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ABSTRACT

Estimates of surface geostrophic zonal flow in the equatorial Pacific are deduced from the 17-day
exact repeat orbit GEOSAT measurements for the period November 1986-November 1987. This period
coincides with the height of the 1986-87 ENSO. Along-track altimeter height anomalies are first smoothed
using a combination of linear and nonlinear filters. By combining several tracks in the zonal direction and
filtering in time, we are able to obtain low frequency sea surface height at any point of the tropical Pacific.
Currents are calculated from the differentiated form of the meridional momentum equation at the equator
and from the classical first derivative of the meridional pressure field away from the equator. Comparisons
of low frequency near-surface zonal current directly measured from equatorial moorings at 165'E, 140'W
and 110'W yield a correlation of 0.83,0.84 and 0.50 respectively with a mean rms difference of 0.23 m.s'.
Sea level and zonal velocity solutions from a tropical Pacific numerical model are used as proxy data sets
in order to quantify errors induced to quantify the geostrophic calculation by the GEOSAT space-time
sampling.

In December 1986, a downwelling equatorial Kelvin wave is generated in the western Pacific and
shows up, near the forcing area, as an intense local 1 m.s' eastward equatorial surface flow anomaly. This
Kelvin wave propagates into the eastern equatorial Pacific with a phase speed of about 2.5 m.s' and is
associated with eastward equatorial current anomalies of 0.3-0.5 m.s'. In February 1987, an upwelling
equatorial Kelvin wave is excited near the date line and propagates eastward. This wave, characterized by
a westward flow anomaly of 0.3-0.8 m.s-I , reaches the eastern Pacific boundary in March 1987 where it
forces apparently an upwelling flrst meridional mode equatorial Rossby wave. This Rossby wave
propagates westward in the ocean interior at about 0.8 m.s-I as a patch of equatorially trapped eastward
flow (0.6-0.8 m.s" maximum) flanked, in both hemispheres, by 0.2-0.4 m.s" westward flow anomalies
which decreased the South Equatorial Current and the North and South Equatorial Countereurrents. The
equatorial Rossby wave propagation could be traced sequentially through the eastern, central and western
Pacific from April to September 1987. Thus GEOSAT altimeter data indicate that equatorial Kelvin waves
and possible eastern reflection as equatorial Rossby waves are an important component of basin scale
surface current variability during the 1986-87 ENSO.

1. Introduction

One of the principal advantages of satellite oceanography is the potential for
global monitoring of geostrophic ocean circulation and its variability. In the tropics,
detection of current variability is complicated by stringent observational accuracies for
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estimating geostrophic currents because the horizontal component of the Coriolis force
tends to zero. In a recent paper, Picaut et al. (1989) were the first to show that, based on
comparisons with in situ data and a specific processing of GEOSAT sea surface heights,
it is possible to obtain relatively good estimates of low frequency geostrophic zonal
velocity at the equator from altimeter measurements. In this note, we summarize this
paper and extend the geostrophic current technique calculation to the entire tropical
Pacific. The present work is an useful complement of the GEOSAT sea level anomaly
study of Delcroix et al. (1989; this volume, hereafter defined as DEP) since it mainly
shows that, over the November 1986-November 1987 ENSO period, Kelvin waves and
probably reflected Rossby wave are a dominant source of variability of the major surface
equatorial currents.

2. Data processing and current intercomparisons

The GEOSAT data (Cheney et al., 1987) and its additional processing is
succinctly presented in DEP and is detailed in Picaut et al. (1989). In the present study,
the data correspond to the first 22 cycles of the 17-day Exact Repeat Mission (ERM)
covering the period November 8, 1986 to November 18, 1987. At first, instrumental and
oceanic small scale noise are filtered from along-track sea surface heights, using a
combination of nonlinear and linear filters. Then all the ascending and descending tracks
within 10° longitude band are combined together in order to reduce the original
GEOSAT 17-day time step (down to 1.5 day right at the equator). Finally, high
frequency temporal variability is suppressed from the resulting sea surface height time
series with a 31-day Hanning filter. This processing results in a 3-dimensional GEOSAT
sea level anomaly (GSLA) grid (0.5°latitude X 10°longitude X 5 days) over the tropical
Pacific for the November 1986-November 1987 period.

