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Baroclinic Rossby wave activity in the tropical Pacific was first observed by
White (1977), who examined the annual cycle of subsurface thermal structure in the
eastern region from 10°-200N, finding westward propagating annual signals emanating
from the eastern boundary, propagating eastward at baroclinic Rossby wave speeds to
the longitude of the Hawaiian Archipelago. This work was followed by Meyers (1979),
who observed westward propagation of the annual cycle in upper ocean thermal structure
at baroclinic Rossby wave speeds near 6°N all across the Pacific. Subsequently, White
(1983) examined interannual variability in the subsurface thermal structure in the
western North Pacific, finding westward propagating signals traveling at baroclinic
Rossby wave speeds from 6°_300N. These interannual waves were associated with ENSO
activity. Soon thereafter, interannual baroclinic Rossby wave activity in the latitude
bands from SO-ISON and from SO-ISoS was found to act as a precursor (e.g., White et al.,
1985a; Pazan et al., 1986) to the onset of the 1982-1983 El Nino activity in the eastern
equatorial Pacific; indirect evidence was found that the incidence of this baroclinic
Rossby wave activity in these latitude bands was instigating baroclinic Kelvin. wave
activity in the equatorial wave-guide. Subsequently, White et al. (1987) used this
information to demonstrate that both the observation and model simulation of baroclinic
Rossby wave activity in the western tropical Pacific could be used to hindcast El Nino
activity in the eastern equatorial Pacific for up to a year in advance over the 2S-year
period from 1962-1987.

The dynamical influence that baroclinic Rossby wave activity has upon in the
maintenance of the quasi-cyclic behavior of ENSO (El Nino/Southern Oscillation) was
discussed by Graham and White (1988). They established using a conceptual model that
baroclinic Rossby wave activity influenced ocean/atmosphere coupling in the equatorial
wave-guide by providing for a steady upwelling/downwelling (lasting from 3-9 months)
through the excitation of upwelling/downwelling equatorial baroclinic Kelvin wave
activity at the western boundary (via the Rossby wave reflection process). During the
year prior to El Nino activity in the eastern equatorial Pacific, downwelling equatorial
Kelvin wave activity was associated with a steady eastward advection of warm water
from the western equatorial Pacific into the central and eastern equatorial ocean,
advected by the associated zonal eastward current; this eastward displacement of warm
SST's on the equator was hypothesized to instigate a coupled unstable wave in the
ocean/atmospheric system along the equator, of the kind discussed by Schopf and Suarez
(1988). Within this conceptual model, the reflection of baroclinic Rossby waves at the
western boundary of the tropical Pacific also played an important role in turning the El
Nino process off, leading to La Nina, as discussed in Graham and White (1988).

Sources of baroclinic Rossby wave activity in the tropical Pacific are fairly well
known. White (1977) found evidence consistent with the idea that baroclinic Rossby
waves were being generated at the eastern boundary through the action of the wind stress
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FIG.I. (Upper Panel): Map of the tropical Pacific from 30'N to 30'S where this study was conducted.
(LowerPanel): Map of the westerntropicalPacific.where the reflection of baroclinicRossby wavesby the
maritimewesternboundary is emphasized.
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curl. Meyers (1979) found baroclinic Rossby waves of annual period in the western and
central tropical North Pacific to have been generated by the Ekman pumping in the Trade
Wind field in the eastern tropical North Pacific. Later, White et al (1985b) demonstrated
that the interannual baroclinic Rossby wave activity in the western North Pacific was
wind-generated in response to Ekman pumping in the western and central tropical
Pacific. Moreover, it was shown that baroclinic Rossby wave activity increased in
amplitude toward the west in response to resonance with the wind stress curl forcing.
Pazan and White (1987) computed a vorticity/volume budget for the western tropical
Pacific from 4"-16"N, 160"E-160"W, finding the thermocline to have been pumped
vertically in response both to the divergence of Ekman transport in the upper layer (i.e.,
indicative of Ekman pumping) and to the divergence of geostrophic transport in the
region (i.e., indicative of Rossby wave propagation). More recently, White et al. (1989)
demonstrated that it was possible to track interannual baroclinic Rossby wave activity all
the way across the ocean from the eastern boundary to the western boundary in both
observations and the models at approximately 12°N; regardless, Graham et al. (1989)
found that most of the magnitude in this wave activity occurred in response to wind
stress curl forcing in the central and western tropical Pacific, amplified by resonant
forcing.

