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Introduction

Mendel was no doubt puzzled when he
studied the progenies from crosses in the
Hieracium species to confirm his Pisum
experiments: F, families were highly variable
and some F, hybrids produced homogeneous
progenies (Mendel 1870). So what about the
world famous laws of inheritance worked out
on Pisum? In fact, the laws still held. What
the great geneticist did not know was that he
had made the first progeny tests with
apomictic species.

The term “apomixis” initially covered all of
the mechanisms of asexual reproduction
{(Winkler 1908), but today it is applied strictly
to asexual reproduction through seeds
{Nogler 1984). There are two main types of
apomixis, based on the origin of the embryo:
adventitious embryony, in which the embryo
forms directly from the sporophyte (the
gametophyte phase is bypassed), and
gametophytic apomixis, in which the embryo
develops parthenogenetically from an
unreduced female gametophyte (Gustafsson
1947;  Stebbins  1950).
developments bypass

fertilization, the bases of sexual reproduction
and genetic recombination, and therefore,
offspring are genetically identical to the

Apomictic
meiosis and

mother plant.

Apomixis has been widely identified in the
plant kingdom (Asker and Jerling 1992;
Carman 1997), and occurs in families of
economic importance (Rutaceae, Poaceae,

Rosaceae). Moreover, it appears to be a very
common mode of reproduction in the
Panicoideae subfamily of Poaceae (Brown and
Emery 1958), which includes several major
grain crops. Apomictic processes are still
poorly understood, but the potential impact
of apomixis on agriculture appears great,
provided that it is proven to be ecologically
safe (Vielle-Calzada et al. 1996; van Dijk and
van Damme 1999; Toenniessen, Chap. 1).
Identifying sources of apomixis, under-
standing its inheritance, and breeding and
manipulating apomictic species will require
reliable and efficient procedures to screen for
mode of reproduction.

This chapter concentrates on identifying and
quantifying gametophytic apomixis, but for
the most part, the procedures are the same for
adventitious embryony. After presenting basic
features of apomixis, screening procedures for
the reproductive mode are described and the
various challenges encountered by scientists
working with apomixis are discussed.

Apomictic Mechanisms as

Potential Screening Indicators
Seed production through gametophytic
apomixis requires production of embryo sacs
with unreduced nuclei unreduced female
gamete (no reduction of chromosome number
or apomeiosis), followed by embryogenesis
without fusion of nuclei of the male and female
gametes (parthenogenesis). The regulatory
and quantitative aspects of parthenogenesis
in unreduced egg cells have been poorly
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documented (Asker 1980; Nogler 1984; Mogie
1988), but fertilization-independant mutants
for both seed and endosperm development,
recently described in Arabidopsis thaliana
(Ohad et al. 1996; Chaudhury et al. 1997;
Grossniklaus et al. 1998), might provide new
insights into embryogenesis in apomicts.
Pseudogamy is the most common path of seed
development, but autonomous apomixis
occurs in some cases (Nogler 1984). By
contrast, apomeiosis is well documented and
may follow different pathways. Several
reviews (Nogler 1984; Asker and Jerling 1992;
Koltunow 1993; Crane, Chap. 3) provide
detailed descriptions of most types of
apomixis that occur in the wild.

The two types of apomeiosis—apospory and
diplospory—and their characteristics are
briefly described in this chapter in order to
highlight differences with sexual reproduction
that are pertinent for the development of
screening tools. In adventitious embryony,
both megasporogenesis and megagame-

soceller colls develep A

togenesis are bypassed; this type of apomixis
has been extensively reviewed by Naumova
(1992) and Koltunow et al. (1995a).

Types of Meiotic and Apomeiotic Embryo
Sac Formation

Sexual reproduction starts with the
differentiation of one hypodermal archesporial
nucellar cell into a megaspore mother cell
{(MMC). See Figure 9.1. This MMC enlarges
and produces a dyad of megaspores through
the first meiotic division and a tetrad of
megaspores through the second division. At
least two biochemical pathways have been
reported as critical to or associated with
meiosis: callose synthesis throughout
megasporogenesis in angiosperms that
produce mono- and bisporic ESs (Rodkiewicz
1970), and altered expression of plasma
membrane arabinogalactan protein (Pennell
and Roberts 1990).

Mature meiotic ES structure varies among
taxa, but it generally displays antipodal cells,
two polar nuclei within the central cell,
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Figure 9.1 Mechanisms of pseudogamous gametophytic apomixis: consequences and comparison with sexval

reproduction.



synergid(s) and one egg cell (Polygonum-type
development). All nuclei from the meiotic ES
are reduced (n chromosomes). Double
fertilization is required for embryo and
endosperm development to begin. Each of the
sperm cells is involved in different fusion
events: fusion with the egg restores the
sporophytic chromosome number, and fusion
with the central cell produces a nutritive tissue,
the endosperm.

