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ABSTRACf

The western tropical Pacific is thought to be an important zone for generating El Nino :
reflections at the boundary make it a potential source region of equatorial Kelvin waves. Calculations of
the effect of a gappy western boundary on the reflection process are carried out in the framework of the
low frequency limit of the shaIJow water equations and are highly idealized. The method is also applied to
a schematic version of the flow through the Indonesian seas from the western Pacific to the Indian oceans.

The results indicate some strong sensitivities to the location of the gap and to the structure of the
incoming flows. In addition, the results can bequite different depending on whether the zonal extent of the
gap is assumed to be infinite or finite. (More precisely, the latter means that the extent of the gap is short
compared with the zonal wavelength of the relevant free waves at that frequency.)

Due to the complexity of the results for even such a simplified model, it will be very difficult to
be confident of any modeling study of the Indonesian throughflow short of a highly resolved numerical
calculation with a detailed representation of the geometry and bathymetry. Nonetheless, we offer tentative
conclusions concerning the efficiency of the western Pacific boundary as a reflector. Our results suggest
that the realistic boundary will not greatly alter expectations on a simple solid boundary if the reflections
important for El Nino are primarily in motion represented by low order Rossby modes. This is also
consistent with observational evidence which tends to support that there is no anomalous throughflow
during El Nino events.

1. Introduction

Recent studies have recognized that ocean dynamics have an important role in
development of the phenomena known as El Nino and the Southern Oscillation (ENSO).
In theory as well as in observations, the influence of equatorial Kelvin waves has been
established. For example, White et al (1985), studying the increase of heat content,
claimed that extra-equatorial Rossby waves generated by anomalous wind curl, after
impinging on western coasts, could generate an equatorial Kelvin wave which in turn
would trigger an El Nino event. However Battisti (1988, 1989) tempers their conclusions
and finds that off-equatorial waves (poleward of 6° from equator) Rossby waves could
not be invoked as a triggering mechanism in his model, although he also points out the
importance of western boundary reflections for event terminations. Zebiak (1989), in the
context of a linear dynamical model, discusses the role of Rossby waves and western
boundary reflections : some of the equatorial transport near the western boundary
originates at higher latitude in the interior basin due to the structure of Rossby wave
induced circulation, but the zonal convergence/divergence at the western boundary
determines the nature of the Kelvin wave signal.

Wether of not extra-tropical influences are important depend on how well the
western boundary can reflect disturbances into equatorial Kelvin waves. In oceanic
models and coupled models as . of Rossby waves at the western boundary
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is the basic mechanism to overcome the feedback tending to raise sea level. In numerical
models ( with the exception of the NORDA model; Kindle et al, 1989), the western
Pacific boundary is a nice smooth wall, but in reality, it consists of irregular island
chains. Therefore, it could be a poor wave reflector, allowing Rossby waves to pass
through its many passages.

Our motivation for the work was to know how efficient the Pacific western
boundary is at generating equatorial Kelvin waves by reflection of mean flux incident at
the boundary. How efficient is the "gappy" western boundary of the Pacific Ocean at
generating equatorial Kelvin waves by reflections of incident mass flux ? Does the
irregular, "porous", western boundary support the simple planetary wave reflections
which occur in numerical models (with a full boundary) ?

We focus this investigation on the effects of leaky boundaries on basin wide
adjustment processes rather than on details of boundary layers in the vicinity of coasts or
gaps. Our approach uses extensively techniques and results of Cane and Sarachick (1977,
1981) and is an extension of Cane and du Penhoat (1982) and du Penhoat, Cane and
Patton (1983). Calculations are carried out in the framework of the linear shallow water
equations that we solve for the asymptotic flow which results when a source is switched
on at 1=0 and remains steady thereafter. The results of this the problem are easily
generalized to all low frequency flows.

2. The basic problem

At 1=0, a flow comprised of Rossby waves impinges on a western boundary at
x=O. The flow has a H(I) form, a step function in time. The coast is oriented north-South,
thus presenting a gaps of width dea-b. We are interested in low frequency motion for
which frequency is small compared to the equatorial scaling frequency. We seek the
asymptotic response as 1->+00 . Cane and Sarachick (1976) have shown that for large I,
the asymptotic motions are of three kinds (all variables have been scaled by the usual
equatorial scaling) :

(i) Long eastward propagating Kelvin waves, with zonal velocity u and height h
proportional to '1'0 , the zeroth order Hermite function: .=!._.z:

( u ,v ,h ) - ('I'o(Y ),0,'1'00') ) with 'I'o(Y) = 1t 4 e 2

(ii) Long Rossby waves, propagating energy westward. Both the equatorial
Kelvin wave and the long Rossby waves satisfy the meridional geostrophic
relation.
The equatorial Kelvin wave has meridional velocity v = 0 and long Rossby
waves have v=0 . For these two kinds of asymptotic motions, the large 1 response
is steady and independant ofx.
(Hi) Short Rossby waves (included the mixed Rossby-gravity wave). Sum of such
modes is an ever thinning boundary layer trapped to x=O (see Cane and
Sarachick, 1979), thus forming a western boundary current.
In this work, we exploit the fact that at low frequency there is a streamfunction

for the sum of eastward propagating short Rossby waves and that the only part of the
reflection that J1ropagates away from the boundary is the equatorial Kelvin wave.

Let (u ,h)be the low frequency incoming Rossby waves. The flow statisfies the
geostrophic relation and is orthogonal to the Kelvin wave.

Two conditions have to be satisfied at x=O, the longitude of the coast:
1) u=O at the coast, i.e., for y>a and y<b
2) u and h are continuous across the gap, Le, at b-ey-ea
When the incoming wave hits the coast, part is transmitted into the gap and part

is reflected into an equatorial Kelvin wave of amplitude 'P.
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The continuity condition at the gap longitude and the geostrophic balance east
and west of the gap imply that there is no short Rossby waves in the gap. It also implies
that discontinuities in h are thus possible at y=a and y=b. Since west of the boundary u
and h are in geostrophic balance, we must allow for an infinite zonal velocity at y=a
(y=b) to balance the jump in h, Le.

u=A B(y-a) + B B(y-b) at y=a,b

Integration of the continuity equation leads to :
+00 +00 b b

A = f u dy + Tt f "'o(Y) dy and B = f u dy + Tic f "'o(Y) dy
a a -<>0-<>0

and the boundary currents at the tips of the gap are simply fed the boundary currents
along the North-South coast. The amplitude of the reflected Kelvin wave is then obtained
by using the completness and orthogonality properties of the eigenfunctions of the
shallow water equations (cf. Cane and Sarachick, 1977, 1981) :

b +00 b

f(u (y}+h (y »"'o(y )dy + "'o(a) f u (y )dy + "'o(b) f u (y)dy
Tt = _ a a-<>o

a +00 b

2f",J(y)dy + "'o(a) f "'o(y )dy + "'o(b) f "'o(y)dy
b a

Therefore, 'P, A and B determine the complete solution.

3. Results

All results are presented in nondimensional units. Distances are scaled by the
standard equatorial radius of deformation ( see values in Table I ).

Results differ if the zonal extent of the gap is infinite ( as supposed in
calculations of section 1 ) or finite. More precisely, the latter means that the zonal extent
of the gap is short compared with the zonal wavelength of the relevant free waves at that
frequency. ( It can also be treated equivalently as infinitesimally thin width; cf. Cane and
du Penhoat, 1982). At low frequencies, it corresponds to the case of islands while the
former case is relevant to a semi-enclosed sea.

On Fig. 1 are plotted the amplitude of the reflected Kelvin wave for different
incoming Rossby waves. The results are sensitive to the location and width of the gap
and to the meridional structure of the incoming flow.

For example, for the n=l incoming Rossby wave, the reflected Kelvin wave is
minimum if the gap is centered at the equator. However, the amplitude of the reflected
Kelvin wave is not negligible. ( On Fig. 1, the amplitude 'P has been normalized by the
value of the Kelvin wave amplitude if the boundary were a full boundary). As the gap
width decreases, wherever the gap is centered, the amplitude of the reflected Kelvin
wave is over 0.9 : all the incoming mass flux is reflected back into the Kelvin wave and
is equivalent to the full boundary case.

Plots for n=2 and n=3 incoming Rossby waves ( Figs. lb and le) show more
structure, since as n increases, waves are less equatorially trapped and have a more
complex oscillating structure. For n=2 incoming Rossby waves, which have an
antisymrnetric meridional structure, there is a weak reflected Kelvin wave as far as the
gap is not centered on the equator. (For a full boundary, there is no reflected Kelvin
wave; Cane and Sarachick, 1977; the amplitude of the reflected Kelvin wave is not
normalized on Fig. 1b).
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FIG. 1. Reflected Kelvin wave amplitude for a gap of infinite zonal length a)For n=1 incoming
Rossby wave. Amplitude has been normalized by the reflected Kelvin wave amplitude for a full
boundary. b) For n=2 Rossby wave, c) For n=3 incoming Rossby wave, normalized by the reflected
Kelvin wave amplitude for a full boundary.

