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Abstract: A vertical offset model for Vietnam and its surrounding areas was determined based on
the differences between height anomalies derived from 779 Global Navigation Satellite System
(GNSS)/levelling points and those derived from a dedicated high-resolution gravimetric-only
quasigeoid model called GEOID_LSC. First, the deterministic transformation model to effectively
fit the differences between the quasigeoid and GNSS/levelling heights was based on a third-order
polynomial model. Second, the residual height anomalies have been interpolated to a grid employing
Least-Squares Collocation. Finally, the distortions were restored to the residual grid. This model
can be used for combination with a gravimetric quasigeoid model in GNSS levelling. The quality of
GNSS/levelling data in Vietnam was analyzed and evaluated in this study. The annual subsidence
rate from ALOS-1 was also used to analyze the effects of subsidence on the quality of GNSS/levelling
data in the Mekong Delta. From this we made corrections to improve the accuracy of GNSS/levelling
data in this region. The offset model was evaluated using cross-validation technique by comparing
with GNSS/levelling data. Results indicate that the offset model has a standard deviation of 5.9 cm
in the absolute sense. Based on this offset model, GNSS levelling can be carried out in most of
Vietnam’s territory complying third-order levelling requirements, while the accuracy requirements
for fourth-order levelling networks is met for the entire country. This model in combination with the
developed gravimetric quasigeoid model should also contribute to the modernization of Vietnam’s
height system. We also used high-quality GNSS/levelling data and the determined quasigeoid model
to determine the geopotential value W0 for the Vietnam Local Vertical Datum. The gravity potential
of the Vietnam Local Vertical Datum is estimated equal to WLVD

0 = 62,636,846.81 ± 0.70 m2s−2 with
the global equipotential surface realized by the conventional value W0 = 62,636,853.4 m2s−2.

Keywords: quasigeoid; GNSS/levelling; gravity potential; local vertical datum

1. Introduction

Global Navigation Satellite System (GNSS) technology is used for positioning and navigation
activities because of its speed, convenience and accuracy. A drawback of GNSS is that it provides to the
user a high-precision ellipsoidal height, which is not physically meaningful. To convert an ellipsoidal
height to a physical height, i.e., orthometric (H) and/or normal height (H*), one has to subtract the
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height anomaly (ζ), being the vertical distance between the quasigeoid and the reference ellipsoid,
as follows:

H* = h − ζ (1)

This is the basic formula in GNSS levelling. For local or regional applications, a geoid/quasigeoid
with an accuracy of few cm is required to determine the height anomalies. For GNSS levelling
applications since the late 1990s in Vietnam, Global Gravity field Models (GGM) have been used:
EGM96 [1] at first, and currently EGM2008 [2]. However, EGM2008 has a standard deviation (STD) of
29.1 cm when compared with GNSS/levelling points in Vietnam [3], and its accuracy is insufficient
to meet fourth-order levelling network specifications (a misclosure of 25

√
k mm over a distance of k

km). A high-resolution gravimetric-only quasigeoid model (GEOID_LSC) was recently determined
for Vietnam [3]. This model has a mean bias of 50 cm, STD of 9.7 cm and differences ranging from
13.6 to 81.6 cm when compared with a set of 812 GNSS/levelling points. It should be noted that in
this study the zero-degree term was not included in the evaluation. The principal reason for the
large mean bias is that there is an inconsistency in the reference systems in these vertical datum
realizations. The quasigeoid refers to a global reference system, i.e., an international reference gravity
potential W0 = 636,853.4 m2s2, whereas the heights determined from levelling refer to the national
Mean Sea Level (MSL), called the Vietnam Local Vertical Datum (VLVD). The MSL over 1950–2005 for
a single tide gauge in the north of Vietnam, called Hon Dau (20◦40’, 106◦49’), was assigned to zero
height on the VLVD. With its large mean bias, the gravimetric quasigeoid model does not allow the
accurate transformation of GNSS ellipsoidal heights to physical heights in the VLVD. Most often, the
gravimetric quasigeoid or geoid model is forced to fit onto the local vertical datum. Such a hybrid
quasigeoid/geoid model is used to convert GNSS ellipsoidal heights to physical heights. Most countries
make continuous efforts to determine and improve their hybrid geoid or quasigeoid model successfully.
For comparison, Table 1 shows the accuracy of several local hybrid geoid or quasigeoid models, and
notably of neighboring countries in Asia. The resulting standard deviations obtained for the most
recent hybrid models range from a few cm up to 15 cm, depending on the quality of the available
gravity and GNSS/levelling data for the hybrid geoid/quasigeoid determination.

Table 1. Statistics of selected local hybrid geoid or quasigeoid models.

No Country, Region Name Year STD (cm) Geoid Type Reference

1 Australia

AUSGeoid98 2005 11.8 Hybrid quasigeoid [4]

AUSGeoid09 2009 3.0 Hybrid quasigeoid [5]

AUSGeoid2020 2018 2.7 Hybrid quasigeoid [6]

2 Japan
GSIGEO2000 2002 4.0 Hybrid geoid [7]

GSIGEO2011 2014 1.8 Hybrid geoid [8]

3 South Korea
KNGeoid13 2013 5.4 Hybrid geoid [9]

KNGeoid14 2014 5.2 Hybrid geoid [9]

4 Thailand THAI12H 2012 15.8 Hybrid geoid [10]

5 Philippines PGM2016 2016 2.2 Hybrid geoid [11]

6

Peninsular
(Malaysia) VMGEOID04 2018 5.0 Hybrid geoid [12]

Sabah and Sarawak
(Malaysia) EMGEOID05 2018 10.0 Hybrid geoid [12]

7 Hong Kong HKGEOID-2000 2004 1.7 Hybrid geoid [13]

8 Shenzhen SZGEOID-2001 2004 1.4 Hybrid geoid [13]

It is well known that the Local Vertical Datum (LVD) determination by levelling contains the
distortions caused by vertical crustal movement and systematic cumulative errors associated with
leveling surveys over long distances [14,15]. So, the problem with this fitting method is that the surface
realized after the transformation, despite providing more or less rigorous results for the application
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of levelling with GNSS, is not an equipotential surface anymore, hence its physical meaning and
applications in the rest of the geosciences are limited. This hybrid geoid/quasigeoid model aims
only at providing a model of the separation between the reference ellipsoid and the LVD rather
than determining the classical geoid/quasigeoid as an equipotential surface of the Earth’s gravity
field. An alternative method for the definition of a vertical datum by GNSS levelling is to use the
local gravimetric-only quasigeoid model for determining a vertical offset model (distance between
the gravimetric-only quasigeoid and an LVD). This procedure is more realistic because it does not
constrain the local gravimetric quasigeoid to be coincident to the LVD. This offset model can be
used to convert ellipsoidal heights into the local physical heights where the current LVD needs to
be maintained. On the contrary, we may also use this offset model to redefine and recalculate a
modern VLVD by adding it to the available levelling data. Such an offset model has been successfully
applied in modernizing the height reference system, for instance in New Zealand [16] and Canada
(https://www.nrcan.gc.ca/earth-sciences/geomatics/geodetic-reference-systems/9054).

