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Instability Conditions and Energetics in the Equatorial Pacific
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ABSTRACf

Instability conditions applicable to zonal flows in the equatorial oceans are presented. A
multi-layer model, with either rigid bottom (including the effects of topography) or "reduced gravity"
lower boundary, is employed. Preliminary use of these theoretical results is illustrated with the zonal
geostrophic velocity profiles calculated from the Hawaii-Tahiti Shuttle Data (Wyrtki and Kilonsky, 1984).
Sufficient stability conditions - or necessary instability ones - come in two different sets : the second one is
related to the sign of the energy of growing perturbations.

1. Introduction

In a 1Ill-layer model, if there exists a value a. such that

and,

[V(y)-a.] (dQ/dy) < 0

g'H(y) > [V(y)-a.]2

(la)

(2a)

for all y, then the zonal flow (u, v, h)=(V, 0, H) is stable (Ripa 1983)1. There are
sufficient stability conditions; necessary instability conditions are, therefore, that for any
value of a., either (la) or (2a) or both must be violated.

In a model with two layers (Ripa, 1987, 1989a-b; McPhaden and Ripa, 1990),
stability condition (la) is simply replaced by

[VI -cl (dQ1/dy) < 0 and [U2 -a.] (dQfdy) < 0, (I b-e)

whereas the second condition, (2a), changes into

g' > [U1- a.]2/H1+ [V2 - a.]2/H2

if the system has a rigid bottom (which might include topography), or into

g'l < [g'l+g'2 - (U, - a.)2/Htl [g'2- (V2-a.)2/H2]

(2b)

(2c)

in the "reduced gravity" case (i.e., when the lower boundary is the interface with a third,
motionless layer); these last two systems are called the "2-layer" and "2l/2-layer" model,
respectivel y.

Two peculiarities of the stability conditions might call the attention:
Firstly, an arbitrary constant a. may be subtracted from the fields Ujy) : the

variations of V is what matters. Thus uniform flow, V. = constant is stableJ to finite
amplitude perturbations. In particular, there is no "barodinic instability" in a 11/2-layer

1.The notation is standard, e.g., g' is the reduced gravity and Q = (f - dU/dy)IH, denotes potential
vorticity, The basic flow is in geostrophic balance: fU +g'dH/dy =O.
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model. This powerful property follows from zonal homogeneity of the system equations
and boundary conditions (e.g., -plane or the sphere, with topography function only of
latitude, and with coasts along parallels), as well as of the basic flow under
consideration.

Secondly, there are two different stability conditions, or two sets of them. Even
though this is by no means novel, it is because of the absence of the second condition in
the quasi-geostrophic models (not applicable to the equatorial zone) that some readers
find it difficult to accept. The method used to find the stability conditions, and the
relationship of the second one with the sign of perturbation energy is discussed next.

2. Stability conditionsand integrals of motion.

The procedure devised by Amol'd (l965, 1966) consists in finding conditions
such that if satisfied by a particular basic flow, [u.h] =[V,H], then a certain integral of
motion, S[u,h], has an extreme at the basic solution, i.e., .

S[u,h] =constant,

for any initial condition, and

BS =S[U+u', H+h'] - S[U,H] > 0,

for all finite perturbations, [u' .h'], which are different from zero and sufficiently small.
Now, BS is an exact, finite-amplitude, constant of motion (N.B., S[U,H] = constant,
because the basic flow is steady) which, to lowest order, is quadratic in the perturbation.
This lowest order is composed of two parts : the first one involves the s~uare of the
perturbation potential vorticity, and the second one is the perturbation energy. The latter
is not necessarily positive, because there might exist perturbations that diminish the total
kinetic energy more than they increase the total potential energy, by means of
anti-correlated changes of velocity and layer thickness. The two stability conditions, e.g.
(la, b, or c) and (2a, b, or c), are precisely those that guarantee that both quadratic parts
of BS are positive definite.

Since BS is constant, in the case of an unstable basic flow a small perturbation
must have a vanishing net value of the quadratic part of BS (Just think of an infinitesimal
wave whose amplitude grows exponentially with time.) If the first condition is not
violated (for instance, when the basic flow has uniform potential vorticity), then the
perturbation energy must be negative (e.g., Marinone and Ripa, 1982) or zero (e.g.,
Hayashi and Young, 1987).

