PRELIMINARY RESULTS ON THE MORPHOLOGICAL CHARACTERISATION OF NATURAL POPULATIONS AND CULTURED STRAINS OF Clarias species (Siluriformes, Clariidae) FROM INDONESIA

Guy G. Teugels (1), Rudhy Gustiano (2), Ruth Diego (1), Marc Legendre (3) and Sudarto (2)

(1) Musée Royal de l’Afrique Centrale, Laboratoire d’Ichtyologie, B-3080 TERVUREN, Belgium
(2) RIFF, Jalan Raya 2, Sukamandi Subang 41256, Java Barat, Indonesia
(3) IRD (ex ORSTOM), Catfish Asia Project, Instalasi Penelitian Perikanan Air Tawar, Jalan. Ragunan-Pasar Minggu, P.O. Box 7220/jkspm, Jakarta 12540, Indonesia and GAMET, B.P. 5095, 34033 Montpellier Cedex 1, France

Abstract

As part of an ongoing systematic revision of the south-east Asian Clarias species, this paper presents the results of a morphometric study of 317 specimens from Indonesia: 255 of them were collected from the wild in Sumatra and Kalimantan and 62 came from fish culture stations in Java and Sumatra.

The results obtained indicated the presence of five or six species: Clarias batrachus, Cl. macrocephalus (?), Cl. meladerma, Cl. leiacanthus, Cl. teijsmanni and Cl. nieuhofii. Preliminary identification characters are given.

INTRODUCTION

Fourteen nominal Clarias species have been reported in literature as naturally occurring in Indonesia: C. batrachus (Linnaeus, 1758), C. leiacanthus Bleeker, 1851; C. macrocephalus Günther, 1864; C. magur (Hamilton Buchanan, 1822); C. melasoma Bleeker, 1852 (with its unjustified emendation C. melanosoma); C. meladerma Bleeker, 1846 (with its unjustified emendation C. melanoderma); C. olivaceus Fowler, 1904; C. nieuhofii Valenciennes, 1840; C. pentapterus Bleeker, 1851; C. pulcher Popta, 1904; C. punctatus Valenciennes, 1840; C. teijsmanni Bleeker, 1857; C. thienemanni Ahl, 1934 and C. cataractus (Fowler, 1939). The original description of nine of them was based on specimens originally collected in this country: C. leiacanthus, C. melasoma (in part), C. pentapterus an C. pulcher were originally described from “Borneo” (present Kalimantan); C. meladerma, C. punctatus and C. teijsmanni were originally described from Java and C. melasoma (in part), C. olivaceus and C. thienemanni were originally described from Sumatra.

The systematic status of some of these nominal species has already been studied by previous authors. Hora (1936) considered Clarias magur as a junior synonym of C. batrachus. Bleeker (1858) synonymised C. melasoma with C. meladerma, although Fowler (1941) considered both species as junior synonyms of C. dussumieri Valenciennes, 1840. Clarias olivaceus was synonymised with C. batrachus by Fowler (1941). Bleeker (1857) considered C. pentapterus as a junior synonym of C. nieuhofii. Weber & De Beaufort (1913) supposed that C. pulcher is a junior synonym of C. teijsmanni. Bleeker (1858) considered C. punctatus as a junior synonym of C. batrachus. Although these synonymies have to be checked, the Clarias species presently reported from Indonesia mainly refer to C. batrachus, C. leiacanthus, C. macrocephalus, C. meladerma, C. nieuhofii, C. teijsmanni and C. thienemanni.

The identification of these species is problematic as no detailed species descriptions nor diagnostic keys are available. As part of an overall revision of the systematic of the south-east Asian Clarias species, this paper presents preliminary results on the morphological characterisation of Clarias species from Indonesia.
MATERIAL AND METHODS

Three hundred and seventeen specimens collected during the “Catfish Asia” project have so far been examined. Of these 255 originated from the wild and were sampled in Sumatra and Kalimantan. They were tentatively identified by the collectors as *Clarias batrachus*, *C. meladerma*, *C.* "lembat" (vernacular name) and *C.* "bacot" (vernacular name). The remainder consists of cultured specimens (*C. batrachus*) originating from fish culture stations in Java and Sumatra. The specimens were deposited in the collection of the Musée Royal de l’Afrique Centrale, Tervuren, Belgium. The following type material has also been examined: the four syntypes of *Clarias macrocephalus* and the holotype of *C. leiacanthus* housed in the British Museum (Natural History) London; the holotype of *C. nieuhoftii* housed in the Museum National d’Histoire Naturelle, Paris; the two syntypes of *C. meladerma* and the holotype of *C. tejsmanni* housed in the Rijksmuseum voor Natuurlijke Historie, Leiden; the holotype and three paratypes of *C. olivaceus* housed in the Academy of Natural Sciences in Philadelphia; and the four syntypes of *C. thienemanni*, housed in the Zoologisches Museum der Humboldt Universität, Berlin.