In diplospory, meiosis is totally omitted (e.g.,
Antennaria-type) or perturbed (e.g.,
Taraxacum-, Ixeris- or Allium-types). In both
cases, ESs form through three or more mitoses:
(i) from MMCs behaving as unreduced
megaspores (Antennaria-type); (if) from
unreduced megaspores after restitution
nucleus (Taraxacum- and Ixeris-types); or (iir)
from 2n megaspores after premeiotic
chromosome doubling (Allium-type). The
characteristic meiotic sequence (MMC, dyad,
tetrad) is absent and callose deposition does
not occur (Naumova et al. 1993; Leblanc et al.
1995a) or is strongly disturbed in diplosporous
pathways (Carman et al. 1991; Peel et al. 1997).
Lack of callose deposition also has been
reported in meiotic mutants of Medicago sativa
that produce unreduced embryo sacs
(Barcaccia et al. 1996) and in apomictic
Antennaria hybrids obtained from parents
displaying floral asynchrony (Carman 2000).
Inapospory, several ESs generally differentiate
from nucellar (somatic) cells. In contrast to
diplospory, which seems to result from genetic
lesions directly affecting meiosis, some authors
have stated that meiotic and apomeiotic
developments are independent in apospory
(Harlan et al. 1964; Nogler 1984). Both
developments can theoretically occur at the
same time within the same ovule, but usually
the legitimate sexual line is eliminated in
subsequent developmental stages. Abnormal
patterns of callose deposition have been
observed in various aposporous species
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(Naumova et al. 1993; Peel 1993; Peel et al.
1997), but little light was shed on their
reproductive behavior. (Peel 1993; Peel et al.
1997). However, recent studies on callose
deposition patterns and the dynamics of beta-
1,3-glucanase (HpGluc) expression in
aposporous Hieracium provide new insights
into the role of callose (Tucker et al. 2000): both
altered patterns and persistence of callose
during megasporogenesis occur in apomictic
plants when compared to sexual ones. In
addition, the HpGiuc enzyme might also play
a role in promoting the aposporous pathway
over megasporogenic callose dissolution.

Megagametogenesis in apomicts and in their
sexual counterparts is usually similar. One
exception is the aposporous ES structure in the
Panicoideae and Andropogoneae subfamilies
(Poaceae), which is a 4-nucleate ES (Panicum-
type, after Warmke 1954), the sexual
counterparts producing 8-nucleate ESs

(Polygonum-type).

Embryo and Seed Formation

The formation of viable seeds usually requires
endosperm differentiation. This is achieved in
apomicts through (i) pseudogamy (single
fertilization of polar nuclei) or (if) autonomous
endosperm development (central cell develops
Most

autonomously). apomicts are

pseudogamous.

Megagametogenesis in both reproductive
modes appears to take the same amount of
time, but time periods for megasporogenesis
differ. Such differences have been documented
for several aposporous species (Ranunculus
auricomus, Nogler 1984; Panicum maximum,
Savidan 1982a; Paspalum notatum, Martinez et
al. 1994) and two diplosporous species
(Tripsacum zopilotense and T. dactyloides, Leblanc
and Savidan 1994). The complete maturation
of the apomeiotic ES before the meiotic ES may
contribute to the failure of unreduced egg cell
fertilization: by the time the pollen tube reaches
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the ovule, unreduced egg cells may not be
receptive. This loss of receptivity is not yet well
understood, but several hypotheses have been
proposed, including chemical or mechanical
barriers (e.g., a complete cell wall around the
egg) and a temporal window of receptivity,
among others.

Conseguences of Apomictic Seed
Formation

In sexual reproduction, the two gametes that
fuse are produced through meiosis. Sexual
development allows genetic recombination
and segregation, thereby enhancing genetic
diversity. Aside from strict autogamy and from
the very specific case of permanent
translocation heterozygosity (Ellstrand and
Levin 1982), offspring from sexual plants are
new genotypes. Apomictic pathways are
characterized by unreduced egg cell
parthenogenesis, resulting in offspring that are
exact genotypic replicas of the mother plant.
However, genetic recombination may occur
during apomictic reproduction in plants that
show partially synaptic and restitutional
meiosis or somatic DNA rearrangements
(Richards 1997).

Complete (100%) maternal progenies are
recovered when the mother plant reproduces
through obligate apomixis. But generally,
apomixis is facultative and progenies comprise
various types, each resulting from a different

Table 9.1 The four theoretical offspring dasses in progenies

from facultative pseudogamous apomicts. Note that

apomeiotic mechanisms can induce chromosome losses and

result in unbalanced unreduced female gametes.

combination of failure or success in meiosis
and fertilization (Table 9.1). A fairly strict
genetic control for both the formation of
unreduced ES (reviewed by Sherwood, Chap.
5) and the degree of apomixis (Asker 1980) has
been reported in most taxa studied.

