A one Dimensional Coupled Air-Sea Model for Diagnostic Studies during TOGA-COARE

Sam F. IACOBELLIS and Richard C.J. SOMERVILLE

SCRIPPS Institution of Oceanography
University of California, San Diego
La Jolla, California 92093 - U.S.A.

ABSTRACT

A process-oriented diagnostic model has been developed, which couples an atmospheric column model to an upper ocean model. In vertical structure and representation of physical processes, the atmospheric model resembles a single horizontal grid point of a general circulation model. It includes vertical transports by convection and turbulent mixing, radiative transfer with interactive clouds, and a complete hydrologic cycle. The ocean model is a simple mixed layer, synchronously coupled to the atmosphere through a surface energy budget computation.

Time-dependent observational analyses of horizontal atmospheric transports of momentum, heat and moisture are used to force the coupled model. The model then produces such fields as temperature, humidity, cloudiness and diabatic heating rate components, all as functions of height and time. Sample integrations of the model for test cases in the 1979 Indian summer monsoon onset are presented and verified against observations. These diagnostic analyses suggest that this type of model may be useful in TOGA COARE for applications such as interpretation of results from multidimensional models, validation of surface flux data, and estimation of sensitivity to alternative physical processes. It may also be used to aid in designing the intensive field phase of TOGA COARE by means of numerical observing system simulation experiments.

1. Introduction

A one-dimensional diagnostic model of an atmospheric column coupled to an upper ocean has been developed. The essential time-dependent input to the model is the large-scale wind field, together with observed horizontal gradients of temperature and moisture. From these data, the model then computes the time evolution of variables such as precipitation, surface fluxes and the vertical profiles of temperature, humidity, cloudiness and diabatic heating rate components. These results may be verified against detailed local measurements.

The atmospheric component of the model is a generalization of a typical radiative-convective model, which has been supplemented by additional parameterizations of diabatic processes and subgrid transports. This portion of the model thus closely resembles a single column of a modern atmospheric general circulation model. The physical parameterizations in our model include shallow convection (Tiedtke et al., 1988), deep moist convection (Kuo, 1974; Anthes, 1977), solar radiative transfer (Lacis and Hansen, 1974), terrestrial radiative transfer (Morcrette, 1984), distribution of surface fluxes (Krishnamurti et al., 1987), prognostic clouds (Slingo, 1987), and vertical diffusive mixing. At present, the atmospheric model is coupled to a very simplistic ocean mixed-layer model (Niiler and Kraus, 1977).

The principal role of such a process-oriented model is not as a predictive tool, but as a test environment for parameterization development and as a mean of gaining physical insight. This diagnostic model can also be a valuable aid in explaining the behavior of multidimensional forecasting models. The restriction to one space dimension makes the model computationally efficient and relatively easy to interpret. At each atmospheric level, the model produces budgets of heat, moisture and momentum which are consistent with the
observationally derived estimates of horizontal advection. In TOGA COARE, potential applications of this model include assessments of the role of cloud-radiation interactions, validation of model surface flux data, estimating sensitivity of multidimensional models to alternative physical parameterizations, and performing observing system simulation experiments to aid in the design of the intensive field phase. As an example of the capabilities of the model, we now present results from applying it to a particular case study: the onset of the Indian summer monsoon in 1979.

The model examines an area four degrees in latitude by four degrees longitude which extends from the surface to the top of the atmosphere (0.50 mb). The time period of the model run is four weeks, extending from May 27 to June 23, 1979 (in this year the monsoon onset occurred on approximately June 17). The model atmosphere is divided into 15 layers in addition to the underlying ocean mixed layer. The model uses a timestep of one hour, a surface albedo of 0.05 (typical of ocean surfaces) and a solar constant of 1360.0 W.m\(^{-2}\). The model has been applied at two locations in the Arabian sea. Area 1 extends from 66°E to 70°E and from 12°N to 16°N while area 2 covers 68°E to 72°E and 6°N to 10°N.