The geostrophic zonal currents are then calculated from the sea level anomaly Tl
and finite derivative schemes, outside the equator using the classical geostrophic
equation:

f.u =-g.Tly (1)

and right at the equator using its meridional derivative on a J} plane (Jerlov, 1953)

J}.u =-g.Tlyy (2)

For the specific current intercomparisons study of Picaut et al.(1989), the
sequence for applying the second derivative equation is different from the previous one,
since it is done immediately after the along track filtering. The results are very similar
since the remaining processing (finite derivative, data grouping within 10° band and
temporal filtering) are mainly linear. In that study, comparison of low frequency
calculated and observed zonal currents, from equatorial moorings at 165°E, 1400W and
1l00W, yields correlations of 0.83, 0.85 and 0.51, respectively with a mean rms
difference of 0.23 m.s'. Figure 1 illustrates such intercomparisons at 165°E between
non-filtered and filtered zonal currents. At 1WoW, the inconclusive correlation is due to
the lack of descending tracks around the mooring site (Cf. Fig. 1 in DEP). Finally, in the
intercomparisons study, a discussion of errors existing in the geostrophic calculation at
the equator is presented using sea level and zonal velocity solutions from a tropical
Pacific numerical model as proxy data sets.
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1987.
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3. Surface current variations in the tropical Pacific

DEP have focused on the major GEOSAT sea level anomaly (GSLA) equatorial
patches along 16SOE and have shown that most of them could be interpreted as equatorial
Kelvin and Rossby waves. Similarly, we now present the corresponding GEOSAT zonal
current anomalies (GZCA). Similar to the GSLA study, one must keep in mind that the
GZCA are relative to their mean over the November 1986-November 1987 period. A
discussion of a directly measured currents at 0°, 165°E, and their relation to local wind
forcing during the 1986-87 ENSO, is presented in McPhaden et al. (1989).

Figure 2 represents GZCA along the 165°E longitude, as a function of time and
latitude. This figure shows that surface current anomalies are unimportant poleward of
10° and are mostly trapped to the equator. The strongest zonal current variations appear
at the equator and are very similar to the observed variations depicted in figure 1. From
this latter figure, we note that the rms difference between the observed and calculated
current is 0.22 m.s' which implies that, at the equator, GZCA are questionable when
smaller than this value. Outside the equator, and due to the 1/f ratio in Eq. (1), the zonal
current uncertainty is smaller than at the equator. This ratio 1/f is also the reason why the
currents are generally trapped to the equator. This is clearly evident on figure 3 which
represents the current structure associated with the downwelling Kelvin wave, generated
in November-December 1986 in the western Pacific (Miller et al., 1988). Near the wind
forcing area (cr. Fig.5 in DEP), the eastward equatorial current goes up to 1 m sol. Then
the equatorially trapped current structure (0.3-0.5 m.s! maxima) propagates into the
eastern equatorial Pacific at a phase speed of about 2.5 m.s! (Fig.4). This figure also
shows evidence, in the surface current from February to March 1987, for the generation
and propagation of the equatorial upwelling Kelvin wave as noted in DEP. Referring
back to figure 2, we note that the last notable current structure anomaly occurs in
July-September 1987, along the 165°E longitude. This structure appears as a large
equatorial eastward flow anomaly up to 0.6 m.s-l associated on the northern and southern
sides by two westward flow anomalies down to -0.2 m.sl. According to DEP, the
corresponding GSLA patch has the meridional structure of a first vertical first meridional
equatorial Rossby wave.