Levels of Screening and
Related Tools

There are several indicators of apomixis,
including high frequency of multiple
seedlings, high seed fertility in plants expected
to be sterile (e.g., wide hybrids, triploids,
autopolyploids, and aneuploids), homo-
geneous progenies, etc. (Bashaw 1980; Hanna
and Bashaw 1987; den Nijs and van Dijk 1993).
They are sometimes difficult to use in the case
of wild materials and, in all cases, further
investigation is required to assess apomixis
type and level of expression. The relative
advantages or disadvantages of the screening
procedures presented here are discussed
further in “Choosing Suitable Procedures.”

Analyses at the Plant Level

1. Molecular markers cosegregating with
apomixis. To date, the identification of
isozymic or molecular markers strongly linked
with apomixis is the only procedure for
detecting apomixis prior to flowering.

Molecular marker-based analyses in
apomicts were conducted either to
investigate the molecular basis of
apomixis, to assist in transferring
apomixis into crops, or to ultimately
isolate the gene(s) responsible for its

regulation. Segregating progenies or
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However, molecular markers (RFLP, SSR, and
AFLP) for apomixis, apomeiosis, and
parthenogenesis have been reported for
several aposporous genera (Pennisetum: Ozias-
Akins et al. 1993, 1998; Cenchrus: Gustine et al.
1997; Roche et al. 1999; Brachiaria: Miles et al.
1994; Pessino et al. 1997, 1998; Poa: Barcaccia
etal. 1998; Erygon: Noyes and Rieseberg 2000),
and in diplosporous Tripsacum dactyloides
(Leblanc et al. 1995b; Kindiger et al. 1996;
Blakey et al. 1997; Grimanelli et al. 1997a).

2. Cytoembryology. Cytoembryological
differences between sexual and apomictic
developments appear at different times.
Observations to determine the origin of ESs
are therefore based on differences in
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megasporogenesis (i.e., MMC behavior,
occurrence of meiosis products, see Table 9.2)
in the case of diplospory, on nucellar cell
initiation in the case of apospory, and on
differences in mature ESs for apospory of the
Panicum-type. To standardize time of
sampling, pistils can be classified according to
pollen developmental stage if the flowers are
hermaphrodite, or by size if they are
monoecious. In pseudogamous species
showing early embryo divisions before
anthesis and endosperm formation
(precocious embryony), cytoembryological
observations within ESs can also help identify
and quantify parthenogenesis (Kojima and
Nagato 1992a; Naumova et al. 1993).

Table 9.2 Main characteristics of megasporogenesis ond megogometogenesis during both sexval

reproduction and gametophytic apomixis

Meiosis Megasporogenesis  Cytoembryology ~ Megagametogenesis  References
Cahose
Sexuary  Complefed. The chalazol  Collose depositionin ~~ Meiofic sequence Mature 8-nudeate ES [1] Pennel and
megaspore of the fetrod  Angiosperms producing (MM, dyod, tetrod).  forms from chalazal Roberts, 1990.
develops into on £S. mono- ond bisporic reduced megospore [2] Rodkiewicz, 1970.
Ahered expressionof  embryo socs [2]. through 3 {Polygonum-  -Herr, 1971.
arabinogalocion protein type) or more mitoses.  -Russel, 1978.
was shown fo be Mature ES are produced  -Dumas and
associted with sexvel latter thon in agpomeiotic  Mogensen, 1993.
development in (meiosis deloys
Pisum. [1]. megogomelogenesis)
Aromnis -Nogler, 1984.
-(rane, chop. 3.
Apospory  Meiosis is initiated but  Yes (meiolic products).  Concomitant ES forms from somatic ~ -Mintzig, 1940.
genesally faik soon D Disturbed callose development of the  cells through mitoses. Wormke, 1954.
o latter. patierns may indicate  reproductive cell Polyembryony: Severol ~ -Burson and Benneti,
0pospory. through meiosis somatic cells may 1970.
(sexvality) ond somatic develop. Reduced ES can  -Young et dl,, 1979.
cellls) through mitoses  be formed. Panicum-type: -Savidan, 1982b.
after enlorgement. 4-nudeate ES. -Naumova et al., 1993.
Hierocium-type: ES are  -Tucker et al,, 2000
similar 1o sexuaks.
Diplospory ~ Antennaria-type: meiosis No callose deposition  MMC enlarges ES forms from the -Voigt and Bashaw,
is tolally over-passed.  in megasporocyte {Tripsacum spp., reproductive cell. No 1972.
Toraxacum- ond Ixeris- ~ cell wolks. Erogrostis curvula) o polyembryony. Generally -Crone and Corman,
types: meiosis foils early elongates (Flymus simikar 1o sexvolity. 1987.
producing a restitution redisetus). Relation  Binucleate ES shape -Carman et al,, 1991.
nucleus. Allium-type: between enlargement/ can be characteristic -Kojima and Nogato,
endomitosis Antennaria type ond  {Tripsacum) Faur 1992b.
elongation/Toraxacum  nucleate £S described in ~~ -Peel el al., 1997
type? Erogrostis curvula
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Paraffin sectioning methods (Figure 9.2)
combined with staining (e.g., safranin-fast
green stain, Johansen 1940; or aniline blue,
Russel 1978) have been used over the last
century for cytoembryological studies of
reproductive development and in apomixis
research (e.g., Snyder 1957; Voigt and Bashaw
1972; Burson et al. 1990). However, preparing
paraffin sections is arduous and time
consuming, and interpretations may be
difficult. Clearing procedures (Figure 9.3) were
described more than 90 years ago (Strasburger
and Hillhouse 1900), but have been recently
rediscovered and greatly improved (see Crane,
appendix of Chap.3). They do not require
sectioning or squashing and thus allow ovules
to be observed in situ in three dimensions,
making interpretations easier than from a
series of sections. Squashing techniques,
generally combined with staining, were
developed for studies of megagametogenesis
or megasporogenesis in various species
(Hillary 1940; Bradley 1948; Saran and de Wet
1966; Darlington and La Cour 1966), but have
proven only moderately successful.
Nevertheless, improved squashing techniques
combined with clearing procedures provide
good results when analyzing female meiosis
(Jongedijk 1987; Kojima et al. 1991a; Kojima
and Nagato 1992b).