2. Model results

The vertical profiles of both temperature and specific humidity from both areas correspond well when compared to observational data supplied from the FGGE III-b data set and TOVS satellite data. Some minor discrepancies in the model temperatures include a slight underestimation of the temperature at higher altitudes (above 500 mb) and a sharp drop in the 500 mb temperature at the time of the monsoon onset which has been determined to depend sensitively on the timing of the occurrence of deep convection in the model.
Figure 1a shows a comparison between the model precipitation in area 1 and observational rainfall data taken from Cadet and Greco (1987). Figure 1b shows the same comparison for area 2. In both areas the model data compares well with the observational data, especially at the time of the monsoon onset where the precipitation reaches a maximum. During the pre-onset phase the observational data may be overestimating the precipitation as the method employed by Cadet and Greco does not account for any moistening of the atmosphere. Figures 2a and 2b show a comparison between the model values and satellite derived values (Gautier, 1986) of the average daily net short-wave at the surface (NSW). Throughout the integration period there is very good agreement between the model data and the satellite data including the large drop of NSW at the time of the monsoon onset. There are three instances where the model is underestimating the NSW when compared to the satellite data, at approximately day 150 and day 160 in area 1 and at day 151 in area 2. These three brief underestimations of the NSW can be seen to directly correspond with three episodes of minor rainfall. It appears that the cloud parameterization is producing too much cloudiness, hence lowering NSW at the surface, during episodes of low convective rainfall. During periods of large rainfall amounts such as those associated with the monsoon onset, the NSW corresponds very well with the satellite data thus implying that the amount of cloudiness produced by the model during these conditions is representative of the actual cloudiness. This simple analysis indicates that the cloud parameterization used in this model may need some refining for low convective rainfall amounts. This analysis also illustrates how this type of simple yet physically realistic model may be used to evaluate parameterization schemes.

![Figure 2a](image1.png) ![Figure 2b](image2.png)

FIG. 2a. Area 1 net short-wave radiation (NSW) at surface vs. time. Solid line denotes data from model and dashed line is satellite observations.

FIG. 2b. Same as figure 2a, except for area 2.
Acknowledgments. Our research has been supported in part by the University of California Institutional collaborative Research Program, the National Science Foundation (Grant No. ATM86-12815), the National Aeronautics and Space Administration (Grant Nos. NAG5-236 and NAGW-981), the National Oceanographic and Atmospheric Administration (Grant No. NA86-AA-D-CP104), and the California Space Institute (Grant No. CS-89-88). We are grateful to Dr. Jean Jacques Morcrette for making his radiative transfer scheme available.

REFERENCES

WESTERN PACIFIC INTERNATIONAL MEETING
AND WORKSHOP ON TOGA COARE

Nouméa, New Caledonia
May 24-30, 1989

PROCEEDINGS

edited by

Joël Picaut *
Roger Lukas **
Thierry Delcroix *

* ORSTOM, Nouméa, New Caledonia
** JIMAR, University of Hawaii, U.S.A.
TABLE OF CONTENTS

ABSTRACT .. i
RESUME ... iii
ACKNOWLEDGMENTS .. vi

INTRODUCTION

1. Motivation ... 1
2. Structure ... 2

LIST OF PARTICIPANTS .. 5

AGENDA ... 7

WORKSHOP REPORT

1. Introduction .. 19
2. Working group discussions, recommendations, and plans .. 20
 a. Air-Sea Fluxes and Boundary Layer Processes ... 20
 b. Regional Scale Atmospheric Circulation and Waves .. 24
 c. Regional Scale Oceanic Circulation and Waves ... 30
3. Related programs .. 35
 a. NASA Ocean Processes and Satellite Missions ... 35
 b. Tropical Rainfall Measuring Mission .. 37
 c. Typhoon Motion Program ... 39
 d. World Ocean Circulation Experiment ... 39
4. Presentations on related technology .. 40
5. National reports ... 40
6. Meeting of the International Ad Hoc Committee on TOGA COARE 40

APPENDIX: WORKSHOP RELATED PAPERS

Robert A. Weller and David S. Hosom: Improved Meteorological Measurements from Buoys and Ships for the World Ocean Circulation Experiment ... 45
Peter H. Hildebrand: Flux Measurement using Aircraft and Radars 57
MEETING COLLECTED PAPERS