On each specimen 30 point-to-point measurements were taken using dial calipers. Measurements follow Teugels (1986). They include (Figure 1): 1) Total length (TL); 2) Standard length (SL); 3) Maximum body depth (MBD); 4) Caudal peduncle depth (CPD); 5) Head length (HL); 6) Head width (HW); 7) Snout Length (SNL); 8) Inter-orbital distance (IOW); 9) Eye diameter (ED); 10) Nasal barbel length (NBL); 11) Maxillary barbel length (MBL); 12) Inner mandibular barbel length (IMBL); 13) Outer mandibular barbel length (OMBL); 14) Occipital process length (OPL); 15) Occipital process width (OPW); 16) Frontal fontanel length (FFL); 17) Frontal fontanel width (FFW); 18) Premaxillary toothplate width (PMW); 19) Vomerine toothplate width (VMW); 20) Predorsal distance (PDL); 21) Preanal distance (PAL); 22) Prepelvic distance (PPL); 23) Prepectoral distance (PPEL); 24) Dorsal fin length (DFL); 25) Distance between occipital

Figure 1: Measurement taken on the body (A), the head (B) and the toothplates (C).

For abbreviations see text.
RESULTS

It should be noted that the results presented below are preliminary. Work is continuing on additional material.

Sumatra

We first compared the variation of the individual metric variables for all specimens examined.

Figure 2: A. Distance between occipital process and dorsal fin origin (in percentage of standard length) in function of the head length (in percentage of standard length); B. Caudal peduncle depth (in percentage of the standard length) in function of the head length (in percentage of the standard length); C. Occipital process width (in percentage of standard length) in function of the head length (in percentage of standard length) for the Clarias specimens from Sumatra. TME = types of C. meladerma; TNI = type of C. nieuhofi; TLI = type of C. leiacanthus; TOL = types of C. olivaceus; TTE = type of C. teijsmanni; TTH = types of C. thienemanni; TMA = types of C. macrocephalus.

Figure 2 illustrates the results for the occipital process width, the distance between the occipital process and the dorsal fin length and the caudal peduncle depth. For each of these variables a number of groups can be distinguished. When we
look at the position of the type material, some groups can tentatively be identified: *C. nieuhofti* (= C. "lembat") and *C. teijsmanni* (= C. "bacot") are clearly separated, although some of the specimens originally identified as *C. nieuhofti* are located close to the *C. teijsmanni* type. In the group originally identified as *C. batrachus*, two groups are present: the first one may correspond to *C. batrachus* (the type specimen of this species is lost, see Teugels & Roberts, 1987); it includes the type series of *C. olivaceus* and *C. thienemanni* and also the type of *C. leiacanthus* is usually close to this group. The second group includes the types of *C. macrocephalus*. However as reported by Teugels et al. (1999), the syntypes of this species apparently include two species and ongoing research has to clarify their status.

Figure 3 illustrates the plot of a PCA of 24 log transformed metric variables (excluding total length, standard length, nasal, maxillary, inner and outer mandibular barbel length and caudal fin length) for 46 Clarias specimens from Sumatra. Only those specimens for which a complete data set is available are included in the analysis.

The *C. nieuhofti* specimens are distantly set on both the second and the third factor. The *C. meladerma* polygon is distantly set from the others on the third factor, while the "*C. batrachus*" group and the "*C. macrocephalus*" (?! see above) group are distantly set on the second factor. Note the isolated position of the type of *C. teijsmanni*. The second factor in this analysis is merely defined by the distance between the occipital process and the dorsal fin origin, the occipital process width and the predorsal length. The third factor is defined by the occipital process length, the anal fin length and the frontal fontanel length.