Clearing techniques using non-aqueous fluids
(Herr 1971; Young et al.1979; Crane and
Carman 1987) now represent the best tool for
observing ovule details during both
megasporogenesis and megagametogenesis in
aposporous and diplosporous materials.
Procedures combining Mayer’s hemalum
staining with methyl-salicilate clearing have
been successfully used for observations within
whole ovules of Solanum (Stelly et al. 1984) and
Medicago (Tavoletti et al. 1991). These
techniques are of great interest for
embryological analyses in apomicts because
they do not require the use of special optics.

Clearing procedures combining aqueous
solution (sucrose, KI) and aniline blue have
recently been developed for observation of
callose deposition during megasporogenesis
(Carman et al. 1991; Leblanc et al. 1995b; Peel
et al. 1997).

3. Egg cell parthenogenetic capacity. Egg cells
produced through apospory or diplospory
should be better able to differentiate
parthenogenetically than those produced
through sexual development, because of the
apparent linkage between the two steps of
apomictic development. Matzk (1991) recently
proposed a new procedure to identify and
quantify parthenogenesis for a wide range of
cool season grasses. The technique, known as
the auxin test, involves applying a synthetic
auxin compound a few days before anthesis
to induce parthenocarpic development in
unpollinated ovaries. Auxin induced grains
will lack endosperms, because the fusion of
the sperm and polar nuclei is no longer
possible, but egg cells with parthenogenetic
capacities will develop into embryos. Studies
in Poa pratensis using the auxin test to estimate
the degree of parthenogenesis in various
genotypes showed good reliability and low
variation across years and environments
(Mazzucato et al. 1996).

Progeny analysis

In classical progeny testing, one compares the
mother plant with its offspring and/or
evaluates heterogeneity within progeny.
Offspring from apomictic plants are expected
to be genetically identical to the mother plant;
therefore phenotypic identity with the
maternal type suggests
reproduction, whereas variations indicate
sexuality, recombination, and/ or fertilization.
Traditionally, progeny tests based on gross
morphology have been used in apomixis
research because they are easy to perform (e.g.,
Duich and Musser 1959; Burton et al. 1973;
Gadella 1983), but many other descriptors may

apomictic
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Figure 9.2 Aposporous development of
Hieracium-type in Poa pratensis (sectioning
und staining procedure). Macrospore
degeneration on the micropylar side (dm),
enlarged functional megaspore (fm), and
aposporous initial in lateral-chalazal position
(ai) (800x). (Mazzucato et al. 1995).

Figure 9.3 Clearing techniques in Tripsacum spp. a.
Diplosporous enlarged megaspocyte observed under
interference-phase contrast after a methyl benzoate-dibutyl
phthalate dearing procedure (600x). (Leblanc et al. 1995a).
b. Callose deposition during megasporogenesis in a sexual
line after a sucrose-aniline blue clearing procedure (250x).
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be useful for progeny tests and should
therefore be considered. Progeny tests are
usually performed onseedlings or fully-grown
plants, but other tissues from earlier
developmental stages, such as ovaries,
endosperms or seeds, can also be used.

