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Some Thoughts about the West Pacific Warm Pool
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ABSTRACf

Large scale aspects of the West Pacific warm pool will be discussed on the basis of existing data
and information, A definition of the warm pool in terms of an isothermal layer is simple and definitive in
the vertical, but difficult with regard to its horizontal extent. Even if narrowly defined by the 28'C
isotherm, the pool undergoes large annual variations in its horizontal extent. The region of overlap is only
about one half of the size of the pool. The pool is persistent only between WON and IO'S with its center at
170·E. An inspection of the circulation of upper layer water indicates that the pool gains water from the
two anticyclonic gyres, and discharges wann water by means of the countercurrent and the Indonesian
throughflow. The residence time of water in the pool is only 1.3 years and makes the pool sensitive to
interannual variations of heat advection and heat input There seems to be little interhemispheric exchange
of water through the pool.

The role of the countercurrent as a boundary current between the two gyres will be described, and
its response to variations in the intensity of the two subtropical gyres. A strong South Pacific gyre will lead
to a weak countercurrent and to an accumulation of warm water in the warm pool. This situation persists
during the build-up phase before El Nino. In contrast, a strong North Pacific gyre will lead to a strong
countercurrent and a drain of warm water from the wann pool as is occurring during El Nino. As a
consequence, the variations of the volume of warm water in the warm pool and the occurrence of El Nino
may well be linked to pulsations of the subtropical gyres in the two hemispheres.

1. Introduction.

The West Pacific Warm Pool has been the subject of much scientific interest in
recent years because of its relation to the development of El Nino, and an entire large
scientific experiment (TOGA COARE, 1988) devoted to it is in the final planning stages.
It seems therefore appropriate to spend some time analyzing a few aspects of the warm
pool based on existing data and information. In this brief study I would like to point out
how difficult it is to generate a definition of the pool, discuss the circulation of water
through the pool and its residence time, and to relate fluctuations of the water volume in
the pool with fluctuations of the two subtropical gyres. Analysis of these fluctuations
will result in some important insights into the role of the equatorial countercurrent in the
dynamics of the warm pool.

2. Definition, size and depth of the warm pool.

The warm pool contains tropical surface water, which by definition is warm and
of relatively low salinity due to excessive evaporation. Because of its low density it
forms a lens of light water which floats on the denser waters below, which are of
subtropical origin and therefore cooler and of higher salinity.

Such a warm pool exists in the eastern tropical Pacific off the coast of Central
America. It is shallow, warm and of very low salinity, but most important it is contained
by convergent movements of the two subtropical gyres. These horizontal flows form the
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FIG. I. Average sea surface temperature in the tropical PacifIC Ocean in March and September. Only
isotherms warmer than 25·C are shown to define the warm pool.



101

Galapagos Front and the Cabo San Lucas Front and force the tropical surface water into
a rather restricted area, from which it can escape only to the west, chiefly with the North
Equatorial Current.

In the western tropical Pacific a similar pool is formed, but the warm layer is
much deeper and can be stratified with respect to salinity as has recently been uncovered
by Lukas and Lindstrom (1987). The water movements in the region are divergent and
move water polewards into the western boundary currents. Therefore the pool is poorly
defined horizontally.

A definition of the warm pool is relatively easy in the vertical through the use of
a selected isothermal layer. In fact any isotherm above about 22°C would be useful,
because the upper thermocline is very steep. A definition is much more difficult with
regard to the pools horizontal extend. If one would use the 25°C isotherm, there would be
only one large warm pool in the Pacific, and it would seasonally extend as far north as
Japan and as far south as Brisbane, Australia (Fig. 1). Such a definition would clearly be
undesirable. In contrast, the selection of the 29°C isotherm would define a pool that is
too small and that might occasionally disappear. For these reasons the 28°C isotherm has
been used by many scientists as a practical compromise for the definition of the west
Pacific warm pool.

Accepting such a definition one is immediately confronted with large annual
variations of the boundaries of the pool (Fig. 2). The extreme northerly position is
reached in September, when the pool stretches far into the northern subtropical gyre. In
March the pool barely reaches to WON. The annual fluctuations in the southern
hemisphere are less pronounced, but the size of the pool doubles from September to
March. The area covered permanently by the pool is relatively small, from about WON to
lOoS and from Indonesia to 1700W, and represents only about half of the average area of
the pool. The pool is slightly larger in the northern than in the southern summer. These
large annual fluctuation of the boundaries of the pool make a definition of its size and
volume rather difficult and somewhat uncertain. One also has to keep in mind that the
annual heating and cooling cycles along the boundaries will add to or remove water from
the pool.