WATER MASSES, SEA SURFACE TOPOGRAPHY, AND CIRCULATION

Klaus Wyrtki: Some Thoughts about the West Pacific Warm Pool 99
Jean René Donguy, Gary Meyers, and Eric Lindstrom: Comparison of the Results of two West Pacific Oceanographic Expeditions FOC (1971) and WEPOCS (1985-86) .. 111
Dunxin Hu, and Maochang Cui: The Western Boundary Current in the Far Western Pacific Ocean ... 123
Peter Hacker, Eric Firing, Roger Lukas, Philipp L. Richardson, and Curtis A. Collins: Observations of the Low-latitude Western Boundary Circulation in the Pacific during WEPOCS III .. 135
Stephen P. Murray, John Kindle, Dharma Arief, and Harley Hurlburt: Comparison of Observations and Numerical Model Results in the Indonesian Throughflow Region ... 145
Christian Henin: Thermohaline Structure Variability along 165°E in the Western Tropical Pacific Ocean (January 1984 - January 1989) 155
David J. Webb, and Brian A. King: Preliminary Results from Charles Darwin Cruise 34A in the Western Equatorial Pacific 165
Warren B. White, Nicholas Graham, and Chang-Kou Tai: Reflection of Annual Rossby Waves at The Maritime Western Boundary of the Tropical Pacific ... 173
William S. Kessler: Observations of Long Rossby Waves in the Northern Tropical Pacific ... 185
Eric Firing, and Jiang Songnian: Variable Currents in the Western Pacific Measured During the US/PRC Bilateral Air-Sea Interaction Program and WEPOCS ... 205
John S. Godfrey, and A. Weaver: Why are there Such Strong Steric Height Gradients off Western Australia? .. 215
John M. Toole, R.C. Millard, Z. Wang, and S. Pu: Observations of the Pacific North Equatorial Current Bifurcation at the Philippine Coast 223

EL NINO/SOUTHERN OSCILLATION 1986-87

Gary Meyers, Rick Bailey, Eric Lindstrom, and Helen Phillips: Air/Sea Interaction in the Western Tropical Pacific Ocean during 1982/83 and 1986/87 .. 229
Laury Miller, and Robert Cheney: GEOSAT Observations of Sea Level in the Tropical Pacific and Indian Oceans during the 1986-87 El Nino Event .. 247
Thierry Delcroix, Gérard Eldin, and Joël Picaut: GEOSAT Sea Level Anomalies in the Western Equatorial Pacific during the 1986-87 El Nino, Elucidated as Equatorial Kelvin and Rossby Waves .. 259
Gérard Eldin, and Thierry Delcroix: Vertical Thermal Structure Variability along 165°E during the 1986-87 ENSO Event .. 269
Michael J. McPhaden: On the Relationship between Winds and Upper Ocean Temperature Variability in the Western Equatorial Pacific .. 283
Joël Picaut, Bruno Camusat, Thierry Delcroix, Michael J. McPhaden, and Antonio J. Busalacchi: Surface Equatorial Flow Anomalies in the Pacific Ocean during the 1986-87 ENSO using GEOSAT Altimeter Data .. 301

THEORETICAL AND MODELING STUDIES OF ENSO AND RELATED PROCESSES

Kensuke Takeuchi: On Warm Rossby Waves and their Relations to ENSO Events .. 329
Yves du Penhoat, and Mark A. Cane: Effect of Low Latitude Western Boundary Gaps on the Reflection of Equatorial Motions .. 335
Harley Hurlburt, John Kindle, E. Joseph Metzger, and Alan Wallcraft: Results from a Global Ocean Model in the Western Tropical Pacific .. 343
John C. Kindle, Harley E. Hurlburt, and E. Joseph Metzger: On the Seasonal and Interannual Variability of the Pacific to Indian Ocean Throughflow .. 355
Antonio J. Busalacchi, Michael J. McPhaden, Joël Picaut, and Scott Springer: Uncertainties in Tropical Pacific Ocean Simulations: The Seasonal and Interannual Sea Level Response to Three Analyses of the Surface Wind Field .. 367
Akimasa Sumi: Behavior of Convective Activity over the "Jovian-type" Aqua-Planet Experiments .. 389
Ka-Ming Lau: Dynamics of Multi-Scale Interactions Relevant to ENSO .. 397
Pecheng C. Chu and Roland W. Garwood, Jr.: Hydrological Effects on the Air-Ocean Coupled System .. 407
Sam F. Iacobellis, and Richard C.J. Somerville: A one Dimensional Coupled Air-Sea Model for Diagnostic Studies during TOGA-COARE .. 419
Roland W. Garwood, Jr., Pecheng C. Chu, Peter Muller, and Nikias Schneider: Equatorial Entrainment Zone : the Diurnal Cycle .. 435
Peter R. Gent: A New Ocean GCM for Tropical Ocean and ENSO Studies .. 445
Wasito Hadi, and Nuraini: The Steady State Response of Indonesian Sea to a Steady Wind Field .. 451
Pedro Ripa: Instability Conditions and Energetics in the Equatorial Pacific .. 457
Lewis M. Rothstein: Mixed Layer Modelling in the Western Equatorial Pacific Ocean .. 465
Neville R. Smith: An Oceanic Subsurface Thermal Analysis Scheme with Objective Quality Control .. 475
Duane E. Stevens, Qi Hu, Graeme Stephens, and David Randall: The hydrological Cycle of the Intraseasonal Oscillation .. 485
Peter J. Webster, Hai-Ru Chang, and Chidong Zhang: Transmission Characteristics of the Dynamic Response to Episodic Forcing in the Warm Pool Regions of the Tropical Oceans .. 493
MOMENTUM, HEAT, AND MOISTURE FLUXES BETWEEN ATMOSPHERE AND OCEAN