Non-positive wave energy is present in a well-known phenomenon, namely,
Kelvin-Helmholtz instability (e.g., see Miles 1980). However this seems to be ignored by
many researchers, particularly those with prejudices formed in the realm of the
quasi-geostrophic models, for which the energy of a growing perturbation is always
positive (that is why, incidentally, only the first condition is needed in the
quasi-geostrophic case). In Kelvin-Helmholtz instability theory, there are no gradients of
potential vorticity involved and the energy of a growing perturbation must be exactly
zero, whereas the energy of a neutral wave can have either sign.

2. Moreprecisely, "energy - Cl (zonal momentum)", but I call it "energy", for short.
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3. Stability conditions for the N-Iayermodel.

Consider a general N-Iayer model. A value of N = nI/2-layers with integer n,
actually means a (n+1) - layer model in which the deepest layer is at rest; it is, then, a
n-Iayer, system with a "soft" bottom. On the other hand, in a regular N-Iayer model, i.e.
with integer N, the deepest layer has a rigid bottom, which may include topography. I am
working with the primitive equations, and making use of the hydrostatic, Boussinesq and
"rigid lid" approximations; one can easily deal without the last two, but that only
complicates the algebra without much gain in physical insight. The model is completely
specified by the total volume of each layer (or the mean thickness, in the case of an
unbounded horizonal domain) and the buoyancy jumps across the interfaces, g'j' The
dynamical variables are the thickness, hj , and horizonal current in each layer Uj; the
latter is independent of the vertical coordinate.

The stability of a general basic zonal flow, (Uj = Uj(y), Vj =: 0, Hj = Hj(y) is
guaranteed if there exists a value a such that':

and
[Uj - a] (dQJdy) < 0

Jl. > [U - a]2/H.
J J J

Od)

(2d)

where the fields Jlj are defined in the following paragraph. These sufficient stability
conditions are the generalization of (la) and (2a) for the multi-layer case. Necessary
instability conditions are that,for any a, either (Id) or (2d) or both must be violated.

First define 1j =: (Uj.-a)2 / Hj. For the reduced gravity case, nI/2-layer model, first
make Jln:: g' and then J.1j-l :: g'j-l - Jl"Yj / (Jlr1} for j decreasing from n-2 down to 2.
For the rigid Rottom case, n-Iayer model one starts from Jln-l :: g'n-l - 1n and then one
does a similar thing, decreasing j from n-3 down to 2. As a check, notice that one goes
from N = n+l to N = nI/2 by making ~+l ~ 00, which implies 'Y _j ~ O. Similarly, one
formally goes from N = nI/2 to N = n by making g' ~ 00; I sayI\tformally" because the
n-Iayer model might have topography, and therefore is not truly derivable from the
nI/2-layer one.

Let us review the second condition, for systems with few layers. Perturbation
energy must be positive definite if

N =1:

N = 11/2:

N =2:

N = 21/2:

N=3:

N = 31/2:

where 1j:: [Ura]2/Hj'

always

g' >1

g'>11+12

g'l < (g'l + g'2 - 11)(g'2 - 12)

(g'2 - 13)2 < (g'l + g' 2 - 13 - 11)(g'2 - 13 - 12)

Jl2 < [g'l +Jl-11] [Jl-12] Jl=g'2-13g'3/(g' r13)

3. In all three cases, the first condition, (Id), must be satisfied in every layer U= 1, n), whereas the
second one, (2d). must be fulfilled for U= 1..... n) in the reduced gravity case or U= 1, n-I) in the rigid
bouom case,
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FIG.I. (a) 2 Ill-layer model of the equatorial Pacific,defined by the surface and the (Jo=23.20kg.nr? and
(Jo=26.35 kg.m-3 isopycnals (the third layer is assumed infinitely deep and motionless). The isopycnals
mean depths were calculated from the data of Wynki and Kilonsky (1984). (b) Meridional derivatives of
the layer thicknesses.
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FIG.2. Geostrophic currents in each layer (solid lines) and average velocities calculated from WyrLlci and
Kilonsky (1984)continuous field(dashedlines).
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4. From one to infinity: the ultraviolet problem.

The second condition (perturbation energy positive definite) is more restrictive
on the shear of the basic flow as the number of layers is increased. Moreover, assume
that one builds successive approximations to a continuously stratified medium by
Nslayer models, with increasing N: As the layer thicknesses are diminished, say H~eH,
with e < 1, so are the buoyancy jumps, g' ~eg', but the fields "( are increased, "( ~ "(/e,
and thus the second condition is harder to satisfy, by a factor of l/e2. The inevitable
conclusion is that there are no conditions on the basic flow that make the energy of an
arbitrary perturbation positive definite: one has to resort to conditions that also involve
properties of the disturbance.