The depth of the pool as given by the 28°C isotherm has been charted from XBT
observations for each season, but only the maps for the July-August-September and the
January-February-March periods are shown (Fig. 3). The maximum depth of the pool is
just over 100 m, and the deepest area is near the equator and the date line, and not further
west, where surface temperatures is warmest (Fig. 1). Where the pool is a permanent
feature it is between 60 and lOOm deep. The distribution of depth changes little with the
season, in contrast to its horizontal extend. Along the fringes, especially in the summer
hemisphere, the pool is shallower and the boundary is not well defined.

In view of the poorly defined horizontal boundaries of the warm pool it is rather
difficult to estimate its volume. Taking the averale depth as 80 m and the area as
25xlO12 m2, the volume of the pool is about 20x101 m3. It should be noted that the area
is about 15% larger in northern summer and 15% smaller in southern summer. The
western boundary of the pool is arbitrarily assumed to be the line from the Philippines to
New Guinea, not counting the warm water in the Indonesian Archipelago.

3. Circulation through the warm pool.

Waters of the subtropical gyres of the northern and southern hemisphere circulate
through the warm pool and warm water leaves the pool in the North Equatorial
Countercurrent and through the Indonesian Archipelago. It would be interesting to
estimate the flows in and out of the pool in order to determine the pathways of water
through the pool and to arrive at an estimate of the residence time of water in the warm
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pool. This is not an easy undertaking because of the poorly defined boundaries of the
pool, and estimates will off course be rather crude. Toole, Zou and Millard (1988) have
tried to establish a mass budget for waters warmer than 12°C for a smaller area in the
western Pacific, and they point to the difficulties inherent in such studies.
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FIG.2. Thewarm poolin March and September as given by the 2S"C isotherm. Note the smalloverlap.

All inflow into the warm pool occurs between Hawaii and Tahiti (Fig. 4). The
Hawaii to Tahiti Shuttle Experiment has resulted in a rather solid determination of the
geostrophic flows that enter and leave the warm pool in the east (Wyrtki and Kilonsky,
1984). Transports in the upper 400 m have been computed and they give 24 Sv
(Sverdrup) for the North Equatorial Current, 20 Sv for the Countercurrent and 15 and 26
Sv for the two branches of the South Equatorial Current flowing north and south of the
equator, respectively. Not all this water is warm enough to enter the warm pool, because
these currents extend into the thermocline and even transport water below the
thermocline. An inspection of the sections shown by Wyrtki and Kilonsky (1984) allows
to estimate the flows of water in the mixed layer that enter or leave the warm pool
between Hawaii and Tahiti.

The North Equatorial Current is deep reaching and only about half of its transport
is in the mixed layer. As this water flows west the temperature of the surface water
slowly increases to more than 28°C and it enters the warm pool, accounting for a
contribution of about 12 Sv. The Countercurrent flow is much more concentrated in a
shallow surface layer than the Northern Equatorial Current. Most of its water is warmer
than 27°C and represents a loss of warm water from the pool. This flow can be estimated
as about 15 Sv. The South Equatorial Current flows both north and south of the equator.
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FIG.3. The average depth (in meters) of the 28'C isotherm as derived from XBT observations for the
season January-February-March (top) and the season July-August-September (bottom).
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Its northern part is very shallow and most of the flow consists of warm water. A
reasonable estimate for this flow is 12 Sv. The southern part of the South Equatorial
Current penetrates deeper into the thermocline and its westward flow of warm water may
be estimated as 20 Sv between the equator and 80S. South of this latitude flow is variable
and weak, and westward flow is intertwined with the South Equatorial Countercurrent.

The warm pool looses water through the Indonesian Archipelago. Estimates of
this throughflow vary between 5 and 14 Sv (Gordon, 1986), and some of the throughflow
may involve water in and below the thermocline. Assuming a loss of warm water at a
rate of 8 Sv appears reasonable.