The reflection of baroclinic Rossby wave activity at the maritime western
boundary of the tropical Pacific has been inferred from the statistical correlation between
anomalous upper layer thickness in the off-equatorial western tropical Pacific (associated
with baroclinic Rossby wave activity) and that in the central and eastern equatorial
Pacific (associated with baroclinic Kelvin wave activity) in both models and
observations (Pazan et al., 1986). Still, no direct observational evidence exists for the
reflection of baroclinic Rossby wave activity at this western boundary and the
subsequent generation of equatorial Kelvin wave activity emanating from it. A certain
amount of skepticism surrounds the reflection process at the maritime western boundary
(i.e., formed by the Philippines Archipelago in the northern hemisphere and possibly the
Solomon Archipelago in the southern hemisphere, as shown in Fig. 1) because of the
presence of gaps in the numerous archipelagoes that could conceivably constitute the
maritime western boundary of the tropical Pacific. However, recently Clark (1989) and
du Penhoat and Cane (1989) established that these particular archipelagoes were quite
good reflectors of interannual Rossby wave activity, reflecting 70-80% of the incident
baroclinic Rossby wave activity as baroclinic equatorial Kelvin waves.

In this study, the examination of GEOSAT altimetric sea level differences
provides the first direct evidence of this reflection process operating at the maritime
western boundary of the tropical Pacific in both the northern and southern hemisphere
(see Fig.l). In an earlier study, Tai et al. (1989) analyzed altimetric sea level crossover
differences from the first 17 months of the GEOSAT mission from November
1985-April 1987, finding statistically significant agreement with in situ measurements of
sea level differences (i.e., island sea level and relative dynamic height). In that study the
dominant time scale of variability that could be studied was the annual cycle; interannual
variability could not be addressed because of the relatively short length of the record. So
too in this study; only the wave reflection at the maritime western boundary of the
tropical Pacific associated with the annual cycle is addressed.

In the earlier study of Tai et al. (1989), a time series of maps of altimetric sea
level residuals in the tropical Pacific (17 months from April 23, 1985 to September 8,
1986, separated into thirty 17-day time steps) was generated. Verification of these maps
was conducted by Tai et al., (1989) from the comparison of the maps of altimetric sea
level residuals to similar maps of relative dynamic height (0/400 db) residuals, and time
sequences of altimetric sea level residuals to similar time sequences of sea level
residuals measured at island stations. Examples of these 17-day maps is given in Fig .2,
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FEATURE TRACKING OF ALTIMETRIC SEA LEVEL
IN TIlE WESTERN NORTH PACIFIC
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FIG.2. Altimetric sea level maps for June-August 1985. Features evolve smoothly and consistently through
this series of maps (Cl = 2cm, negative values are shaded),
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concentrating on the western tropical Pacific, repeated from Tai et al. (1989) . Notice that
in the maps the Philippines Archipelago forms the maritime western boundary in the
northern hemisphere from the equator to nearly 20oN, while the Solomon
Archipelago/New Guinea complex forms the maritime western boundary in the southern
hemisphere from the equator to approximately WaS . Notice too that the sea level residual
features labeled alphabetically in Fig.2 can be traced from map to map, often indicating
(particularly A and B) westward propagation into the maritime western boundary of the
tropical Pacific.

In order to extract the information that this time series of maps of altimetric sea
level residuals has concerning the reflection of baroclinic Rossby waves from the
maritime western boundary of the tropical Pacific, extended empirical orthogonal
function (EEOF) analysis (Graham et al., 1987) was conducted upon the thirty-one
17-day maps of altimetric sea level differences about the mean for the 17-month period
represented (i.e., from November, 1985-April, 1987). One EEOF analysis was conducted
upon the entire field of altimetric sea level differences from South America to the
maritime coast of Asia, allowing the evolution of the basin-scale redistribution of mass
to be examined (FigA). Then, in order to focus on the reflection activity at the maritime
western boundary of the tropical Pacific, the EEOF analysis was repeated upon the
western tropical Pacific, from 20oS-20oN west of 1600W (Fig.5).
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FIG.3. Time sequences for the fist extended empirical orthogonal functions of altimetric sea level residual
computed for the tropical Pacific (Upper Panel) and the western tropical Pacific (Lower Panel),explaining
88% and 87% of the total variance in the 17-month time sequence . The evolutionary spatial patterns of
these functions are given in Figs. 5 and 6.
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FIGA.a Time sequence of the first three
spatial patterns (1-3) of the first extended
empirical orthogonal function for the
tropical Pacific. the latter explaining 87% of
the total variance in the 17-month time
sequence. Shading indicates negative phase.

FIG. 4b. Time sequence of the second three
spatial patterns (4-6) of the first extended
empirical orthogonal function for the
tropical Pacific, the latter explaining 87% of
the total variance in the 17-month time
sequence. Shading indicates negative phase.

