationships and 
the average probability of presence differed between regions. 
For sei whale, relationships primarily differed in shape. For 
minke whale, the shape of relationships was comparable 
between regions but the average probability of presence was 
twice higher in the ENA relative to the WNA.

Deep diving whales showed contrasting relationships 
between regions (Fig. 2), except for pilot whales with SST, 
for which relationships decreased similarly and weakly in 
both regions. Beaked whales showed comparable depth 
optima between regions and a second higher depth optimum 
in the ENA only. Sperm whale and Risso’s dolphin showed 
divergent shapes of region-specific relationships with SST 
and PP with overall higher probabilities of presence in the 
WNA relative to the ENA. Beaked whales and pilot whales 
showed more similar but weak region-specific relationships 
with dynamic covariates (with very low deviances explained; 
Supplementary material Appendix 5).

Delphinoids showed contrasting relationships between 
regions, except in a few situations (Fig. 2). The pres-
ence of harbor porpoise consistently peaked at very shal-
low depth in both regions. Bottlenose dolphin showed 
the same PP optimum over the commonly sampled PP 
range in the two regions. For Atlantic white-sided dolphin 
and bottlenose dolphin, depth relationships had similar 
shapes, but slightly steeper decreasing trends in the WNA. 
Contrasting region-specific relationships were found in 
all other situations, with particularly divergent shapes for 
harbor porpoise and short-beaked common dolphin with 
PP, striped dolphin with SST and short-beaked common 
dolphin with depth.

Discussion

As more studies address broad-scale marine resource man-
agement and conservation issues by developing basin-
wide SDMs combining survey data from multiple regions 
(Mannocci  et  al. 2015, Cañadas  et  al. 2018, Virgili  et  al. 
2019), it is becoming critical to examine whether the mod-
eled habitat relationships vary between regions. We tested for 
geographical variations in habitat relationships for a suite of 
cetaceans across the North Atlantic basin. Overall, cetacean 
occurrences were better modeled with region-specific than 
with global habitat relationships, as revealed by the better 
fits of RS models over BW models (Table 1). The better fits 
of RS models over RI models for many taxa and covariates 
(Table 1) further provided statistical evidence for differences 
in the shapes of region-specific relationships. Our results 
stress the need to account for geographical differences in 
habitat relationships when modeling cetacean distributions 
from combined regional survey data. Our findings concur 
with those of Byrne  et  al. (2019) who found for another 
highly mobile marine predator – the shortfin mako shark – 
that relationships between shark resident behavior inferred 
from telemetry tracks and environmental covariates varied  
across ecosystems.

Seafloor depth, surface temperature and productivity have 
been effective predictors of diversity and distribution patterns 
of mobile marine species, including tuna, billfish and marine 
mammals at macroecological scales (Worm  et  al. 2005, 
Kaschner  et  al. 2006, Whitehead  et  al. 2008, 2010). Our 
results demonstrate that, while these predictors may relate 
to species occurrences in one way in one region, the shapes 
of relationships may drastically change in another region.  

Table 1. Comparison of the fits of basin-wide (BW), region-specific shape (RS) and region-specific intercept (RI) models relating cetaceans’ 
presence probability to seafloor depth, sea surface temperature (SST) and primary productivity (PP) (log-transformed), respectively. 
Comparison of the fits is indicated using change in AIC (ΔAIC). Colour coding for ΔAIC (BW versus RS): no colour when the RS model fits 
best and yellow when the BW model fits best. Colour coding for ΔAIC (RI versus RS): no colour when the RS model fits best and blue when 
the RI model fits best. The dash (–) character indicates that abs(ΔAIC) was ≤ 2 (undistinguishable difference in model fit). Detailed modeling 
results are available in Supplementary material Appendix 5.

Cetacean taxa

Depth SST PP
ΔAIC  

(BW versus RS)
ΔAIC  

(RI versus RS)
ΔAIC  

(BW versus RS)
ΔAIC  

(RI versus RS)
ΔAIC  

(BW versus RS)
ΔAIC  

(RI versus RS)

Baleen whales
  Fin whale 162 142 9 11 57 51
  Minke whale 30 – 19 – 11 −3
  Sei whale 28 29 14 15 29 26
Deep diving whales
  Beaked whales – −5 5 – 3 –
  Sperm whale 6 5 5 6 6 5
  Pilot whales 16 10 −8 −6 3 –
  Risso’s dolphin 4 3 25 15 17 –
Delphinoids
  Atlantic white-sided 

dolphin
6 8 5 6 8 8

  Bottlenose dolphin 4 5 6 4 −7 −5
  Short-beaked common 

dolphin
127 68 21 22 24 4

  Striped dolphin 20 – 9 3 7 –
  Harbor porpoise −11 −10 7 8 16 14
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Figure 2. Relationships between cetaceans’ presence probability and environmental covariates estimated from RS models. Shaded areas are 
95% confidence intervals for each estimated relationship. Dots represent presence/absence data (1/0 probability of presence, respectively) 
for surveyed segments in the WNA and ENA (dots have been offset vertically for readability). The narrower SST and PP range in the ENA 
led to truncated relationships in the ENA. Relationships estimated from BW models are shown in Supplementary material Appendix 6.
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The substantial differences in habitat relationships between 
the two sides of the North Atlantic suggests that the complex 
ecological rules governing cetacean distributions have yet to 
be elucidated.