In contrast to an equatorial Kelvin wave, the theoretical profile of zonal currents
associated with an equatorial Rossby wave is far different from its sea level
representation (e.g. Fig.9 in DEP). As noted above, it appears as a strong equatorially
trapped current flanked in both hemispheres by two opposite currents of smaller
amplitude. Such equatorial Rossby current structure is more evident in the eastern and
central Pacific than in the western Pacific. Figure 5 illustrates such observed meridional
current structure at 145°W and its least square fit to the theoretical first meridional
Rossby wave function:

V(y) = u, 2-3n. x-l/4 ( -3/2 + ~y2/c) exp( _~y2 / 2c )

The associated Kelvin wave speed c corresponds to 2.7 m.sl, Le. the first vertical mode.
Theoretically the first meridional equatorial Rossby wave propagates westward at a
phase speed equal to c/3. Figure 6 represent the time/space sequence when the Rossby
wave is most evident in the current structure. The equatorially trapped current anomaly ~

(0.5 to 0.8 m.s! maximum), accompanied by the northern and southern westward current
anomalies (-0.2 to -0.4 m.s'! maxima), propagates between April 15 to June 1 from the
eastern to the central tropical Pacific at a mean phase speed of 0.8 m s·l. This
propagating current structure is no longer evident between 1500W and the date line but
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reappears around 165°E (Figs.2 and 4). Between the gap the equatorial Rossby wave
GZCA is probably blurred by other equatorial phenomena or imprecise GEOSAT data
(Cf. Fig.1 in DEP).

4. Discussion and conclusion

In this note we first summarize the study of Picaut et al. (1989) who have shown
that, based on comparisons with in situ current data at three sites in the Pacific Ocean, it
is possible to make physically meaningful estimates of surface geostrophic zonal
velocity variations at the equator using GEOSAT data. The high correlations and
relatively small rms at 165°E and 1400W is surprising when one considers that a 1 cm
error in sea level, if uncorrelated over 1° latitude on which the present geostrophic flow
is computed, would lead to errors of 0.7 m.sl. The success of such a computation is due
to the accumulation of several factors such as the efficiency of the filtering technique, a
current decorrelation scale in the meridional direction that is probably much greater than
our grid size, and a zonal decorrelation scale of low frequency zonal current variations
large enough to justify the combination of all ascending and descending tracks within
each 10° longitude band. Since the computation of geostrophic zonal current is more
sensitive to noise contamination at the equator than at higher latitude it has been possible
to extend the geostrophic calculation with GEOSAT data to the entire tropical Pacific
ocean.

Over the November 1986-November 1987 period of available GEOSAT
measurements, we have shown that zonal surface current variability in the tropical
Pacific are substantially influenced by two types of surface current structures. The first
one corresponds to a downwelling (or upwelling) equatorial first vertical mode Kelvin
waves which is characterized by an eastward (or westward) equatorially trapped zonal
flow anomalies. These anomalies can reach 1 m.s! near the forcing area and decrease to
less than 0.5 m.s! further east. The second current structure corresponds to a first
meridional, first vertical, equatorial u~welling Rossby wave. It is composed of an
equatorial eastward flow of 0.5-0.8 m.s: , flanked on the northern and southern sides by
two westward flows of 0.2-0.4 m.sl. From the first panel of figure 6 it seems that this
Rossby wave emanates from the eastern boundary of the tropical Pacific and figure 4
indicates that it could be due to the reflection of the upwelling equatorial Kelvin
generated near the date line in February 1987. Because of their amplitude and
propagating nature, these equatorial Kelvin and Rossby wave current structures strongly
influence the variability of the South Equatorial Current and the North and South
Equatorial Countercurrents over most of the tropical Pacific. The GEOSATERM data
used in the present study does not precede or extend beyond the 1986-87 ENSO period.
Therefore it is not possible yet to determine if the equatorial wave current structures we
observed are prevalent in a normal years as well.
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