E. Frank Bradley, Peter A. Coppin, and John S. Godfrey: Measurements of Heat and Moisture Fluxes from the Western Tropical Pacific Ocean 523
Richard W. Reynolds, and Ants Leetmaa: Evaluation of NMC’s Operational Surface Fluxes in the Tropical Pacific ... 535
Stanley P. Hayes, Michael J. McPhaden, John M. Wallace, and Joël Picaut: The Influence of Sea-Surface Temperature on Surface Wind in the Equatorial Pacific Ocean .. 543
T.D. Keenan, and Richard E. Carbone: A Preliminary Morphology of Precipitation Systems In Tropical Northern Australia .. 549
Phillip A. Arkin: Estimation of Large-Scale Oceanic Rainfall for TOGA 561
Catherine Gautier, and Robert Frouin: Surface Radiation Processes in the Tropical Pacific .. 571
Roger Lukas: Observations of Air-Sea Interactions in the Western Pacific Warm Pool during WEPOCS .. 599

EMPIRICAL STUDIES OF ENSO AND SHORT-TERM CLIMATE VARIABILITY

Klaus M. Weickmann: Convection and Circulation Anomalies over the Oceanic Warm Pool during 1981-1982 .. 623
Claire Perigaud: Instability Waves in the Tropical Pacific Observed with GEOSAT .. 637
Ryuichi Kawamura: Intraseasonal and Interannual Modes of Atmosphere-Ocean System Over the Tropical Western Pacific .. 649
David Gutzler, and Tamara M. Wood: Observed Structure of Convective Anomalies .. 659
Siri Jodha Khalsa: Remote Sensing of Atmospheric Thermodynamics in the Tropics .. 665
Bingrong Xu: Some Features of the Western Tropical Pacific: Surface Wind Field and its Influence on the Upper Ocean Thermal Structure .. 677
Bret A. Mullan: Influence of Southern Oscillation on New Zealand Weather .. 687
Kenneth S. Gage, Ben Basley, Warner Ecklund, D.A. Carter, and John R. McAfee: Wind Profiler Related Research in the Tropical Pacific .. 699
John Joseph Bates: Signature of a West Wind Convective Event in SSM/I Data .. 711
David S. Gutzler: Seasonal and Interannual Variability of the Madden-Julian Oscillation .. 723
Marie-Hélène Radenac: Fine Structure Variability in the Equatorial Western Pacific Ocean .. 735
George C. Reid, Kenneth S. Gage, and John R. McAfee: The Climatology of the Western Tropical Pacific: Analysis of the Radiosonde Data Base .. 741
Chung-Hsiung Sui, and Ka-Ming Lau: Multi-Scale Processes in the Equatorial Western Pacific .. 747
Stephen E. Zebiak: Diagnostic Studies of Pacific Surface Winds 757

MISCELLANEOUS

Rick J. Bailey, Helene E. Phillips, and Gary Meyers: Relevance to TOGA of Systematic XBT Errors ... 775
Jean Blanchot, Robert Le Borgne, Aubert Le Bouteiller, and Martine Rodier: ENSO Events and Consequences on Nutrient, Planktonic Biomass, and Production in the Western Tropical Pacific Ocean .. 785
Yves Dandonneau: Abnormal Bloom of Phytoplankton around 10°N in the Western Pacific during the 1982-83 ENSO ... 791
Cécile Dupouy: Sea Surface Chlorophyll Concentration in the South Western Tropical Pacific, as seen from NIMBUS Coastal Zone Color Scanner from 1979 to 1984 (New Caledonia and Vanuatu) ... 803
Michael Szabados, and Darren Wright: Field Evaluation of Real-Time XBT Systems ... 811
Pierre Rual: For a Better XBT Bathy-Message: Onboard Quality Control, plus a New Data Reduction Method ... 823