So far we have estimated losses of water from the warm pool as 15 Sv in the
Countercurrent and 8 Sv in the throughflow, and gains of 44 Sv in the North and South
Equatorial Currents. The balance of 21 Sv must consequently leave the warm pool
polewards with the western boundary currents. A schematic sketch of the pathways of
warm water through the warm poll is given in Figure 4. It may be emphasized that most
of the water entering the pool with the North Equatorial Current leaves again with the
subtropical gyre circulation after only a short residence in the pool. The South Equatorial
Current provides most of the water of the pool, which leaves as very warm water either
with the Countercurrent or with the throughflow. About half of the water of the southern
part of the South Equatorial Current participates in the circulation of the southern
subtropical gyre. The pathways of water inside the gyre are off course speculative and
simplified, but it seems rather clear that there is little interhemispheric exchange of
water. The Indonesian throughflow is chiefly supplied from warm water of the southern
hemisphere as assumed by Gordon (1986).
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FIG.4. Estimates of waterflowing into (solidarrows) andout of the warm pool (open arrows) in Svecdrups
(1Q6 m3 S-I).



105

Inside the warm pool water exchange between the various currents may be much
more intense than sketched in this schematic diagram. The circulation to the north of
New Guinea is subject to strong changes with the season, as shown by Schott (1939).
Current measurements by Firing and Jiang (1989) have shown enormous fluctuations
from year to year, and drifting buoy trajectories indicate strong water transfers between
the various zonal currents (Hacker, Firing and Lukas, 1989).

Along the fringes of the pool, the water participating in the anticyclonic
circulation of the subtropical gyres will be subject to the seasonal heating and cooling
cycle. It will therefore become part of the pool when warmed, and disappear from the
pool when cooled, an effect that results in the large annual variation of the poleward
boundaries of the pool.

The above estimates of the water transports in and out of the warm pool allow to
estimate the residence time of warm water in the pool. All inflow into the pool is from
the east between Hawaii and Tahiti and it amounts to about 44x106 m3 s·l. The total
volume of the pool is 20x1014 m3. Dividing volume by circulation rate gives a residence
time of only 1.3 years. This short residence time of warm water in the pool implies that
the water in the pool is exchanged rather frequently and that the pool may be very
sensitive to interannual variations of its volume. This residence time is short compared to
the interval between El Nino events. It should also be noted that the warm pool gains its
water from the two subtropical gyres and looses water with the Countercurrent and the
Indonesian throughflow. The water lost with the Countercurrent will partially reach the
warm pool in the eastern tropical Pacific and partially be re-circulated into the NEC, thus
remaining in the tropical ocean. The water lost with the throughflow, on the other hand
will be lost to the Pacific Ocean and represents an export of heat from the Pacific to the
Indian Ocean.

The warm pool will also be very sensitive to interannual variations of its
temperature and heat content. The average depth of the permanent, central portion of the
pool is about 80 m. A slow change of its mean temperature by 1°C over a period of 2
years can certainly be detected by observations. Such a change can be produced by a
small change of surface heat input of only 5 W m-2 , which is clearly below the threshold
of detection.

4. The warm pool and the subtropical gyres.

Fluctuations of the volume of water in the warm pool are probably related to
fluctuations of the circulation of the subtropical gyres. These gyres represent large
masses of warm water that rotate in an anticyclonic direction. The warm upper layer of
these gyres has a very characteristic shape, as shown by Shaw and Wyrtki (1972),
especially when viewed as a two layer system. A schematic north-south section through
the two subtropical gyres of the Pacific Ocean is shown in Figure 5. The mean depth of
the upper layer in each gyre is given by the volume of warm water present in the gyre,
which is probably very stationary because it is formed by the mean climatic conditions
over a long period. The slope of the upper layer thickness from the center of each gyre
toward the equator or toward the poles is a function of the strength of circulation in each
gyre. A strong circulation will cause a larger slope than a weak circulation, and
consequently a shallower position of the thermocline at the periphery and a deeper
position in the center of the gyre, if the water volume remains constant. There is little
doubt that changes in gyre circulation happen at much faster time scales than changes in
their volume. The subtropical gyres are largely wind-driven, and consequently their
circulation will vary with the wind forcing.
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Because the subtropical gyre of the southern hemisphere penetrates across the
equator into the northern hemisphere, the slope of the thermocline reverses north of the
equator. It is very unlikely that the volume of the two gyres and the intensity of their
circulation match in such a way that the thermocline would have the same depth where
the two gyres meet. In fact the thermocline of the northern gyre at its southern boundary
is usually higher than the thermocline of the southern gyre at its northern boundary. This
difference of thermocline depth causes a geostrophic current to develop between the two
subtropical gyres, which is called the North Equatorial Countercurrent. It is therefore
appropriate to consider the Countercurrent as a boundary current between the two
subtropical gyres. Fluctuations in the intensity of circulation in the two gyres will cause
fluctuations in the depth of the thermocline at their periphery and will change the slope
of the thermocline across the Countercurrent. Consequently the Countercurrent will be
subject to strong fluctuations caused by the fluctuations of the two gyres.