Significant trends in national levelling networks have been documented in several countries as in
Thailand (a significant tilt of −0.126 mm/km in north–south direction and 0.008mm/km in east–west
direction [10]), in Canada (a tilt of −0.26 cm/degree in the north–south direction and 0.52 cm/degree in
the west–east direction [17]) as well as in the USA (a large northwest–southeast tilt in NAVD88 data
with respect to the geoid derived from the Gravity field and steady-state Ocean Circulation Explorer
(GOCE) [18]) or Western Australia (a tilt of 0.27 mm/km in the north–south direction and 0.07 mm/km
in the east–west direction [19]). Vietnam stretches from north to south (about 2000 km) while the
original point of the height system is located in the north. Therefore, it is likely that a north–south tilt
would be also present in the vertical network of Vietnam, thus inherited in the levelling data that will
be analyzed in this study. Moreover, thanks to recent studies, the Mekong Delta is known to be affected
by significant land subsidence [20,21]. With an average subsidence rate of 1.6 cm/year and extreme
locals up to over 2.5 cm/year [20,21], the influence of land subsidence is significant on the quality and
maintenance of levelling data in the Mekong Delta when compared to the rest of Vietnam. As such,
distortions might be expected in the GNSS/levelling data in Vietnam, and because the computation of an
offset model using Least-Squares Collocation (LSC) assumes stochastic observations, any deterministic
biases and trends must be removed.

It should also be noted that each country defines its own MSL, and the height systems are defined
based on this MSL. As a result, currently there are more than 100 LVDs in the world nowadays.
Moreover, many vertical datums may even exist within a single country, especially for archipelagic
countries such as the Philippines [22], Indonesia [23] and New Zealand [24], where the MSL may be
subject to variations. The variability of the MSL is one of the reasons why the quasigeoid surface can be
rigorously used for unifying the different LVDs. The deviation of the MSL from the equipotential surface
of the geoid/quasigeoid, known as the (stationary) mean dynamic topography, is quite significant and
in some parts may reach the order of ±2 m [25]. These facts will affect the definition and the unification
of LVDs separated by oceans if the MSL is to be used as the height reference. Moreover, due to Sea
Level Rise (SLR), recorded in some areas from tide-gauge and satellite altimetry observations, MSL
may vary over time. In our study area, it has been proven from the analysis of 12 tide gauge station
records over the period 1960–2013 that the Sea of Vietnam is affected by such SLR [26]. Sea level is
rising with rate of 3.0 mm/year on average along Vietnam’s coast, while for the period 1993–2013 it
was 4.5 mm/year (excepting Hon Dau station at 2.6 mm/year). Thus, from 1993 to present, the MSL at
Hon Dau station has risen about 7 cm (2.6 mm/year for over 27 years). Despite this rate of sea level
rise, levelling networks have not been re-adjusted in order to accommodate this change. This is also a
disadvantage when using MSL as reference for the height system.

An LVD is considered as an equipotential surface defined by a geopotential value (WLVD
0 ); hence,

in the traditional sense of height systems, WLVD
0 is the potential of the MSL. As mentioned above,

more than 100 LVDs exist in the world today, so unification of these vertical datums is required to
implement engineering projects between countries and improve flooding observations and modeling

https://www.nrcan.gc.ca/earth-sciences/geomatics/geodetic-reference-systems/9054
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at regional scales. The connection of height systems located on one continent can be done by geodetic
sprit levelling in combination with gravity measurements, but height systems separated by sea cannot
be unified in this manner. Even at the national scale, the Vietnam LVD is only valid for the continental
territory but not for the islands and territorial waters of Vietnam. Thanks to the high-resolution
GEOID_LSC model [3], we were able to determine the height for the whole islands towards unifying
the height references for Vietnam. Moreover, this model is also used in combination with high-quality
GNSS/levelling data (referring to the VLVD) for estimating the gravity potential value of the VLVD to
connect the height system of Vietnam with the neighboring countries. According to the International
Association of Geodesy (IAG) resolution No.1, 2015, the international conventional reference gravity
potential, denoted by W0, is considered equal to 62,636,853.4 m2s−2 [27]. From this value, Height
System Unification (HSU) can be realized to connect height systems together by determining potential
differences referring to the conventional value. Knowing the gravity potential of LVD, the gravity
potential difference of every LVD and the LVD offset values between all the LVDs can be determined.
Therefore, determining the gravity potential value of LVD plays an important role in the HSU.

The objective of this study is to determine an offset model for converting ellipsoidal heights
into the local normal heights in Vietnam. This offset model is applied to the local gravimetric-only
quasigeoid model for GNSS levelling technology giving an accuracy that complies with third-order
levelling specifications. The accuracy of the offset model depends on the quality of the height anomalies
derived from the GNSS/levelling data used in the calculation. Therefore, analyzing and improving the
accuracy of the GNSS/levelling data will also be an important part of this research. The effects of local
subsidence in South Vietnam is also discussed from the analysis of ground deformation measurements
derived from permanent GNSS stations and InSAR (Interferometric Synthetic Aperture Radar) time
series. Based on the results of land subsidence derived from InSAR, the corrections were applied on
the GNSS/levelling data in the Mekong Delta. Finally, high-quality GNSS/levelling data were used to
assess the accuracy of the developed offset models based on the cross-validation technique [28] and
determine the gravity potential value (W0) for the VLVD.

2. Materials and Methods

2.1. Offset Model Determination Methodology

The offset ε of the existing VLVD with respect to the local gravimetric-only quasigeoid is given as
the differences between height anomalies derived from GNSS/levelling data (ζGNSS/levelling) and from
the model GEOID_LSC (ζ):

ε = ζGNSS/levelling
− ζ− ζ0 (2)

where ζ0 represents the contribution of the zero-degree harmonic term to the GGM with respect to a
specific reference ellipsoid [29].