We suggest some possible hypotheses for these detected 
geographical differences. Although these hypotheses are not 
testable with the current data, they represent a roadmap for 
future investigations that would help determine why habitat 
relationships may not be geographically consistent in ceta-
ceans and other highly mobile marine species.

1) Different habitat uses between regions. Because marine 
predators show stronger habitat selection when foraging than 
transiting (Heerah  et  al. 2017), different relationships are 
expected between regions where their habitat uses differ. For 
sei whale for example, satellite telemetry and simultaneous 
prey studies suggest a summer feeding ground in the region 
covered by the WNA surveys (Baumgartner  et  al. 2011, 
Prieto et al. 2014), whereas in the ENA, there is evidence that 
summer feeding grounds are located further north and west 
than the area surveyed (Sigurjónsson and Víkingsson 1997, 
Olsen et al. 2009). It is possible that sei whales sighted in our 
ENA study area were migrating individuals en route to feed-
ing grounds, while most individuals in our WNA area were 
foraging. This could explain sei whale’s negative relationship 
with PP in the ENA, but unimodal relationship in the WNA. 
Further telemetry studies at the basin scale are warranted to 
better elucidate cetacean habitat uses between regions.

2) Spatial population structure. One complicating con-
sideration when exploring habitat relationships across an 
ocean basin is the organisms’ spatial structuration into pop-
ulations or stocks. Migratory baleen whales are known to 
exhibit significant stock structure across the North Atlantic 
Ocean (Anderwald et al. 2011, Prieto et al. 2012). Animals 
that belong to spatially distinct stocks may exhibit different 
habitat or prey specialization because they have learned to 
forage in separate environments (this may lead to local adap-
tation) (Louis et al. 2014). Such spatial stock structure could 
be responsible for diverging habitat relationships of cetaceans 
that belong to distinct stocks.

3) Flexibility in prey preferences. As mostly opportunis-
tic predators, cetaceans may exhibit variable prey preferences 
that may express as spatial differences in modeled habitat 
relationships. Within the North Atlantic, fin whales mostly 
eat zooplankton in the Bay of Biscay (Spitz et al. 2018), but 
are well-known fish eaters on the northeast U.S. continental 
shelf (Kenney et al. 1997). Zooplankton and fish are expected 
to show distinct habitat relationships owing to their distinct 
trophic positions and physiology, in turn leading to distinct 
habitat relationships of predators that feed on them.

4) Changing correlations of proximal variables with ‘true’ 
variables. True factors driving cetacean distributions, such 
as forage prey availability, are intractable to measure over 
their vast distributional ranges. Consequently, variables 
widely available from remote sensing and assumed to be cor-
related with, or proxies for, these ‘true’ variables are tradi-
tionally used in SDMs (alternatively, prey variables derived 

from ecosystem model outputs such as SEAPODYM can 
be used (Roberts  et  al. 2016)). Correlations between these 
proximal and ‘true’ variables may change geographically 
(Dormann et al. 2012) because physical and biological pro-
cesses enhancing prey availability may differ between regions 
(Benson  et  al. 2011), thereby leading to geographically 
inconsistent relationships.

5) Dissimilar available habitat between regions. Differing 
geomorphology, oceanic currents and environmental gradi-
ents between the two sides of a basin are expected to affect 
the spatial distribution and configuration of habitat avail-
able to cetaceans. In the WNA, the Gulf Stream – a western 
boundary current that brings warm water from the Gulf of 
Mexico and generates strong temperature gradients off the 
U.S. east coast – and the North Atlantic subtropical gyre – 
which creates a strong eastward decreasing productivity gra-
dient (Tomczak and Godfrey 2003) – have no counterparts 
in the ENA. Thus, comparatively warmer and less productive 
waters not present in the ENA are available to cetaceans in 
the WNA and habitat relationships were estimated on wider 
ranges of SST and PP in the WNA. As habitat preferences are 
strongly tied to habitat availability (Beyer et al. 2010), dis-
similar habitat availability between regions will likely affect 
modeled habitat relationships of cetaceans.