1. Analysis of pollinated ovaries or seeds.
Determining ploidy levels in pollinated ovaries
or seeds (albuminated) provides information
on both reduction (meiosis) and fertilization
events. Ratios between endosperm and
embryos and between female and male
contributions to the endosperm in apomicts
often differs from those in sexual plants except
for the aposporous
development (Figure. 9.1). For many other

Panicum-type

apomictic pathways, these ratios differ. For
example, endosperms found in tetraploid
diplosporous apomicts are higher than in their
sexual tetraploid counterparts for identical
pollen donors (i.e., 10x versus 6x if the pollen
is 2x); endosperm/embryo ratio for
autonomous apomixis is 2:1 and 5:2 [(4x + 4x)
+ 2x / 4x + 0] for tetraploid pseudogamous
apomicts donor).
Fertilization by unreduced pollen (Chao 1980;

Huffand Bara 1993) and endopolyploidization,

(tetraploid pollen

which sometimes occurs during endosperm
development, is also possible and may further
complicate analyses. However, endosperm
ploidy level(s) may suggest apomictic
reproduction or allow the quantification of
facultative apomixis. Nevertheless, it cannot
reveal the precise nature of the apomictic
mechanisms involved.

Ploidy level in fertilized ovaries or immature
seeds cannot easily be determined using
classical chromosome counting methods, but
flow cytometry now permits rapid
measurement of DNA content in a variety of
plant tissues, including single embryos, young
endosperms, or seeds (Galbraith et al. 1983;
Kowles et al. 1990; Hignight et al. 1991).

Analyses in numerous apomictic species have

proven flow cytometry to be a rapid and
reliable procedure for determining the mode
of reproduction (Mazzucato et al. 1994;
Brautigam and Brautigam 1996; Grimanelli et
al. 1997b; Gupta et al. 1998; Naumova et al.
1999, Matzk et al. 2000). Another option for
DNA content estimation of the endosperm
nuclei is to combine staining with 4'-6-
diamidino-2-phenylindole (DAPI), fluo-
resence microscopy, and image analysis
(Naumova et al. 1993; Sherwood 1995; Caceres
et al. 1999).

2. Ovule regenerated plants. In tetraploid
accessions of Allium tuberosum, Kojima and
Kawaguchi (1989) reported a high frequency
of tetraploid regenerated plants from
unpollinated cultured ovules, suggesting
apomixis expression. This indicator could be
applied in screening because, in similar
culture media, sexual plants would generate
few (poly)haploids, whereas apomeiotic
ovules would grow mostly into plantlets with
the same number of chromosomes as the
mother plant.

3. Analysis of progeny plants. Progeny tests
must clearly identify either hybrid offspring
(n+ 0 types are generally poorly represented)
or seed production in absence of pollination
when pseudogamous apomixis or
autonomous apomixis, respectively, are
suspected. Hybrids can be identified using (1)
morphological descriptors, (ii) cytological
data, and/or (iif) marker analyses, if the origin

of the progeny is appropriate.

Remarks on progeny size. The use of
progenies from controlled crosses is
recommended. Male parents bearing
discriminating traits (dominant traits,
different chromosome numbers, etc.) should
be chosen when available, limiting possible
confusions between selfed and hybrid
progenies. However, open pollinated
progenies can be used when mother plants
are sufficiently heterozygous to detect



segregation after selfing and when there is
significant diversity in the surrounding field
collection, as is the case for most apomictic species,
which are generally polyploid, polymorphic, and
highly heterozygous.

Identifying or quantifying apomixis does not
require the same number of progeny. To detect
apomixis, a relatively small number of progeny (15-
25) canbe analyzed. Aberrant rates typically are a:n
ratios with ‘n’ the progeny size and ‘a’ the number
of aberrants observed in the progeny. Statistically,
such samplings are binomial; ‘p” (aberrant rate) is
the ratio to be estimated for a given value of n
(progeny size) on the basis of an observed value for
a (number of aberrants detected within the
progeny). Confidence limits for p in a binomial
sampling are given in Figure 9.4 for various values
ofn (a =0.025). Note that for n>30, confidence limits
can be estimated using formulas for the normal
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Figure 9.4 Confidence limits (a=0.025) for p in binomial
sampling, given o somple fraction a/n. The numbers
printed along the curves indicate the sample size, n. For a
given value of a/n (abscissa), limits for p (p, and p,) are
the ordinates read from the appropriate lower and upper
curves (Prip, <p < p,} < 1-2q).
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distribution. Curves shown in Figure 9.4
clearly indicate that, up to n = 100, the
information obtained is poorly significant
regardless of the value of a. Finally, to
obtain good estimations of aberrant rates
(i.e., less than 10% confidence limits), it
appears that a high number of
individuals is required.

Chromosome number determination
within progenies. The sexual or asexual
origin of offspring is not detectable from
crosses made at the same level of ploidy,
but 2n + n and n + 0 off-types are easily
detected even at the seedling stage.
Interploidy-level crosses could be used
to detect all classes of offspring, but
information biased by
disturbances caused by unstable ploidy
levels or ploidy barriers. Chromosome

can be

counts can be made from root tips,
microspores, or any somatic tissue using
flow cytometry (Hignight et al. 1991).