ζ0 =
GM−GM0

Rγ
−

W0 −U0

γ
(3)

The parameters GM0 and U0 are the geocentric gravitational constant of the reference ellipsoid
and the normal gravity potential, respectively. The WGS-84 ellipsoid is used as the reference ellipsoid
for computation of GEOID_LSC, GM0 = 398,600.4418 × 109 m3s−2 and U0 = 62,636,851.7146 m2s−2

(report of the National Imagery and Mapping Agency (NIMA) [30]), while the Earth’s geocentric
gravitational constant GM and the gravity potential Wo are set to GM = 398,600.4418109 × 109 m3s−2

and W0 = 62,636,853.4 m2s−2. The mean Earth radius R is taken equal to 6371 km, and the normal
gravity γ at the surface of the ellipsoid is computed by using Equation (4-60) of Hofmann-Wellenhof
and Moritz (2006) [29].

The offsets (ε) can be decomposed into two components, the distortion and the residual. The former
may contain long and/or medium wavelength errors of local gravimetric quasigeoid model, and/or
some bias and trends of GNSS/levelling height anomalies due to vertical crustal movements and
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systematic cumulative errors associated with levelling surveys over long distances. A schematic flow
of the strategy is shown in Figure 1.
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In order to remove distortions in these offsets, a four parameter Helmert-type similarity
transformation model is often employed for fitting gravimetric quasigeoid model to GNSS/levelling
data [30,31]. However, in the GNSS/levelling data of Vietnam, inherent tilts may exist, so some models
with parameters representing for spatial tilts, such as linear in ϕ and λ, second-order polynomial and
third-order polynomial, will also be tested:

a. linear in ϕ and λmodel:
ε′ = a0 + a1ϕ+ a2λ+ ε (4)

b. second-order polynomial model:

ε′ = a0 + a1ϕ+ a2λ+ a3ϕ
2 + a4ϕλ+ a5λ

2 + ε (5)

c. third-order polynomial model:

ε′ = a0 + a1ϕ+ a2λ+ a3ϕ
2 + a4ϕλ+ a5λ

2 + a6ϕ
3 + a7ϕ

2λ+ a8ϕλ
2 + a9λ

3 + ε (6)

d. four parameter Helmert model:

ε′ = a1cosϕcosλ+ a2cosϕsinλ+ a3sinϕ+ a4 + ε (7)

After removing distortions from the offsets of GNSS/levelling points we will get residual offsets
(∆ε = ε − ε′), which will be then interpolated to a 5’ grid with LSC using the GRAVSOFT GEOGRID
program [32]. The covariance function was evaluated using a second-order Gauss Markov model as

KN(ρ) = Ko(1 + Aρ)e−Aρ (8)

where Ko is the variance of the observations ∆ε; A is a parameter related to the correlation length; ρ is
the distance measured in km. An offset model is created by adding the residual offset to the distortion
component. Thus, a gravimetric quasigeoid model and an offset model on 5’ grids can be determined.
The normal height at a point is then obtained as

H∗ = h− ζ− ε (9)
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where the gravimetric quasigeoid height anomaly (ζ) and offset (ε) are interpolated from the grids.
Most often, the same GNSS/levelling data are used both to create and test the hybrid model.

This strategy is flawed because it is insensitive to errors in the GNSS/levelling data. Specifically,
any error in the GNSS/levelling data will cause the same error in the combined model. However,
this error will not be apparent when compared to the same GNSS/levelling data (the error of the
hybrid quasigeoid in this case is only a few centimeters, this will be clarified in Section 5). Therefore,
a cross-validation technique is used in this study, in which one GNSS/levelling point at a time is
omitted from each offset model prediction, and that point is then used to assess the hybrid model. This
is repeated for all points in the dataset. Importantly, this gives a more objective assessment of the
gravimetric quasigeoid and offset model.

2.2. Data for the Determination of the Offset Model

2.2.1. Gravimetric Quasigeoid Model (GEOID_LSC)

A gravimetric-only quasigeoid model (GEOID_LSC) was determined for Vietnam and its
surrounding areas based on new gravity data [3]. A set of 29,121 land gravity measurements
has been used in combination with fill-in data where no gravity data existed. A mixed model (‘GOCE
DIR5 plus EGM2008’, [3]) up to degree/order 2159, plus Residual Terrain Model (RTM) effects and
gravity field derived from altimetry satellites were used to provide the fill-in information over land and
marine areas, respectively. The mixed model up to degree/order 719 was used for the removal of the
long and medium wavelengths and the calculation of the quasigeoid restore effects. The 90 m resolution
SRTM3arc_v4.1 [33] was used as the detailed Digital Terrain Model (DTM) over land areas in computing
the RTM effects, whereas the 15” resolution Digital Bathymetry Model (DBM) SRTM15arc_plus [34]
was used over sea. The residual height anomalies have been determined employing Least-Squares
Collocation (LSC). The 5’ resolution GEOID_LSC model was determined with a STD of 9.7 cm and a
mean bias of 50 cm when compared with a set of 812 GNSS/levelling points. However, the zero-degree
term is not included in this evaluation.

2.2.2. GNSS/Levelling Data

In the past, the Vietnam height system was divided into two different parts, and the 17th parallel
was the provisional demarcation line; North Vietnam used the MSL at Hon Dau tide gauge station,
and in South Vietnam the Ha Tien tide gauge was used [35]. After the war, the height system was
calculated uniformly for the entire country. From 2001−2003, the Vietnam national levelling network
was re-measured, and then it was readjusted in 2007 using the MSL over 1950−2005 at the Hon Dau
tide gauge station [35]. From 2009−2010, the Vietnam Department of Surveying and Mapping (VDSM)
carried out GNSS observations on the levelling points. The GNSS baselines were observed using
dual-frequency instruments in static mode with a minimum measurement time of 6 hours per session.
The GNSS data were processed with the Bernese software to obtain ellipsoidal heights referred to the
WGS84 ellipsoid. A total number of 812 GNSS/levelling observations was used in this study (see station
location in Figure 2). We can see that the GNSS/levelling points are relatively well distributed over
the entire country. GNSS/Levelling data include horizontal coordinates (latitude, longitude) and
the computed height anomalies. Among the 812 GNSS/levelling points, 428 points are first- and
second-order, and 384 points are third-order of the national levelling networks. First-, second- and
third-order levelling in Vietnam allows misclosure of 5

√
k, 12

√
k and 25

√
k mm over a distance of k

km, respectively. Normal height is currently used in the national height system of Vietnam.
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Figure 2. Global Navigation Satellite System (GNSS)/levelling data: yellow dots are first- and
second-order levelling benchmarks, whereas purple dots denote third-order ones.