For instance, following Holm and Long (1988), one can use as the "second
condition" in a continum system.

(3)

where N is the Brunt-Vaisala frequency (N2 is the vertical gradient of the basic buoyancy
profile) and m is a local vertical wavenumber of the perturbation'[. Unlike conditions
(2a-d), which only involve the basic flow, (3) also bounds the vertical scale of the
perturbations : short enough disturbances will violate it (as happenes with the horizontal
scale in the case of Kelvin-Helmholtz instability). Therefore, (3) is indeed a condition for
linear stability : in a fully nonlinear problem, there is no way to assure that m2 will be
bounded at all times, even if it so initially.

S. Preliminary results of an application to the equatorial Pacific

A model of equatorial currents with some pretense of realism must, at least, have
two layers. Prof. Klaus Wyrtki has been kind enough to provide me with the mean
annual data shown in the Wyrtki and Kilonsky (1984) paper; figure la shows a 21/2-layer
model (i.e., the third one is assumed infinitely deep and motionless) with interfaces
defined as the 0 0=23.20 kg.rrr-' and 0 0=26.35 kg.m-3 isopycnals, respectively. The
meridional derivatives of the layer thicknesses, figure 1b, vanish right at the equator,
which is a necessary condition for geostrophic balance.

Geostrophic currents in each layer (solid lines in figure 2) show, not surprisingly,
good agreement with the average velocities (dashed lines) calculated from Wyrtki and
Kilonsky "continuous" field, using buoyancy jumps equal to g'l = 27 mm.s-2 and g:z =
15 mm.s·2. The south equatorial current (SEC), north equatorial countercurrent (NECC)
and current (NEC) are clearly seen in the first layer. The equatorial undercurrent (EVC)
is observed in the second layer, along with the SEC, NECC (or the subsurface one), and
NEC.

The meridional gradient of potential vorticity is always positive everywhere in
the first layer and only south of lOON in the second layer. The first stability condition is
violated at the site of NECC, in the first layer, and of the EUC, in the second one, if a
value a = 0 is used. However, with a = 60 cm.sl, the first condition is not violated in
those regions, but rather, north of lOON in the second layer. The second stability
condition is found to be satisfied for both values of a.

In summary, the second condition is satisfied (i.e., the vertical resolution is "ot
rich enough to allow for negative energy perturbations) but the first one is violated; the
place where this occurs depends on the value of a. A normal mode calculation is

4. The generalization of the "firstcondition" to the continuum case is straightforward.
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underway. I expect to find the flow to be unstable, much like in the work of Philander
(1976, 1978), and it will be interesting to compare the localization of a growing
perturbation and the regions where (1c) is violated, depending on the value of a.

6. Finale

Laplace tidal equations are probably the archetype of ocean dynamical models.
When they are linearized in the deviation from a resting ocean, two types of waves are
found: Poincare and Rossby ones (these become gravity waves and vertical modes,
respectively, in the absence of Coriolis effects). Two is also the number of conditions
that guarantee the stability of the steady solutions of those equations, as discussed here
and elsewhere.

It is my conjecture that growing perturbations from an unstable flow that violates
(1) but satisfies (2) are Rossby-like. Conversely, an unstable steady solution that fulfills
(1) but not (2), is presumed to have growing perturbations which are Poincare-Iike.
Marinone and Ripa (1982) studied unstable easterly equatorial jets in a Ita-layer model,
finding that the narrower jet violated (1a) but not (2a); the opposite was true for one with
a width equal to the deformation radius. The structure of the perturbations in each case
was like as described above (Rossby and Poincare-like, respectively). Of course, I expect
my conjecture to hold true not only for the Ita-layer model, but also for cases with
richer vertical resolution, for which the second condition is harder to satisfy.

In the strictly two-dimensional (non-divergent) case as well as in the
quasi-geostrophic models, there is only one type of linear waves (i.e., Rossby ones), and
also there is only one stability condition, namely that corresponding to (1), in accordance
with that expressed above. For all other cases two sets of stability conditions are found.
The second condition is associated to the possibility of perturbations with negative or
vanishing energy. It is important to examine this concept further, particularly in the
equatorial region, where Poincare waves cannot be avoided in any truly non-linear model.
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