6) Other factors than habitat per se. For some species, 
differences in mean presence probabilities between regions 
appeared better captured with region-specific intercepts 
than with regions-specific relationship shapes (as revealed by 
the better fit of the RI model over the RS model; Table 1). 
These findings suggest that other factors than habitat pref-
erences per se, such as anthropogenic pressures on cetacean 
populations, could be responsible for differences in mean 
presence probabilities between regions. Whales were widely 
hunted commercially until an international moratorium was 
declared in 1986, resulting in severe population depletions 
followed by a slow and geographically inconsistent recovery 
(Roman and Palumbi 2003). Present major threats to ceta-
cean populations include accidental mortality in fishing gear, 
pollution and ship strikes (Avila et al. 2018). Past or present 
anthropogenic pressures heterogeneously distributed across a 
basin are expected to affect cetaceans differently over their 
distributional ranges. However, disentangling anthropogenic 
pressures from environment-driven effects on species distri-
bution remains difficult, especially when histories of human 
pressures are unknown, or there is little information on the 
magnitude of their impacts (Yates et al. 2018).

A number of caveats applied to our analysis. First, for sur-
veys conducted as far apart as the two sides of an ocean basin, 
differences in data collection are inevitable, owing to regional 
contexts, experience of survey organizations and availability 
of survey platforms. Although all included surveys followed 
a standard distance sampling methodology (Buckland et al. 
2001), some differences in protocol occurred. For example, 
shipboard surveys in the WNA used high-powered binocu-
lars, while shipboard surveys in the ENA used naked eyes. 
We corrected for these differences on the presence probability 
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of all cetacean taxa by including the effective area surveyed 
per segment (a measure of detectability) as an offset in our 
models. We caution that potential small errors in these offsets 
could lead to over- or under-estimation of presence probabil-
ity on one side of the basin, with direct consequences on the 
magnitude of habitat relationships. As combining disparate 
survey datasets will remain a challenge (Virgili et al. 2019), 
we call for increased standardization of data collection proto-
cols between both sides of the North Atlantic basin.

In addition, cetacean habitat relationships were estimated 
from summer data only and from a limited number of years. 
Further replications of surveys on both sides of the North 
Atlantic would be needed to assess how relationships vary 
across seasons and years. Incorporating surveys from larger 
latitudinal extents should also allow sampling broader ranges 
of environmental conditions experienced by cetaceans across 
their distributional ranges. Continuing data sharing (e.g. via 
the OBIS-SEAMAP repository (Halpin et al. 2006)) will be 
essential for continuing to collate high quality survey data on 
cetacean distributions across ocean basins.

Habitat relationships may be sensitive to sampling design 
in the species distribution data. In at-sea surveys of cetaceans 
and other marine species, poor weather conditions are one of 
the biggest factors that can prevent the realization of planned 
surveys, often for entire days or longer periods of time, leading 
to potentially unsystematical survey designs. In Supplementary 
material Appendix 7, we assessed the sensitivity of  
region-specific relationships to the survey design by applying 
jackknife procedures that excluded survey samples of 1 d or 7 d, 
refitting the models and examining the resulting relationships. 
In both regions, the shapes of resulting relationships were con-
sistent with the shapes of overall relationships estimated from 
the full dataset, with very few of them falling outside the 95% 
confidence intervals of overall relationships (Supplementary 
material Appendix 7 Fig. A7-1, A7-2). These results under-
lined the robustness of habitat relationships to sampling design 
based on subsampling of both 1-d and 7-d survey periods.

Finally, habitat preferences of cetaceans result from com-
plex mechanisms that are both environmentally-mediated 
(in response to resource availability) and behaviorally-medi-
ated (arising from social, foraging or reproductive activities) 
(Palacios  et  al. 2013). These mechanisms cannot be fully 
elucidated using correlative SDMs, especially when sur-
vey datasets cover limited geographical extents. While SST 
and PP are classical dynamic predictors in cetacean SDMs 
(Roberts et al. 2016, Tobeña et al. 2016, Lambert et al. 2017, 
Mannocci et al. 2017, Pennino et al. 2017, Rogan et al. 2017, 
Fiedler et al. 2018, Becker et al. 2019, Chavez-Rosales et al. 
2019, Virgili  et  al. 2019), they represent rather indirect 
predictors for these top predators, particularly for beaked 
whales and pilot whales that forage at depth below the pho-
tic zone (as noted by the estimated weak statistical effects in 
Fig. 2). Progress from correlative to process-based modeling 
approaches informed by directed in situ studies will ulti-
mately uncover the mechanisms influencing cetacean habitat 
preferences (Palacios et al. 2013).

Conclusions

As large marine survey programs implemented over recent 
decades have opened up new possibilities for developing 
SDMs at basin scales, there is a risk for combining datasets 
from regions where species exhibit contrasting habitat rela-
tionships. Our statistical framework based on hierarchical 
GAMs allows testing for geographical variations in habitat 
relationships. Our findings revealed substantial differences in 
the relationships of cetaceans with three commonly included 
covariates across an ocean basin. Our proposed hypotheses 
provide a roadmap for better understanding geographical 
variations in the habitat relationships of cetaceans and other 
highly mobile marine species at the scale of ocean basins.
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