The so-called geometric height anomalies, i.e., derived through Equation (1), of the
812 GNSS/levelling points were compared with those derived from the GEOID_LSC in the absolute
sense. The results are listed in Table 2 and shown in Figure 3a. Outliers were determined assuming a
normal distribution of the residuals, and the three sigma (3σ) rejection led to elimination of 9 points.
Linear regressions on the differences of GNSS/levelling data and GEOID_LSC in northern (>21◦ in
latitude) and near coast (calculation for GNSS/levelling points within 50 km from the coastline defined
by Generic Mapping Tools (GMT) [36]) are shown in Figure 3b. We can see that there are tilts in the
east–west direction in the north of Vietnam and in the north–south direction. The tilt in the north is
0.30 mm/km, whereas the tilt in the north–south direction is 0.11 mm/km. These tilts are significant
over long distances and may be due to two reasons: first, trends in the local gravimetric quasigeoid
model caused by long and medium wavelength errors, steep gravity gradient and/or terrestrial gravity
errors, and second, trends of levelling data caused by vertical crustal movements and/or systematic
cumulative errors associated with levelling surveys over long distances. This will be investigated and
clarified later in this section.
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Table 2. Descriptive statistics of the absolute (residuals) and relative differences between the 812
GNSS/levelling stations and GEOID_LSC. Unit: (m).

Absolute Differences

Mean STD Max Min Outlier Points

ζGNSS/levelling – ζLSC (812 points) 0.680 0.097 0.987 0.310 9

ζGNSS/levelling – ζLSC (excluding outliers) (803 points) 0.682 0.092 0.937 0.396 0

ζGNSS/levelling – ζDIR/EGM+RTM (803 points) 0.682 0.168 1.138 0.119

ζGNSS/levelling – ζLSC (North-east part) (190 points) 0.705 0.077 0.879 0.459

ζGNSS/levelling – ζLSC (Southern, <11◦) (120 points) 0.634 0.092 0.937 0.402

Relative Differences

Mean STD Max Min Outlier
third-order

Outlier
fourth-order

∆ζGNSS/levelling – ∆ζLSC (803 points) (21,423 baselines) 0.087 0.071 0.518 0 8153 (38.06%) 2052 (9.58%)
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differences of GNSS/levelling data and GEOID_LSC in northern (>21◦ in latitude) and near coast
(points within 50 km from the coastline) and (c) Differences between GNSS/levelling data and DIR/EGM
(d/o 719) plus RTM effects.

Thanks to GOCE [37], global geoids with an accuracy of 1–2 cm and gravity field models with an
accuracy of 1 mGal at a spatial resolution of approximately 100 km are available. The GEOID_LSC
model is expected to be less prone to long and medium wavelength errors thanks to using a mixed
model of EGM-DIR-R5 [38] and EGM2008 called DIR/EGM [3], and its enhanced resolution allows
better detection of distortions in the terrestrial gravity and levelling data. To further clarify the issue of
possible trends in local gravimetric quasigeoid models caused by errors in the terrestrial gravity data,
the GNSS/levelling geometric height anomalies were compared with those derived from the DIR/EGM
model up to d/o 719 (this d/o gave the best result in the removal of the long and medium wavelengths
and the calculation of the quasigeoid restore effects in computation GEOID_LSC [3]), plus RTM effects
up from d/o 720 to 216,000 (equivalent to the 3” resolution SRTM3arc_v4.1) to reduce effect of large
omission errors in DIR/EGM model. Using the same d/o of DIR/EGM (719) as the Remove–Restore
procedure in computation gravimetric quasigeoid is to completely avoid effect of the long and medium
wavelength errors if they exist in DIR/GGM model. The results are listed in Table 2 and shown in
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Figure 3c. We can see that its average bias was similar (0.682 m) with GEOID_LSC, whereas the
standard deviation was 0.168 m due to the omission error in DIR/EGM model. It was significantly
improved when we used terrestrial gravity data to determine the GEOID_LSC model (the STD of
GEOID_LSC is 0.092 m). This proves that trends in the local gravimetric quasigeoid model caused
by bias in the terrestrial gravity data are insignificant in the GEOID_LSC model on the scale of the
country. Therefore, the tilts are due to steep gravity gradient and trends in levelling data.

The comparison in a relative sense was carried out with 803 GNSS/levelling points over 21,423
baselines. The results are shown in Figure 4 and listed in Table 2. In Figure 4 we see that the magnitude
of relative differences of the height anomalies of GNSS/levelling points and the GEOID_LSC increases
with the baseline length. To clarify this, the height anomalies of 803 GNSS/levelling points were
compared with those derived from the GEOID_LSC in the relative sense per baseline length (10 km).
The results are listed in Table 3. We can see that the mean bias and STD increased linearly with baseline
length. This is due to error in the spirit levelling depending on the baseline length. Relative accuracy of
spirit levelling decreased 2.9 cm in STD and 3.8 cm in mean when baseline length increased from 10 to
100 km. This was significant over long distances. This is due to systematic cumulative errors in levelling.
It causes the tilts in the levelling data that we discussed above. We also carried out the comparison in
relative sense in the northern part (>21◦ in latitude) and the points near the coast (within 50 km from
the coastline). The results are listed in Table 3. In the northern part, the mean bias ranged between 4.4
and 9.3 cm, while the STD was from 3.0 and 7.2 cm when the baseline length varied from 10 to 100 km,
respectively. In the region near the coast, mean bias was 4.2 and 7.5 cm, and STD was 3.7 and 6.9 cm
when baseline length was 10 and 100 km, respectively. The relative accuracy of spirit levelling in the
northern part decreased faster than that in the region near the coast. The tilt in the region near the coast
was only 0.11 mm/km, whereas in the northern part it was 0.30 mm/km. This means that besides the
errors in levelling there was also a contribution of the quasigeoid to the error in the northern part. This tilt
of the quasigeoid in the northern part can be attributed to the steep gravity gradient over the northern
mountainous regions (the altitude is greater than 1000 m in the northwest) [3].
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Figure 4. Magnitude of relative differences between GEOID_LSC with 803 GNSS/levelling points over
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Table 3. Relative differences between 803 GNSS/levelling points and GEOID_LSC, per baseline length
(every 10 km) (NoB: Number of Baselines). Unit: (m).