Figure 4 illustrates the plot of a PCA of 21 log transformed metric variables (excluding total length, standard length, nasal, maxillary, inner and outer mandibular barbel length, caudal fin length, dorsal fin length, distance between dorsal and caudal fin and anal fin length) for 116 Clarias specimens from Sumatra. Only those specimens for which a complete data set is available are included in the analysis. Four groups are tentatively recognised: three of them can be separated on the second factor, which is merely defined by the distance between the occipital process and the dorsal fin origin, the frontal fontanel length and the eye diameter; the fourth group can largely be separated from the others on the third factor, which is merely defined by the occipital process length and width and the caudal peduncle depth. Naming the groups however is still problematic: the "*C. batrachus*" group includes the types of *C. olivaceus*, *C. thienemanni*, *C. teijsmanni* and *C. leiacanthus*; the *C. meladerma* group contains a syntype of *C. meladerma*, but also one syntype of *C. macrocephalus* and two other syntypes are closely set to this group. Finally the *C. nieuhofti* group appears as one complex.
DISCUSSION
The preliminary results obtained on the morphometric characterisation of *Clarias*

Sumatra, Java and Kalimantan

Figure 5 illustrates the plot of a PCA of 24 log transformed metric variables (excluding total length, standard length, nasal, maxillary, inner and outer mandibular barbel length and caudal fin length) for *Clarias* specimens from Sumatra, Java and Kalimantan. The position of the *C. teijsmanni* specimens, close to the *C. nieuhofii* polygon, confirms what is mentioned above. Remarkably, the type series of *C. olivaceus* do not fit in the "*C. batrachus*" polygon. Also the *C. leiacanthus* type is distantly set from *C. batrachus*. Other results confirm those obtained in figure 3.

Comparison between wild and cultured specimens from *C. batrachus*

Figure 6 illustrates the plot of a PCA of 24 log transformed metric variables (excluding total length, standard length, nasal, maxillary, inner and outer mandibular barbel length and caudal fin length) taken on wild and cultured specimens from *Clarias batrachus* from Sumatra, Java and Kalimantan. T refers to types.

Comparison between wild and cultured specimens from *C. batrachus*

Figure 6 illustrates the plot of a principal component analyses using 24 log transformed metric variables taken on wild and cultured *Clarias batrachus* specimens from Sumatra, Java and Kalimantan. The populations from Indonesia, indicate the presence of probably five or six species: *C. batrachus*, *C. macrocephalus* (?), *C. meladaema*, *C. leiacanthus*, *C. teijsmanni* and *C. nieuhofii*.

Clarias batrachus is recognised amongst others by the pointed occipital process, the short distance between the occipital process and the dorsal fin origin, the reduced number of gill rakers (20-25), the head length and the small toothplates; *C. macrocephalus* (?) has a rounded occipital process, its pectoral spine shows numerous serrations (up to 70) on both sides and it has a high number of gill rakers on the first arch (up to 35); *C. meladema* has a very rounded occipital process, the inner side of its pectoral spine has no serrations and there are 20-25 gill rakers on the first arch; *C. leiacanthus* seems close to, and may be identical to *C. batrachus*; *C. teijsmanni* is recognised by a very long distance between the occipital process and the dorsal fin origin; *C. nieuhofii* differs by a very short head, an anguilliform body and a confluency between dorsal, caudal and anal fins.

REFERENCES

Fowler H.W. (1941) Contributions to the biology

THE BIOLOGICAL DIVERSITY AND AQUACULTURE
OF CLARIID AND PANGASIID CATFISHES
IN SOUTH-EAST ASIA

Proceedings of the mid-term workshop of the
"Catfish Asia Project"
Cantho, Vietnam, 11-15 May 1998

Edited by:
Marc LEGENDRE
Antoine PARISELLE
CONTENTS

FOREWORD 1

CONTENTS 3

CONTEXTS AND RESEARCH GOALS

Legendre M. The Catfish Asia project: backgrounds, aims and prospects. 7
Lazard J. Interest of basic and applied research on Pangasius spp. for aquaculture in the Mekong Delta: situation and prospects. 15
Sadili D. Marketing of pangasiid catfishes in Java and Sumatra, Indonesia. 21

BIOLOGICAL DIVERSITY

CHARACTERISATION OF SPECIES, POPULATIONS AND STRAINS

Teugels G.G., Legendre M. & Hung L.T. Preliminary results on the morphological characterisation of natural populations and cultured strains of Clarias species (Siluriformes, Clariidae) from Vietnam. 27
Teugels G.G., Gustiano R., Diego R., Legendre M. & Sudarto. Preliminary results on the morphological characterisation of natural populations and cultured strains of Clarias species (Siluriformes, Clariidae) from Indonesia. 31
Pariselle A. & Komarudin O. First results on the diversity of gill parasites of some catfishes host species in South East Asia. 37
Pouyaud L., Hadie W. & Sudarto. Genetic diversity among Clarias batrachus (Siluriformes, Clariidae) populations from the Indochina Peninsula and Indonesia Archipelago. 43
Pouyaud L., Gustiano R. & Legendre M. Phylogenetic relationships among pangasiid catfish species (Siluriformes, Pangasiidae). 49
Volckaert F., Hellemans B. & Pouyaud L. Preliminary data on genetic variation in the genus Clarias and Pangasius on the basis of DNA microsatellite loci. 57