Fluctuations of the two subtropical gyres have been documented by Wyrtki and
Wenzel (1984) by means of sea level observations. They have shown that the gyres
oscillate out of phase with a period near 4 years, and that these oscillations are related to
El Nino events. Fluctuations of the baroclinic structure of the subtropical gyre in the
western North Pacific have been documented by White and Hasunuma (1980) and also
show a periodicity related to El Nino events. It is useful to consider the reaction of the
Countercurrent to oscillations of the gyres, and this is sketched schematically in Figure
5. If the northern gyre is strong, and the southern gyre weak, the difference of the
thermocline across the Countercurrent will be large and the Countercurrent strong. This
situation implies a strong drain of warm water from the warm pool, and is typical for El
Nino conditions, when the warm poollooses mass. In contrast, when the southern gyre is
strong, and the northern gyre is weak, the difference of the thermocline across the
Countercurrent will be small, and the Countercurrent will be weak. This situation will
lead to a small drain of water from the warm pool, but to a strong accumulation of warm
water in the pool by an intensified South Equatorial Current. During this period the
warm pool will grow, and that typically happens between El Nino events.

It remains now to relate the fluctuations of the subtropical gyres as observed by
sea level at Honolulu and Pago Pago to the occurrence of El Nino. Wyrtki and Wenzel
(1984) have used data from 1948 to 1982 to show that the sea level difference between
Pago Pago and Honolulu increases between El Nino events, indicating an acceleration of
the southern gyre. During these periods the South Equatorial Current is strong, adding
warm water to the pool, and the Countercurrent is weak, draining less water from the
pool. Both effects allow the warm pool to grow. During El Nino the sea level difference
between Pago Pago and Honolulu decreases, the southern gyre becomes weaker, the
Countercurrent stronger, and water is being drained from the warm pool. Six more years
of sea level data have been added to the time series of Wyrtki and Wenzel (1984)
covering the 1982-83 and the 1986-87 El Nino events (Fig. 6). During both events the
same pattern is apparent: between El Nino events the sea level difference between the
two gyres increases, and drops rapidly during these events. This confirms the contention
that El Nino events involve an aperiodic discharge of warm water from the western
equatorial Pacific as stated by Wyrtki (1985).

5. Conclusions.

The west Pacific warm pool gains water from the two subtropical gyres, but chiefly from
the South Pacific gyre with the South Equatorial Current The poollooses water with the
Countercurrent, with the Indonesian throughflow and polewards with the subtropical
gyres. Water in the pool has a short residence time and consequently the pool is sensitive
to interannual variations of volume and heat content caused by fluctuations of advection
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and surface heat flux. To understand fluctuations of the warm pool, the interactions with
the two gyres must be taken into account. Fluctuations of the circulation in the two
subtropical gyres are systematically linked to fluctuations of the Countercurrent and
changes in the volume of the warm pool. The gyres are wind-driven and fluctuations of
their circulation are due to fluctuations of the winds. Wind fluctuations in turn, in
particular of the southeast trade winds in the Pacific, are linked to El Nino events, which
only demonstrates how strongly fluctuations in the ocean and in the atmosphere are
coupled.

It will be very difficult to measure the volume fluctuations of the warm pool and
more difficult to measure the transports of the currents flowing in and out, so that a mass
budget can be derived, and the contributions of the subtropical gyres to the pool can be
determined. On the other hand there seems to be little doubt that the interaction of the
two subtropical gyres is intimately involved in the fluctuations of the warm pool and in
the creation of El Nino events. It may be a challenge to theoreticians to model these
gyre-gyre oscillations.
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