Results for a gap of finite zonal length are presented in Fig. 2. The methods used
in section 1 apply. The solution differs as, in the downstream region west of the gap, the
boundary condition u=O at y>a and y-cb, together with the geostrophic relation leads to
h=Da at y>a and h=Db at y-cb. D, and Db are constant. In this case, some mass flux must
escape to set up a constant sea level on the western side of the gap. Da and Db are
determined by projecting the Kelvin wave onto the solution west of the gap:

Da=h(a)-aA+Tk'l'o(a) and Db=h(b)+bB+Tk'Vo(b)

A and B have the same expression as in the former case. The amplitude of the reflected
Kelvin wave is then :

" -+- b -+- b -+- -+- b b

J(u+h)'V<fly + 'Vo(a) JMy + 'Vo(b) JUdy + h(a) J'VodY + h(b) J'V<fly - aJMy J'VodY + bJudy J'V<fly
T,,=_a a a -+-- a" -" a a-+- --

2['VJ(y)dy + 2'Vo(a)!'Vo(Y)dy + 2'VO<b)1'Vo(y)dy + b(1'Vo(Y )dy)2 - a (!'Vo(y)dy)2

Figs. 2 show the amplitude of the Kelvin wave for n= 1,2,3 incoming Rossby
waves. Though in some respects they present the same kind of pattern as in the former
case, striking differences exist. First, this case is less efficient in reflecting waves. For
example, for a gap centered at the equator and for n=l Rossby wave, the amplitude of
the reflected Kelvin wave is still minimum compared to an off-equatorial gap, but the
amplitude of the reflected Kelvin wave is much smaller than in the infinite case : with
d=l and a gap centered at y=l, P=O.3 for the finite case and P=O.7 for the infinite
case. With d=l and a gap centered at the equator, P=-O.l for the finite case and P=O.45
for the infinite case.

When the gap width gets infinitesimally small, we might expect the same answer
as previously, namely all the mass is returned in the reflected Kelvin wave. In fact for
the n=l Rossby wave, the amplitude gets surprisingly small: all the mass flux is in the
boundary currents and is used to set up the sea level on the other side of the gap. This
effect depends on the latitudinal structure of the incoming flow as shown in Figs. 2.



339

Reflected KelvinWaveAmplitude Tk I T*

o 0 0 t-o-T"""""""r+>-'
-6 ... -3 -2 -1 0 1 2 3 4 I) -li ... -3 -2 -1 0 1 2 3 4 5 -s ... -3 -2 -1 0 1 2 3 4 5

8

Reflected KeMn WaveAmplitude Tk I T" RellecledKelvinWaveAr/1llitude Tk
10 10 +rn,..........--'--'-'-......................"""'-+.......................'""'"'-.........,+- 10

9

~ 7

T 8
'0
..,. I)

~
4

! 3

2

(a) (b)

Latitude of the gap (a+b)/2
(c)

FIG. 2. As in Fig. 1 but for a gap of finite zonal length a) For n=1 incoming Rossby wave, b) For
n=2 incoming Rossby wave, c) For n=3 incoming Rossby wave.

4. Application to the western Pacific boundary

The western Pacific boundary consists of an irregular chain of islands. We now
apply the method developed in previous sections to know how good it is as a reflector.
We know from mass conservation that the mass flux through the Indonesian seas is just
the difference between the incident flow (Rossby waves) and the reflected Kelvin wave
flow. The partition between transmitted and reflected mass flux is determined by the way
the pressure gradient adjusts to the geometry, Le. to the pattern of the height field h.

We first must simplify the very complex geometry of this region. The
assumptions made in our theory are certainly questionnable, but once they are made,
certain topological invariances are obtained. Then the flow through the complex region
is the same as that through an equivalent simple geometry.

Cane and Gent (1984) presented a theory for calculating the effect of a solid
sloping western boundary on low frequency wave reflections : as the frequency becomes
sufficiently small, the effect of the sloping coast disappears. Throughout our
calculations, we have made the assumption that the frequency is low enough so that
phase differences with longitudes may be ignored. Thus the sloping coast may be
replaced by a zig-zagging coastline in the manner so familiar in numerical models, and
finally by a straight coast Only the gaps matter.