10 km 20 km 30 km 40 km 50 km 60 km 70 km 80 km 90 km 100 km All

NoB 96 760 1356 1776 2215 2505 2845 3068 3334 3468 21,423

mean 0.055 0.065 0.077 0.082 0.084 0.089 0.089 0.091 0.090 0.093 0.087

STD 0.045 0.055 0.063 0.066 0.070 0.072 0.073 0.072 0.073 0.074 0.071

Max 0.219 0.302 0.407 0.394 0.451 0.451 0.518 0.449 0.467 0.428 0.518

min 0.001 0 0 0 0 0 0 0 0 0 0
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Table 3. Cont.

10 km 20 km 30 km 40 km 50 km 60 km 70 km 80 km 90 km 100 km All

Northern Part

NoB 34 231 376 530 647 751 854 868 1004 998 6294

mean 0.044 0.075 0.080 0.084 0.083 0.089 0.092 0.094 0.093 0.093 0.089

STD 0.030 0.061 0.066 0.066 0.069 0.071 0.071 0.069 0.072 0.072 0.070

Max 0.120 0.295 0.322 0.316 0.390 0.400 0.468 0.396 0.392 0.404 0.468

min 0.001 0 0 0 0 0 0 0 0 0 0

Points Near the Coast (within 50 km from the coastline)

NoB 18 202 312 357 380 369 347 361 336 321 3003

mean 0.042 0.055 0.067 0.073 0.072 0.079 0.078 0.074 0.074 0.75 0.073

STD 0.037 0.049 0.055 0.066 0.067 0.067 0.065 0.060 0.069 0.069 0.064

Max 0.138 0.290 0.388 0.333 0.418 0.363 0.384 0.408 0.467 0.352 0.467

min 0.007 0 0 0 0 0.001 0 0 0 0 0

In Figure 3a, we can see that there were two distinct biases, one in the northeast part of the northern
region (>105◦ in longitude and >20◦ latitude) and another for the southern region (<11◦ latitude).
Hence, the GNSS/levelling geometric height anomalies were compared with those derived from the
GEOID_LSC for these two regions. The results are listed in Table 2. The difference in average bias
between these two regions was 7.1 cm (average bias of 0.705 m in the northeast part and 0.634 m in the
southern region). These differences, provided by GNSS and levelling, which were not measured at the
same time (GNSS measurements were taken about 7 years after leveling), may be due to the effect of
land subsidence, which has been documented for the southern region of Vietnam (Mekong Delta). Most
of the Mekong Delta lies within 2 m of current sea level and is well-known as a region strongly affected
by climate change phenomena such as land subsidence and SLR. In a recent study, Featherstone et al.
(2019) [39] assessed that the land subsidence effect on the accuracy of height anomalies derived from the
GNSS/levelling data, which were not measured at the same time, is an important candidate (together
with the poor quality of the altimeter data and steep gravity gradients) to explain for 1 mm/km tilt in
the quasigeoid in Perth, Australia, whereas the land subsidence effect on the computed quasigeoid is
very small. As we suspect that the differences could be due to ongoing displacements affecting the
Mekong Delta, we paid special attention to detecting such possible displacements through inspection
of GNSS and InSAR data. This hypothesis is discussed in the next section.

3. Land Subsidence in Vietnam

To assess the impact of land subsidence processes in our estimation of GNSS/levelling discrepancies,
we used complementary information provided by the permanent GNSS stations in Vietnam and by
InSAR data to estimate the vertical land motion currently observed in the northern and southern parts
of the country.

3.1. GNSS and InSAR Data

The Continuously Operating Reference Station (CORS) network is under construction in Vietnam.
Therefore, quite few GNSS stations measured continuously over long periods of time. Nevertheless,
data from 11 GNSS stations (with continuous observation time of about 10 years) were used in this
study. For 8 of them (named MTEV, MLAY, DBIV, SMAV, PHUT, VINH, HUES and BACL), a time
series of heights processed with GNSS at MIT/Global Kalman Filter (GAMIT/GLOBK) software were
provided by the Institute of Geophysics (IGP), Vietnam Academy of Science and Technology (VAST).
In addition, Receiver Independent Exchange Format (RINEX) data from 3 stations (named DSRS, QNRS
and VTRS) provided by VDSM and processed with GINS [40], and the in-house software package
developed by CNES (Centre National d’Étude Spatiales), using the Precise Point Positioning (PPP)
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methodology have been included to obtain time series of heights. The calculation results of all the
stations are given in the reference frame ITRF2014.

We also benefited from estimations of the annual average subsidence rates over the 2006–2010
period derived from a total of 121 ALOS-1 PALSAR images covering most of the Mekong Delta
provided by Dr Laura E Erban [20]. These estimations are in good agreement with ground-based
measurements of land subsidence at hydraulic wells. We also benefited from Sentinel-1 imagery time
series over the 2015–2018 period for three areas Ca Mau (CM), Long Xuyen (LX) and Rach Gia (RG)
situated in the Mekong Delta, which are available in the frame of the project “EMSN057: Ground
subsidence in Mekong Delta, Vietnam” [41]. Average motion was estimated for every year from 2015
to 2018. From this, we averaged annual subsidence for the period 2015–2018. The full description of
the SAR processing for ALOS and Sentinel-1 data can be found in Erban et al. (2014) [20] and project
EMSN057 [41], respectively.

3.2. Land Subsidence and Correcting GNSS/Levelling Data in the Mekong Delta

The vertical land motion rates derived from permanent GNSS stations are shown in Figure 5,
and the results of time series of heights are shown in the Supplementary Materials. The observation
time was not continuous for two stations, DSRS and VINH, for which there were 2 or 3 long data
interruptions. Consequently, the results were not reliable for these two stations. A notable subsidence
rate of −28.1 mm/year was observed for the BACL station, located in the Mekong Delta, whereas that
of the remaining stations was only at the few mm/year level.

1 
 

 

Figure 5. Vertical land motion rates from permanent GNSS stations.