FIG. 4c . Time sequence of the third three
spatial patterns (7-9) of the first extended
empirical orthogonal function for the
tropical Pacific, the latter explaining 87% of
the total variance in the 17-month time
sequence. Shading indicates negative phase.
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FIG. Sa. Time sequence of the three spatial
patterns (1-3) of the first extended empirical
orthogonal function for the western tropical
Pacific, the latter explaining 88% of the
total variance in the 17-month time
sequence. Shading indicates negative phase.
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FIG. 5b. Time sequence of the second three
spatial pauerns (4-6) of the first extended
empirical orthogonal function for the
western tropical Pacific, the latter
explaining 88% of the total variance in the
17-rnonth time sequence. Shading indicates
negati ve phase.

FIG. Se. Time sequence of the third three
spatial pattern (7-9) of the first extended
empirical orthogonal function for the
western tropical Pacific; the latter
explaining 88% of the total variance in the
17-rnonth time sequence. Shading indicates
negative phase.
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The time sequences of both of these EEOF's is given in Fig.3, with that for the
entire tropical Pacific shown in the upper panel, and that for the western Pacific shown in
the lower panel. Each are taken from the first two EEOF's, which together account for
88% and 87% of the total variance, respectively, in the tropical Pacific and the western
tropical Pacific. The first two EEOF's tend to be redundant and, being orthogonal, give
different phases of the same evolutionary behavior in the time sequence of maps
(Graham et al., 1987). In this case, the time series of the two analyses are nearly
identical, and strongly dominated by the annual cycle.

The EEOF on the basin scale maps is given in Fig. 4a, b, c, showing the evolution
of the annual cycle through approximately half a cycle (i.e., 6 months), extending over
nine 17-day time periods (i.e., IS3 days). The time sequence of nine maps that
constitutes the EEOF shows how the spatial pattern in Map 1 evolved into the opposite
phase in Map 9 through the spring/autumn transition. In this series of maps, the latitude
of approximately 8° marked a boundary where the phase of the annual cycle on the
poleward side was opposite that on the equatorward side. This was also found to be true
in the complex empirical orthogonal function (CFOF) analysis in Tai et al., (1989). In
the present study, by following the evolution of the annual cycle through half a cycle
with the aid of the EEOF analysis, from positive residual on the equator (i.e., Map 1) to
negative residual on the equator (Map 9), this phase transition from winter to summer
(and vice versa) can be understood.

In the first three maps of FigAa, the changes that took place in this phase
transition are the following. In the off-equatorial region poleward of approximately 8°
latitude, the negative residual propagated to the west, evident particularly in the western
tropical Pacific. In the western equatorial Pacific, west of 1600E, the negative anomaly
began to collapse onto the equator, more from the southern hemisphere north of the
Solomon Archipelago/New Guinea complex than from the northern hemisphere. In the
northern hemisphere, positive residuals along the coast of the Philippines Archipelago
extended southward to the equator in Map 1 and Map 2, where they protruded eastward
along the equator; this terminated in Map 3.

In the next three maps (i.e., Maps 4-6 in Fig. 4b), the transition in phase of the
annual cycle found negative residuals on the equator in the western Pacific emanating
from the Solomon Archipelago/New Guinea complex in the southern hemisphere.
Moreover, these negative residuals began to extend eastward along the equator into the
eastern equatorial Pacific forming a trough along the equator. In Map 4, this eastward
extension of the trough along the equator seems to have originated from the southern
hemisphere, but by Map 6 the trough seems to have originated from both hemispheres.
At the eastern boundary, an interesting phenomenon began to occur in this sequence of
three maps; apparent first-mode equatorial Rossby wave activity appears to have
reflected from the eastern boundary (i.e., with local positive maxima at 4°N and 4°S) in
response to incident Kelvin wave activity, associated with positive residuals extending
northward along the coast of Central America. However, over these three maps (and, as
we shall see, over the next three maps) this apparent first-mode equatorial Rossby wave
activity did not propagate westward of the Galapagos Archipelago.

In the next three maps (i.e., Maps 7-9 in Fig. 4c), the autumn phase transition
from positive to negative sea level residuals along the equator was completed. This
occurred with the eastward propagation of negative sea level residuals, initially (Map 7)
extending from the west along the equator and confined to the equatorial wave-guide, but
later (Map 9) filling the entire region equatorward Of approximately 8° latitude,
apparently in response to wind stress forcing. In the northern hemisphere western
Pacific, negative residuals can be seen to have propagated westward onto the Philippine
Archipelago between So-l s oN, extending equatorward along the maritime western
boundary from 15"N to the equator, with negative residuals extending eastward along the
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equator from the maritime western boundary of the tropical Pacific. This is indicative of
the reflection of incident baroclinic Rossby wave activity and the excitation of baroclinic
Kelvin wave activity. In the southern hemisphere western Pacific, positive residuals in
the western Pacific began to be found along the Solomon Archipelago, nudging
equatorward to begin the process of another phase transition (i.e., this time the spring
transition) from the present negative equatorial state to a positive one on the equator.