Detection of seed production in absence
of pollination. Species carrying non-
hermaphrodite flowers obviously
represent the easiest situation, the only
precaution required being to avoid pollen
contamination. Contrarily, emasculation
will be required unless an appropriate
genetic system that ensures male sterility
can be developed. Such systems require
thorough knowledge of the genetics and
genetic stocks of the material under
study, making their application very
limited in natural populations. They have
been exclusively developed in
experimental mutagenic populations of
sexual model species (Aradidopsis thaliana,
Petunia hybrida), with the aim of
identifying mutants that reproduce
through autonomous apomixis
(Koltunow et al. 1995b; Chaudhury et al.
1997; Ramulu et al. 1997).



130 Ovier Leblonc ond Asdree Mezzcste

Markers for hybrid detec tion. Traits under
simple genetic control are ideal for progeny
testing by crossing recessive maternal
genotypes with homozygous dominant testers
(Hanna et al. 1970; Bashaw and Hanna 1990).
Models for estimating levels of apomixis by
following marker segregation have been
developed (Marshall and Brown 1974),
however, recombination can occur without
fertilization, and the presence of dominant
traits in progeny tells nothing about the origin
of the off-types (n + n or 2n + n) in the absence
of cytological data. Moreover, identification of
such “ideal” markers in apomictic species or
agamic complexes is not necessarily easy,
because traits in polyploid apomicts are
difficult to analyze genetically.

Morphological descriptors are the easiest
means for conducting progeny tests. If the
tester (pollen donor) differs significantly from
the progeny-tested plant, hybrids will vary
sufficiently from the maternal type to allow
detection. In the case of selfing, because
apomicts are generally highly heterozygous,
offspring arising through sexuality will vary
sufficiently from the mother plant to be scored
as off-types. In most species, (poly)haploids
are easily detected because of their particular
phenotypes and the low vigor they exhibit
(Asker and Jerling 1992). However, when
using morphological descriptors, itis often not
possible to distinguish between sexuality
{n+n) and genomic accumulation (2n + n). But
when morphological and cytological
(chromosome number) data are combined, the
identification of all classes is theoretically
possible. Analysis of seedlings has the major
advantages of timeliness and saving space, but
the most informative descriptors for screening
purposes are usually expressed at maturity.
There are few reports of successful progeny
testing for morphology on seedlings after
interspecific crosses (Williamson 1981).

Isozymes or molecular markers can be used
to assess variation in progenies (fingerprinting
analyses; Nybom 1996). Finding good
polymorphic isozyme systems, RFLP probes,
or primers for PCR as candidates for
fingerprint experiments is not a major obstacle.
Although genetic analysis is still hindered by
polyploidy, any variation in isozyme or DNA
patterns indicates off-type production,
provided that somatic recombination does not
occur frequently in the material under study.
Esterase and peroxydase were the first systems
used to isolate sexual plants from Panicum
maximum (Smith 1972). Apomixis expression
was also confirmed or quantified using
isozymes in Taraxacum (Ford and Richard
1985), Arabis holboellii (Roy and Rieseberg
1989), Allium tuberosum (Kojima et al. 1991b),
Poa pratensis (Wu et al. 1984; Barcaccia et al.
1994), Tripsacum spp. (Leblanc 1995), and Malus
sp. (Ur-Rahman et al. 1997).

Mazzucato et al. (1995) showed a slightly
higher capacity of RAPD markers in
discriminating off-types in progenies from the
same species, when compared with three
polymorphic isozyme systems or with analysis
of traditional morphological traits. Although
still seldom used, molecular markers have
been successfully used for progeny
fingerprinting (e.g., Poa pratensis: Huff and
Bara 1993; Barcaccia et al. 1997; Paspalum
notatum: Ortiz et al. 1997).

Choosing Suitable Procedures
Analyses at the Plant Level versus
Progeny Tests

1. Nature of the information obtained.
Apomixis results from apomeiotic processes
(apospory or diplospory) that produce
unreduced ESs, and parthenogenetic embryo
development from unreduced eggs. Although
nonreduction and parthenogenesis are
thought to be closely linked in apomicts,
observations and /or analyses of the plant itself



obviously provides insights only about
apomeiotic or meiotic events, not about the
complete process of apomixis. Data on the next
generation (progeny test) must be collected to
study fertilization and parthenogenesis events
as well as the degree of apomixis. The choice
of the level of analysis (apomeiosis /
parthenogenesis / apomixis) depends on the
objectives of the research, i.e., whether one
wishes to determine only cytological
processes, study parthenogenesis, or
investigate apomixis in its entirety.