Remote Sens. 2020, 12, 817 12 of 21

As the Mekong Delta has been known to be deforming for decades, such a value is not surprising.
Nevertheless, the length of the observation time span was too short (about 4 years from 2015 to 2019),
and one should not disregard that the observed subsidence of the BACL station could be a local
effect due to anthropogenic activity. It was then decided to carry out a careful analysis of ground
displacement fields imaged by InSAR in the Mekong Delta.

The differences of GNSS/levelling and GEOID_LSC over the southern region are shown in
Figure 6a. Applying a linear regression on the differences shows the southeast–northwest trend clearly,
which is shown in Figure 6b. Ground displacement fields from InSAR confirms without ambiguity that
subsidence affected the whole part of the Mekong Delta. The map of the annual average subsidence
rates over the 2006–2010 period derived from ALOS-1 PALSAR provide useful indication about the
structure and the magnitude of the subsidence affecting the Mekong Delta (Figure 6c). It shows that
average subsidence rate was 1.6 cm/year for this delta with local extremes in the southeastern part
over 2.5 cm/year. This result is in good agreement with land subsidence rate derived from BACL
station (−28.1 mm/year). A southeast–northwest trend was evident in Figure 6b,c in the Mekong Delta
with larger-rate subsidence in the southeast of this delta. In particular, Ho Chi Minh City (HCMC,
blue ellipse in Figure 6a) had the highest rates (about 4 cm/year) observed. However, a detailed
analysis of HCMC by Minh et al. 2015 [42] using ALOS-1 for the 2006–2010 period shows that average
subsidence rate of HCMC was only 0.8 cm/year with larger-rate subsidence in the southwest of the
city. This subsidence rate is in good agreement with the differences between the GNSS/levelling and
the quasigeoid over HCMC. A slightly larger rate of subsidence can be seen in Figure 6a for HCMC
than the surrounding areas. In addition, Sentinel-1 imagery time series confirmed these estimations in
some areas (Figure 6d). Good agreement between the results derived from ALOS-1, Sentinel-1 and
quasigeoid in the areas CM and RG is shown in Figure 6. However, there was a slight inconsistency
between the results derived from ALOS-1 and Sentinel-1 along the Mekong River, especially in the
area LX (red circle in Figure 6a,c). The origin of this discrepancy is not known and could be due to a
change in displacement rates between the 2006–2010 and the 2015–2018 periods, but there is better
consistency between the result derived from Sentinel-1 and the quasigeoid over this area, while GNSS
and leveling were measured at the time closer to ALOS-1 than Sentinel-1. However, the salient fact is
that the InSAR-based subsidence pattern appears to largely coincide with the trend pattern observed
in the differences between the GNSS/levelling and the quasigeoid. All these observations strongly
suggest that distortion in GNSS/levelling data of the southern region is mainly due to land subsidence,
especially in the Mekong Delta. Obviously, the subsidence significantly affects the GNSS/levelling
data as well as the offset model if it is determined without first correcting the GNSS/levelling points.
To address this problem, we chose the following approach and methodology.
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Figure 6. (a) Differences of GNSS/levelling data and GEOID_LSC in the southern region; (b) Linear
regression on the differences of GEOID_LSC and GNSS/levelling data in the southern region; (c) InSAR
results derived for the period 2006–2010 from ALOS-1 provided by Dr Laura E Erban [20] and (d) InSAR
results derived for the period 2015–2018 from Sentinel-1, project EMSN057 [41].

The 683 GNSS/levelling points with latitudes greater than 11◦ are considered to be unaffected by
subsidence. The height anomalies of these GNSS/levelling points were compared with those derived
from the GEOID_LSC in the absolute sense. The results are listed in Table 4. Aiming for GNSS/levelling
data of the same precision in the southern part (<11◦ in latitude), we corrected the data using the
annual subsidence rate grid calculated with ALOS-1. To avoid affecting the edge, the remaining grid
nodes (not calculated by ALOS-1) were set to zero. Height anomalies of 47 points were corrected
considering a 7 year lag between levelling and GNSS measurement periods. On the height anomalies of
GNSS/levelling points (ζGNSS/levelling), we performed the correction according to the following formula:

ζGNSS/levelling_cor = ζGNSS/levelling + t.V (10)
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where V is the annual average subsidence rate of the GNSS/levelling point interpolated from the
rate grid calculated from ALOS-1 SAR data, and t is a 7 year lag between levelling and GNSS
measurement periods.

Table 4. Descriptive statistics of the differences between the GNSS/levelling data corrected in Mekong
Delta and GEOID_LSC. Unit: (m).

Mean STD Max Min Outlier Points

ζGNSS/levelling – ζLSC (Southern, <11◦) (120 points) 0.634 0.092 0.937 0.402

ζGNSS/levelling – ζLSC (>11◦) (683 points) 0.690 0.089 0.933 0.396

ζGNSS/levelling_cor – ζLSC (Southern, <11◦) (120 points) 0.664 0.085 0.937 0.459

ζGNSS/levelling_cor – ζLSC (803 points) 0.686 0.089 0.937 0.396 1

ζGNSS/levelling_cor – ζLSC (excluding outliers) (802 points) 0.687 0.088 0.937 0.423

The corrected result is listed in Table 4. After the correction, the mean bias of the difference
between GNSS/levelling data and GEOID_LSC in the southern part increased by 3 cm (mean bias
before and after correcting were 0.634 and 0.664 m, respectively). This mean is much closer to that in
the remaining part of the country (0.690 m in 683 points with latitudes greater than 11◦). The STD
also decreased by 0.7 cm (STD before and after correcting were 0.092 and 0.085 m, respectively). Thus,
thanks to this rather approximate correction, the accuracy of GNSS/levelling data in the southern part
was more similar to data for the rest of the country. On all 803 points, the STD slightly improved by
0.3 cm (STD before and after correcting were 0.092 and 0.089 m, respectively). Under the assumption
of a normal distribution, 1 point was rejected. A total of 802 points with mean and STD of 0.687 and
0.088 m, respectively, were retained for computation of the offset model.

Thanks to the offset modelling into two components (distortion and residual) we can calculate the
distortions for different regions instead of calculating the homogeneous distortion parameter for the
entire country. As a result, the residuals will be smaller. In Figure 3a we can see that there were two
distinct distortions between the two parts, one in the northern part (>17◦ in latitude) and another for
the southern one. In the following section we will calculate distortion and residual to determine two
offset models as follows:

a. using all 802 GNSS/levelling points and calculating the homogeneous distortion parameter
(case 1);

b. using all 802 GNSS/levelling points and calculating two distortion parameters for two regions:
southern (<17◦ in latitude) and northern part (>17◦ in latitude) (case 2).