Similarly, while the latitude of the gap is important, the longitude is not: the
offset between islands has no effect for long low frequency waves and as far as we are
concerned with the interior flow. We finally end up with a simplified geometry shown in
Fig. 3, roughly deduced from the l000m isobath. The coast north of a is representing the
Mindanao coastline and b stands for the New Guinea, Halmahera and Celebes islands,
assuming that there is no significant flow through Molucca Strait. The connection to the
Indian ocean is through the Strait of Makassar. We also assume that there is no flow
through the Arafura Strait. The latitude of the Indonesian islands is determined by d (see
table I). An alternative representation is given by Clarke, 1989. Using results of previous
sections, we are able to compute the different pieces which make up the solution but we
need one more condition. This is obtained from the relation for h, which constrains the
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possible pressure gradient to drive the flow through. We also assume that there is no
Kelvin wave incoming from the Indian ocean, Le. west of g. Then we get for T6 ' the
amplitude of the reflected Kelvin wave in the Pacific ocean:

b +00 +00 +00

h(b) + b Ja(y )dy + ( Ja(y )dy )('I'o(g) - g J'l'o(Y )dy) ( J'l'o(Y )dyr'
-00 -00 g-oo

+00 b

'l'o(g ) - g J'l'odY + 'l'o(b) + b J'l'o(Y )dy
g -00

This relation simply indicates that the resulting amplitude of the reflected Kelvin
wave in the Pacific Ocean part depends only on the latitude of the Indian and Pacific
Ocean entrances, Le. g and b. This is consistent with conservation of mass and with our
simplifying rules.

For our schematization of the western Pacific boundary (Fig. 3), we choose
b=3'N (representing Halmahera and Morotai islands) and g=B5 CS standing for the
latitude of the Lombok and Timor straits. Table I gives the computed amplitude of the
reflected Kelvin wave in the Pacific Ocean for the first three baroclinic modes and for
different incoming Rossby waves.
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FIG. 3. Schematic geometry of the Western Pacific Boundary and of the Indonesian seas.

For the first Rossby mode, the amplitude of the reflected Kelvin wave is 85% of
the amplitude if the boundary were a full boundary. It is over 90% for higher baroclinic
modes which are more equatorially trapped. For antisymmetric (n even) Rossby modes,
the presence of a gap allows a reflected Kelvin wave to exist whereas a full boundary
would not. Therefore as far as this theory is concerned, the western Pacific boundary acts
as a substantial reflector.
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Table I : Results for a schematic Pacific western boundary as in Fig.3

Latitude: b =3 N g =8.5 S
t~oo

Baroclinic
1=1 1=2 1=3mode #

Radius of 356.9lan 278.8 km 222.6 kmdeformation
Rossby # Rossby # Rossby #

1 2 3 1 2 3 1 2 3

~ 0.15 -0.016 0.026 0.16 -0.011 0.027 0.168 -0.007 0.0287
~

0.85 0.74 0.91 0.76 0.95 0.79or- - - -

5. Conclusion

The analytical techniques used in this note are an extension of those used by
Cane and du Penhoat (1982) to study the effect of low latitude islands. The results show
that the amplitude of the reflected equatorial Kelvin wave is sensitive to the location of
the gap and the structure of the incoming flow. In addition, the results can be quite
different depending on whether the zonal extent of the gap is assumed to be infinite or
finite. (More precisely, the latter means that the extent of the gap is short compared with
the zonal wavelength of the relevant free waves). A coastline with a finite zonal length
gap is a less efficient wave reflector than an infinite zonal length gap. In particular, the
difference is non-negligible close enough to the equator for n=l Rossby wave.

In carrying out a calculation as idealized as the one here, one hopes the results
will be robust enough so that their possible application to the real world is obvious. We
are not concerned with the details of the boundary flows, but did hope to deduce some
general rules about the strength of the interior flow, i.e., the amplitude of the reflected
Kelvin wave. The complexities of even such a simplified model convinces us that it will
be very difficult to be confident of any modeling study of the Indonesian flowthrough
short of a highly resolved numerical calculation with a detailed representation of the
geometry and bathymetry. Nonetheless, we offer a few tentative conclusions concerning
the efficacy of the western equatorial Pacific "boundary" as a reflector. As the greatest
sensitivity in our results concerns the region very near the equator and since the western
Pacific is effectively blocked within one or two radius of deformation off the equator,
low n Rossby modes will be largely reflected. Thus, if as proposed by Zebiak (1989) and
Battisti (1989) among others, the reflections important for El Nino are primarily in
motions well represented by the low n Rossby modes, then this result suggests that the
realistic boundary will not greatly alter the expectations based on a simple solid
boundary.
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