BIO-ECOLOGY

Thuong N.V., Hung H.P., Dung D.T. & Kha L.A. Preliminary data on species composition and distribution of pangasiid catfishes (Siluriformes, Pangasiidae) in the lower Mekong River basin. 61

DIVERSIFICATION AND OPTIMISATION IN AQUACULTURE PRODUCTION

REPRODUCTION

Cacot P. Description of the sexual cycle related to the environment and set up of the artificial propagation in Pangasius bocourti (Sauvage, 1880) and Pangasius hypophthalmus (Sauvage, 1878), reared in floating cages and in ponds in the Mekong delta. 71
Legendre M., Subadjaja J. & Slembrouck J. Absence of marked seasonal variations in sexual maturity of Pangasius hypophthalmus brooders held in ponds at the Sukamandi station (Java, Indonesia). 91
Legendre M., Slembrouck J. & Subadjaja J. First results on growth and artificial propagation of Pangasius djambal in Indonesia. 97
Xuan L.N. & Liem P.T. Preliminary results on the induced spawning of two catfish species, Pangasius conchophilus and Pangasius sp, in the Mekong delta. 103

Kristanto A.H., Subadgja J., Slembrouck J. & Legendre M. Effects of egg incubation techniques on hatching rates, hatching kinetics and survival of larvae in the Asian catfish Pangasius hypophthalmus (Siluriformes, Pangasiidae). 107

Campet M., Cacot P., Lazard J., Dan T.Q., Muon D.T. & Liem P.T. Egg quality of an Asian catfish of the Mekong River (Pangasius hypophthalmus) during the process of maturation induced by hCG injections. 113

LARVAL BIOLOGY AND REARING

Slembrouck J., Hung L.T., Subadgja J. & Legendre M. Effects of prey quality, feeding level, prey accessibility and aeration on growth and survival of Pangasius hypophthalmus larvae (Siluriformes, Pangasiidae). 137

Subadgja J., Slembrouck J., Hung L.T. & Legendre M. Analysis of precocious mortality of Pangasius hypophthalmus larvae (Siluriformes, Pangasiidae) during the larval rearing and proposition of appropriate treatments. 147

NUTRITION, FEEDING AND GROWTH

Hung L.T., Tuan N.A., Phu N.V. & Lazard J. Effects of frequency and period of feeding on growth and feed utilisation on Pangasius bocourti in two Mekong catfishes, Pangasius bocourti (Sauvage, 1880) and Pangasius hypophthalmus (Sauvage, 1878). 157

Hung L.T., Lazard J., Tu H.T. & Moreau Y. Protein and energy utilisation in two Mekong catfishes, Pangasius bocourti and Pangasius hypophthalmus. 167

Phuong N.T. & Hien T.T.T. Effects of feeding level on the growth and feed conversion efficiency of Pangasius bocourti fingerlings. 175

Phuong N.T., Thi M.V. & Hang B.T.B. The use of plant protein (soybean meal) as a replacement of animal protein (fish meal and blood meal) in practical diets for fingerlings of Pangasius bocourti. 179

Liem P.T. & Tu H.T. Rearing of Pangasius bocourti fry (Siluriformes, Pangasiidae) fed different diets in concrete tanks. 187

HYBRIDS EVALUATION

Kiem N.V. & Liem P.T. Some biological characteristics of Clarias batrachus and Preliminary results of the hybridisation between Clarias batrachus x Clarias gariepinus. 191

Minh L.T. Preliminary results on the relationship between growing stage and body composition in Clarias macrocephalus, Clarias gariepinus and their hybrid (C. macrocephalus female x C. gariepinus male). 211
PATHOLOGY

Komarudin O. Preliminary observations on the infection of the gills of cultivated Pangasius hypophthalmus by Monogenea. 217

Supriyadi H., Komarudin O. & Slembrouck J. Preliminary study of the source of Aeromonas hydrophila infection on Pangasius hypophthalmus larvae. 219

Dung T.T. & Ngoc N.T.N. Preliminary results of the study of parasitic and red spot diseases on high economical valuable catfish species in the Mekong Delta. 223