4. Results and Discussion

4.1. Offset Model Estimation and Validation

To select the best model for removing distortions in the differences between GNSS/levelling data
and the GEOID_LSC model, we used all 802 GNSS/levelling points (case 1) to calculate the distortion
employing the four models that we have shown in Section 2. The results of residuals are listed in
Table 5. The third-order polynomial model had the highest precision with an STD of 0.082 m. We also
used the fourth- and fifth-order polynomial models to remove the distortions, but the STD was not
significantly improved, i.e., 8.1 cm for these two models. Moreover, a height-dependent parameter [43]
was also added into the third-order model to remove the distortions, but STD had no improvement,
i.e., 8.2 cm with the third-order model added height-dependent parameter, because Kotsakis et al.
(2012) [43] and Hayden et al. (2013) [17] warned that using this parameter will only be successful in
the region that has a significant height variability. We will use the third-order model to calculate the
distortions for case 2, i.e., two distortion parameters for two different regions. The STDs of case 1
with one distortion parameter for the entire country and case 2 calculating two different distortion
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parameters for two regions were 8.2 and 7.8 cm, respectively. Thanks to calculating the distortions for
different regions, we obtained more accurate results (0.4 cm). We detected 6 GNSS/levelling points
with large residuals that were rejected from the computation according to the assumption of a normal
distribution. We will use 796 points with STD of 7.5 cm to calculate the offset model. The distortions
and residuals in this case are shown in Figure 7a,b.

Table 5. Residual of the differences between GNSS/levelling data and GEOID_LSC model. Unit: (m).

Mean STD Max Min Outlier Points

Linear (802 points) 0 0.087 0.285 −0.296

Second-order (802 points) 0 0.085 0.265 −0.326

Third-order (802 points) 0 0.082 0.262 −0296

Helmert model (802 points) 0 0.086 0.285 −0.316

case 2 (Third-order) (802 points) 0 0.078 0.252 −0.288 6

case 2 (Third-order) outlier (796 points) 0 0.075 0.225 −0.223
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gravimetric quasigeoid model adding offset model.

From the residuals calculated above, we used the LSC method in GRAVSOFT GEOGRID program
to interpolate to a 5’ grid. Computation of the empirical and fitted covariance functions of the residual
height anomalies is required in LSC. The empirical covariance of the data has been computed and then
fitted to the second-order Gauss Markov model. A correlation length of 16 km was found. We used
GRAVSOFT GEOGRID to simulate employing 796 residual height anomalies with the correlation
lengths of 10, 16, 30 and 40 km. The best result was obtained when the correlation length was
30 km. Therefore, a correlation length of 30 km was used to calculate a 5’ grid of the residual height
anomalies. An offset model was then created by adding residual offset to the distortion component.
The cross-validation technique was used to assess the gravimetric quasigeoid and offset model
employing GNSS/levelling points with 796 LSC runs in this case.

Table 6 shows the absolute differences between the 796 GNSS/levelling points and gravimetric
quasigeoid model adding offset model. The descriptive statistics for the cross-validation technique
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are presented (first row), with the STD being 0.065 m. The outliers were determined according to
the assumption of a normal distribution. There were 17 points that were rejected. So, a total of 779
points was used to calculate and validate the models. The case when all the GNSS/levelling data
(779 points) were used to create and test the offset model was also presented (third row). Using all
the GNSS/levelling data to create and test the offset model had an STD of 0.034 m, whereas using the
cross-validation technique had an STD of 0.059 m. This demonstrates the importance of applying
a cross-validation technique, which gives a more realistic error estimate than the pure fit statistics.
The results are shown in Figure 7c. Table 6 also shows the descriptive statistics for the relative case,
using 779 GNSS/levelling points. The results indicated that we can use the gravimetric quasigeoid
model plus the offset model to convert ellipsoidal heights to local normal heights with an accuracy that
complies with fourth-order levelling specifications for the whole of Vietnam (99.93%), while 98.14% of
the baselines complied with third-order levelling specifications. This suggests that these models allow
GNSS levelling to comply with third-order levelling specifications over most of Vietnam, except for
some mountainous areas where quality and distribution of gravity data were not good. Especially
over the areas of the two major cities of Vietnam, Hanoi (20.5◦ to 21.5◦ in latitude, 105◦ to 106◦ in
longitude) and HCMC (10◦ to 11◦ in latitude, 106◦ to 107◦ in longitude), the third-order levelling
network specifications were met with only 8/468 and 13/384 baselines, respectively, out of specifications.

Table 6. Descriptive statistics of the differences between the GNSS/levelling data and gravimetric
quasigeoid adding offset model with baseline length < 100 km. Unit: (m).

Absolute Differences

Mean STD Max Min Outlier Points

ζGNSS/levelling – ζLSC-ε (796 points)
(cross-validation)

0 0.065 0.250 −0.291 17

ζGNSS/levelling – ζLSC-ε (779 points)
(excluding outliers)
(cross-validation)

0 0.059 0.170 −0.170

ζGNSS/levelling – ζLSC-ε (779 points) 0 0.034 0.099 −0.109

ζGNSS/levelling – ζLSC-ε (Hanoi) (32 points) −0.004 0.047 0.109 −0.092

ζGNSS/levelling – ζLSC-ε (HCMC) (29 points) −0.001 0.055 0.104 −0.139

Relative Differences

Mean STD Max Min Outlier 3rd Order Outlier 4th Order

∆ζGNSS/levelling – ∆ζLSC-∆ε (779 points)
(20,243 baselines)

0.026 0.020 0.109 0 377 (1.86%) 14 (0.07%)

∆ζGNSS/levelling – ∆ζLSC-∆ε (Hanoi)
(469 baselines)

0.024 0.018 0.074 0.003 8 0

∆ζGNSS/levelling – ∆ζLSC-∆ε (HCMC)
(384 baselines)

0.025 0.019 0.085 0.085 13 0

4.2. Estimation of the Geopotential Value W0 for the VLVD

Given the availability of high-quality GNSS/levelling data and the GEOID_LSC model, we were
able to determine a more accurate geopotential value W0 for the VLDV using the differences in height
anomalies derived from them. The geopotential number (C) is the potential difference between an
equipotential surface (Wi) and a reference equipotential surface. National datum from traditional
levelling realizes by selecting as their zero point O a coastal tide gauge and setting it a geopotential value
WLVD