The EEOF of the western tropical Pacific (i.e., 1600W to the maritime coast of
Asia) is given in Fig. 5a, b, c, showing the evolution of the annual cycle through half a
cycle (i.e., 6 months), extending over nine 17-day period (Le. 170 days). It shows in
detail the western boundary reflection of the annual baroclinic Rossby wave activity,
associated with phase transition of the annual cycle over the entire tropical Pacific shown
in Fig. 4a, b, c, and the subsequent Kelvin wave excitation in the equatorial wave-guide.

In the first three maps of Fig. Sa, the changes that took place in the western
boundary, associated with the phase transition of the annual cycle from positive to
negative residual on the equator, were able to be observed. In the off-equatorial region of
the southern hemisphere (i.e., poleward of equatorial wave-guide, the latter extending to
approximately 3° latitude), the negative residuals can be seen to have propagated to the
west, clearly riding up onto the Solomon Archipelago/New Guinea complex from
160°-1500E, penetrating as far west as 130°B. Over this approximately 1 1/2 month
period, the negative residuals also penetrated equatorward and intersected the equator in
a relatively broad longitudinal band equatorward of the Solomon Archipelago and New
Guinea. Poleward of the equator wave-guide in the northern hemisphere, positive
residuals along the coast of the Philippines Archipelago (Le. from 3°-14ON) extended
southward to the equator, where they protruded eastward along the equator, indicative of
the excitement of equatorial Kelvin wave activity by the coastal Kelvin-Munk wave
activity (Godfrey, 1976). It is important to remember that each altimetric sea level datum
along 1300E is a 10° longitude mean, so the information at the longitude extends from
125°-135°, representing information in sea level variability next to the Philippine coast at
123°-127°E, but smearing it with information eastward of there. East of the positive
residuals adjacent to the Philippines Archipelago, negative residuals were observed to
extend all across the tropical Pacific from 4°_12°N; in Fig. 5a these negative residual can
be observed to have propagated to the west over the three maps shown penetrating over
the two month period to the maritime western boundary from 2°-6°N and extending
toward the equator north of New Guinea.

In the next three maps (Le. Maps 4-6 in fig. 5b), the transition in annual phase
finds the negative residual that had penetrated to the equator north of Solomon
Archipelago/New Guinea complex in the western Pacific (over the previous 1 1/2 month)
extending eastward along the equator, forming a trough from 1300E-1600W. In Map 4,
the eastward extension of this trough along the equator originated from the southern
hemisphere, but in Maps 5 and 6 the trough began to originate from both hemispheres,
with the contributions from both hemispheres clearly visible. The earlier contribution
from the southern hemisphere seemed to have occurred because the maritime western
boundary in the southern hemisphere was located 20°-30° of longitude east of that in the
northern hemisphere, coupled with the fact that the negative residuals in the
off-equatorial region as a whole were relatively symmetric about the equator. The lag of
the northern hemisphere behind the southern hemisphere was only 1-2 months. In the last
map (i.e., Map 6) of this series of three in Fig. 5b, the off-equatorial negative residuals in
the northern hemisphere penetrated to the maritime western boundary at approximately
WON, with maximum values continuing equatorward along the boundary and extending
east along the equator.
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In the next three maps (i.e., Maps 7-9 in Fig. 5c) the autumn phase transition in
the annual cycle from positive to negative residuals along the equator was completed,
with the equatorial wave-guide filled with negative residuals emanating principally from
the maritime western boundary in the northern hemisphere from 5-15"N. During these
times, the southern hemisphere had positive residuals in the off-equatorial region from
5"-15"S, nudging equatorward to begin the reciprocal process of the spring phase
transition from the present negative equatorial state to positive; not so in the northern
hemisphere where an intense negative anomaly from 5"-15"N continued to supply
off-equatorial influence to the equator via the maritime western boundary, helping to
maintain the negative residuals in the equatorial wave-guide. In this maritime western
boundary of the northern hemisphere, regional maxima in negative residuals were found
directly east of Mindanao near 8"N and east of Halmera near 2"N; smaller values were
found in between where a gap occurs in the maritime western boundary. Yet still,
indications are that the negative residuals bridged this gap, particularly evident in Maps
6-9 in Fig. 5.

An interesting side-light of this examination of the baroclinic Rossby wave
reflection occurring at the maritime western boundary of the tropical Pacific is the
reflection (or, rather, the lack thereof) of the incident equatorial kelvin wave activity at
the eastern boundary of the tropical Pacific (i.e., South America) that can be seen in Fig.
4a, b, c. The incident annual equatorial baroclinic Kelvin wave was observed to have
generated coastal Kelvin wave activity (i.e., traveling poleward) and equatorially trapped
Rossby wave activity (i.e., traveling westward). It is observed that the equatorially
trapped Rossby wave activity, thus generated, did not propagate westward past the
Galapagos Archipelago.
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