2. Comparing results. Limited information is
available on diplosporous development, but
cytological analyses of parent plants compared
with progeny tests generally show good
agreement between apomeiosis and apomixis
screenings in Eragrostis curvula (Voigt and
Burson 1981), Allium tuberosum (Kojima and
Nagato 1992b), and Tripsacum spp. (Leblanc
1995). By contrast, the situation in aposporous
species more  complex:
cytoembryological analyses generally
revealed higher sexual potential than did
morphology-based progeny tests in Panicum
maximum (Savidan 1982b), Poa pratensis
(Nygren 1951), and Bothriochloa-Dichanthium
(Harlan et al. 1964). The same tendency was
also observed by Mazzucato et al. (1996) in Poa
pratensis, when auxin tests and field data were

appears

compared. However, using progeny tests on
more than 100 Brachiaria F;s, Miles and do
Valle (1991) classified ten plants that were
highly facultative apomicts as sexual,
according to cytoembryological tests. Sexual
potential in aposporous tropical grasses has
generally been scored according to the
formation of 8-nucleate ESs that may develop
concomitantly with several apomeiotic (4-
nucleate) ESs. The competition among ESs—
more favorable to apomeiotics (Savidan
1982a)}—and the possible weakness of certain
hybrids that are eliminated early, may explain
the overestimation of sexuality in facultative
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apospore as measured using cytoembryology
(Clausen et al. 1947; Kojima and Nagato 1992b).
This was confirmed by Savidan (1982a) in one
Panicum maximum accession: sexual potential
was estimated using a clearing procedure at
22.5%, but only 3% of the open pollinated adult
progeny, were off-types. Elimination of hybrid
offspring occurred at germination (-7%) or after
transferring plants to the field (-12.5%), because
of their inbred nature (resulting from selfing
or hydridization with genetically close
genotypesin the collection). On the other hand,
after self- or sib-pollination, the lack of
heterozygous loci in segregation may cause an
overestimation of apomixis, with progeny tests
showing the presence of “apparent apomixis”
(Bayer et al. 1990).

Screening Procedures:

Advantages and Constraints

Until recently, screening tools for mode of
reproduction were limited to easy-but-late
morphological progeny tests or skill-
demanding and time-consuming cytological
sectioning methods (see Table 9.3). During the
past 15 years, new tools in molecular and cell
biology have made screening for mode of
reproduction more efficient, rapid, and reliable.
These techniques include ovary progeny
testing, flow cytometry for determining ploidy
level, auxin test, and molecular markers that
cosegregate with reproductive mode. The
major disadvantage of the new methods is their
expense. In addition, though the methods seem
to agree with cytological and/or field
observations, additional data are needed to
confirm their reliability.

1. Apomixis identification and
characterization. As mentioned, apomixis may
be detected
cytoembryological observations are ultimately

needed to confirm the origin of the ES and to

in various ways, but

determine the type of apomixis. Clearing
techniques are now quick and easy but require
the use of phase-contrast or differential
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interference contrast optics, both entailing
considerable expense. Stain clearing
techniques that allow observation of ovule
details under traditional optics are less
expensive. Molecular markers that cosegregate
with apomixis, which enable analysis at earlier
growth stages than cytoembryology, require
the development of special plant materials and
protocols, and the cost of associated supplies
is often beyond the means of many research
groups. Moreover, they may not be used with
materials that differ in origin from the
materials used to identify the markers,
especially in the case of the highly cross-
specific RAPDs (Williams et al. 1993).
Morphological progeny tests are time- and
space-consuming because good descriptors
are usually expressed in adult plants and a
minimum of 15 to 25 offspring are needed.

However, these tests do not require much
equipment or technical skill, and can thus be
managed everywhere. Their main drawback
is that they produce frequent errors because
facultative apomixis occurs more often than
previously thought. Moreover, progeny with
sexual origin may resemble the mother plant
in morphology, leading to misclassification
and to an overestimation of the degree of
apomixis. The existence of this gray area in
progeny plant classification was reported by
Williamson (1976), after extensive progeny
testing in Poa sp. This makes morphological
progeny tests unreliable when apomixis is
highly facultative, but more efficient as
apomixis expression increases. Early progeny
tests using isozymic or molecular markers can
be conducted for apomixis detection on 15-25
offspring. Only a few isozyme systems are

Table 9.3 Advantages and disadvantages of importont procedures for the investigation of modes of

reproduction at the plant and progeny levels. * See Ragot and Hoisington (1993) for RFLP and RAPD costs.

Plant level anclyses Progeny tests

Procedures  Cyloembryo-  Moleculor markers  Auxin tests Chr. countingin  Aduht Plants Morphology  Fingerprinling
logy {dearing  co-segregating ovories or seeds  Chr. counting*
procedures)  with apomixis®

Information Apomixis type Dependsonthe Indicationof | Indication of  Off-types of Apomixis identificotion ond

expecled  defermination  nature of the apomixis apomixis n+n ond quantification; off-types nature if
ondsexvel  morker(s) expression; expression; n+0 nature combined with chromosome
pofential identified (to estimation of | eslimationof  detection. counting.
eslimation.  dofe linkoge the degree of | the degree

with apomeiosis).  parthenogenesis | of apomixis.