0 , while a geoid/quasigeoid model realizes the origin of a global datum (W0). The geopotential
number for point i can be written as [44,45]

Ci = W0 −Wi (11)

CLVD
i = WLVD

0 −Wi (12)
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The geopotential number difference can be determined by Equations (11) and (12):

∆Ci = W0 −WLVD
0 (13)

Over the GNSS/levelling points we may calculate the differences of geopotential number.
Consequently, we may determine the geopotential value for the LVD by simply averaging:

W
LVD
0 =

∑m
i=1 WLVD

0

m
= W0 −

∑m
i=1 ∆Ci

m
= W0 − δWLVD (14)

where ∆Ci is given by the differences between height anomalies from GNSS/levelling measurements
and those derived from GEOID_COL, and the mean normal gravity value (γ) is computed by Equation
(4-60) in Hofmann-Wellenhof and Moritz (2006) [29]:

∆Ci = εiγi (15)

The free-air terrestrial gravity anomalies are derived from measured gravity (g) and normal
gravity (γ) and the free-air reduction calculated from the normal height (for the purpose of gravity
reduction from the surface to the quasigeoid) according to Hofmann-Wellenhof and Moritz (2006) [29]:

∆g = g−
∂g
∂H∗

H∗ − γ (16)

As the normal height is biased due to datum offset (δH∗) between LVD and quasigeoid (about
69 cm in Vietnam), gravity anomalies will be biased by

∂g
∂H∗

δH∗ = 0.3086× 0.69 ≈ 0.2 mGal (17)

This systematic distortion is constant and affects the calculation of height anomalies due to gravity
anomalies that are biased. Therefore, this unknown offset affects the computed quasigeoid. In HSU, it
is called indirect bias because it affects the computation of the datum offset value. According to Gerlach
and Rummel (2013) [46], indirect bias can be neglected in computing offset value ε if a GGM derived
from GOCE with n > 200 is used to compute the height anomaly component (ζ) in Equation (2) when
performing calculations in Europe. In a study performed by Gatti et al. (2013) [47], a similar result was
also found in their numerical investigation over 11 large datum zones globally. Amjadiparvar et al.
(2016) [48] also performed research on indirect effects in North America; the indirect term was found
less than 1 cm if a GGM up to at least degree n=180 was used. Here, GEOID_LSC model was computed
using GGM_DIR5 up to degree 260. Hence, this effect component can be removed in the computation
offset value. This problem will be calculated and clarified for this region in our next study.

Given the preceding analysis, tilts existed in the levelling data; hence, they should be removed
from the observations in the computation of ε. However, we only removed the tilts, and thus the
difference between LVD and reference equipotential surface was retained. Equation (2) is rewritten
as follows:

ε+ aT
i x + vi = ζ

GNSS/levelling
i − ζi − ζ0 (18)

where ε is mean of the differences between height anomalies from GNSS/levelling measurements and
those derived from GEOID_COL (εi). It is a tilted offset of VLVD (this offset value that differs from the
true LVD offset value) because the tilts exist in the levelling data. The term aT

i x absorbs the tilts, and vi
represents the random error of the height anomalies.

Therefore, we also used the third-order polynomial model shown in Section 2 for removing tilt
effects. However, it should be noted that this model should not contain any constant components,
which in turn implies that the constant term a0 must be omitted in this computation. The height
anomalies from good 779 GNSS/levelling points after correcting the subsidence for the Mekong Delta
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was used for estimating WLVD
0 . Calculation of two tilt parameters for two regions, southern (<17◦ in

latitude) and northern part (>17◦ in latitude), was also used in this case. The results are shown in Table 7
where the improvement in the STD between the null and third-order model with two parameters was
significant. Therefore, the results calculated from the third-order model with two parameters were used
to estimate WLVD

0 employing Equation (14). A gravity potential WLVD
0 = 62,636,846.81 ± 0.70 m2s−2

for the LVD of Vietnam has been determined as an offset to the equipotential surface realized by the
conventional value W0 = 62,636,853.4 m2s−2.

Table 7. Descriptive statistics of the differences between the GNSS/levelling data removed tilt effects
and GEOID_LSC. Reference geopotential values WLVD

0 for the VLVD with the global reference level
realized by the conventional value W0 = 62,636,853.4 m2s−2. Unit: (m).

Mean STD Max Min

Null model 0.688 0.083 0.912 0.435
Third-order 0.693 0.075 0.897 0.458

Third-order (two parameters) 0.689 0.071 0.902 0.478
δWLVD 6.60 ± 0.70 (m2s−2) WLVD

0 62,636,846.81 ± 0.70 (m2s−2)

5. Conclusions

A vertical offset model has been generated for Vietnam using a gravimetric-only quasigeoid model
(GEOID_COL) and 779 GNSS/levelling points. The cross-validation technique was used to validate
the offset model, and an STD of 5.9 cm was obtained. Using the GEOID_LSC model and adding the
offset model allows GNSS levelling to comply with fourth-order levelling specifications for Vietnam
and third-order levelling specifications for most of the country, excepting some mountainous areas
where quality and distribution of gravity data are not good. Especially in the area of surrounding
Hanoi and Ho Chi Minh City, these models allow GNSS levelling to comply with third-order levelling
specifications. This model can be applied in modernizing the height reference system in Vietnam by
adding this offset model to available levelling data. This study used the annual subsidence rate grid
estimated from ALOS-1 observations to correct and improve the accuracy for 47 GNSS/levelling points
in the Mekong Delta, thereby making the average bias of this region the same size with the remaining
part. Therefore, the accuracy of the offset model is significantly improved.

We also used the differences between height anomalies from high-quality GNSS/levelling
data, removed tilt effects and corrected land subsidence, and those derived from GEOID_COL
gravimetric-only quasigeoid model to compute the geopotential value W0 for the existing LVD in
Vietnam. The gravity potential of the VLVD is estimated equal to WLVD

0 = 62,636,846.81 ± 0.70 m2s−2

with the global equipotential surface realized by the conventional value W0 = 62,636,853.4 m2s−2.
With this gravity potential value, we can thus connect the height system of Vietnam with the
neighboring countries.
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station; (e) PHUT station; (f) VINH station; (g) HUES station and (h) BACL station. Figure S2: Time-series of
heights plots of 3 stations provided by the Vietnam Department of Surveying and Mapping (VDSM) (a) DSRS
station; (b) QNRS station and (c) VTRS station.
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