Plont 1510100 Alreody defer- 100 flowers. 5010 100 Apomixis identification: 5 10 25 offspring.

materials  flowers, mined moterioks ovories/seeds.  Apomixis quontification: of least 100 offspring.

required  depending on  in segregation
the objectives.  for morker
entification.

Advantages  Eosy and Analyses canbe  Easy and quick | Easy and Easy if flow Easy Analyses on
quick 1o performed to perform quick to cytomelry young offsprings
perform after  early. ofter flowering | perform after  {embryo, possible.
flowering. pollination. endosperm,

plantiets).

Constraints  Expensive Preliminary work  The ouxin fest | Expensive Time consu- Time and space consumming.
equipment 1o determine has been mainly | equipment for  ming (dassical  Morphological tests: unreliable if
for materioks. Use usedtodatein | flow cytometry.  methods) or apomixis is highly faculiative.
microscopy.  of the morkers  cool-season expensive if

0Cross 0cCessions  grasses. flow cytometry
of different i used.

origins? Expensive.




required to indicate apomixis and determine
the nature of the hybrids detected. RFLPs and
RAPD:s can also be used in the same way, but
at greater expense.

2. Degree of apomixis expression. Many
offspring are needed to obtain a good estimate
of the degree of apomixis. Both auxin tests and
flow cytometric analyses of pollinated ovaries
or seeds provide good estimates of sexual
potential, though distinguishing 2n + 0 from
n + n offspring might be difficult in certain
cases. In contrast, systematic chromosome
counting within progenies is useful for
detecting 2n + nand n + 0 off-types, but it does
not separate 2n + 0 from n + n offspring, and
without flow cytometry it becomes
tremendously time consuming. Progeny tests
combining cytology and marker analyses
represent the best option for identifying the
different classes of offspring within apomictic
progenies. To limit cytology work (when flow
cytometry is not available), markers can be
applied first to separate maternal offspring
from (poly)haploids or hybrids. The origin of
the latter may be determined according to the
patterns they produce (i.e.,, 2n + n off-types
must carry all bands from the mother plant,
plus extra bands from the pollen), and then
cytologically confirmed.

Choosing a Procedure

There are four main areas of apomixis research,
each with distinct constraints and objectives:
(i) the search for apomixis or elements of
apomixis in new taxa, coupled with genetic
studies in wild populations, (ii) germplasm
characterization of apomictic species,
(iif) genetic and biological studies for further
manipulation of apomixis, and (iv) breeding
of apomicts and introduction of apomixis into
sexual crops.

Since gametophytic apomixis is formidably
limited to perennial, polyploid, and
outcrossing species, the search for apomixis in
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additional species should begin with taxa
presenting these traits. The very first screening
can be based on the expression of the already
while

’

mentioned “indicators of apomixis,”
more discriminative procedures may be
applied to promising specimens. For
germplasm evaluation, a representative sample
of the collection must be chosen on the basis of
morphological and cytological data, and traits
of agronomic value such as disease resistance.
Chromosome number,
development, and degree of apomixis are the
primary factors for which basic data must be

repro-ductive

collected to develop strategies for further
research. Genetic studies also may be
attempted to genetically dissect apomictic
mechanisms (number of genes involved and
their effects). Following this preliminary work,
appropriate tools for larger-scale screening
should be developed or chosen according to
the apomixis characteristics of the collection
(e.g., callose patterns for diplospory, ES clearing
for apospory of the Panicum-type, etc.).

Sexual parents involved in crosses for apomixis
inheritance studies must be carefully chosen
using cytoembryology. Highly facultative
apomicts are easily misclassified as sexuals
using progeny tests. This causes distortions of
segregation ratios for mode of reproduction
among progeny. In the same way, looking for
differences between sexual and apomictic
development at the molecular level requires the
analysis of genotypes that are well
characterized for mode of reproduction. This
may allow the development of near isogenic
lines, an important step in identifying the
gene(s) controlling apomixis.

Before apomixis can be transferred into crops
or used in breeding programs, researchers need
procedures to identify apomictic genotypes
(see do Valle and Miles, Chap. 10; Savidan,
Chap. 11) and to quantify apomixis in
genotypes selected for varietal release. Progeny



134 Oivier Lebian cnd Andrea Mazzwcate

testing in such programs may help identify
apomixis, because offspring are necessarily
produced as part of breeding schemes, but an
entire plant cycle must pass before data are
obtained (a serious drawback in the case of
annual plants). Notwithstanding, in some
cases—especially when low female fertility is
affecting the plants (e.g., interspecific or
intergeneric hybrids}—this may be the best
way to test for mode of reproduction. Because

in most species apomixis and sexuality do not
express at the same ploidy level, estimating
chromosome number within progenies using
flow cytometry allows easy identification of
apomictic genotypes in early backcross
generations, but becomes less effective when
chromosome numbers close to that of the
recurrent parent are recovered. Appropriate
cytological procedures or marker-assisted
selection may also be used to identify apomixis.
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